mp5: done 1-4.1
This commit is contained in:
parent
0a99f022c2
commit
9deb8a3238
6 changed files with 635 additions and 2 deletions
41
mp5/Project_5_Maggioni_Claudio/code_template.asv
Normal file
41
mp5/Project_5_Maggioni_Claudio/code_template.asv
Normal file
|
@ -0,0 +1,41 @@
|
|||
close all;
|
||||
clear; clc;
|
||||
|
||||
%% Load Default Img Data
|
||||
load('blur_data/B.mat');
|
||||
B=double(B);
|
||||
load('blur_data/A.mat');
|
||||
A=double(A);
|
||||
ciao = A;
|
||||
|
||||
% Show Image
|
||||
figure
|
||||
im_l=min(min(B));
|
||||
im_u=max(max(B));
|
||||
imshow(B,[im_l,im_u])
|
||||
title('Blured Image')
|
||||
|
||||
% Vectorize the image (row by row)
|
||||
b=B';
|
||||
b=b(:);
|
||||
|
||||
%IL = ichol(A, struct('type', 'nofill', 'diagcomp', 0));
|
||||
y = IL \ b;
|
||||
x0 = IL' \ y;
|
||||
|
||||
[x, rvec] = myCG(A, b, diag(IL), 200, 1e-6);
|
||||
semilogy(rvec);
|
||||
|
||||
[X2,flag,~,~,rvec2] = pcg(A, b, 1e-6, 200);
|
||||
|
||||
|
||||
|
||||
%% Validate Test values
|
||||
load('test_data/A_test.mat');
|
||||
load('test_data/x_test_exact.mat');
|
||||
load('test_data/b_test.mat');
|
||||
|
||||
%res=||x^*-A^{-1}b||
|
||||
res=x_test_exact-inv(A_test)*b_test;
|
||||
norm(res);
|
||||
%(Now do it with your CG and Matlab's PCG routine!!!)
|
|
@ -1,9 +1,13 @@
|
|||
close all;
|
||||
clear; clc;
|
||||
addpath /Users/maggicl/Git/matlab2tikz/src/;
|
||||
|
||||
%% Load Default Img Data
|
||||
load('blur_data/B.mat');
|
||||
B=double(B);
|
||||
load('blur_data/A.mat');
|
||||
A=double(A);
|
||||
ciao = A;
|
||||
|
||||
% Show Image
|
||||
figure
|
||||
|
@ -16,6 +20,54 @@ title('Blured Image')
|
|||
b=B';
|
||||
b=b(:);
|
||||
|
||||
AT = A * A';
|
||||
bt = A' * b;
|
||||
|
||||
IL = ichol(AT, struct('type', 'nofill', 'diagcomp', 0.01));
|
||||
y = IL \ b;
|
||||
x0 = IL' \ y;
|
||||
|
||||
[x, rvec] = myCG(AT, bt, x0, 200, 1e-6);
|
||||
[x2, ~, ~, ~, rvec2] = pcg(AT, bt, 1e-6, 200, IL, IL');
|
||||
|
||||
figure;
|
||||
semilogy(rvec);
|
||||
hold on;
|
||||
semilogy(rvec2);
|
||||
hold off;
|
||||
title('Residual norms over iteration (y is log)')
|
||||
matlab2tikz('showInfo', false, '../res_log.tex');
|
||||
|
||||
|
||||
X = zeros(250, 250);
|
||||
for i = 0:249
|
||||
for j = 1:250
|
||||
X(i + 1, j) = x(i * 250 + j);
|
||||
end
|
||||
end
|
||||
|
||||
figure;
|
||||
im_l=min(min(X));
|
||||
im_u=max(max(X));
|
||||
imshow(X,[im_l,im_u])
|
||||
title('Sharp Image (myCG)')
|
||||
matlab2tikz('showInfo', false, '../img_my.tex');
|
||||
|
||||
|
||||
X2 = zeros(250, 250);
|
||||
for i = 0:249
|
||||
for j = 1:250
|
||||
X2(i + 1, j) = x2(i * 250 + j);
|
||||
end
|
||||
end
|
||||
|
||||
figure;
|
||||
im_l=min(min(X2));
|
||||
im_u=max(max(X2));
|
||||
imshow(X2,[im_l,im_u])
|
||||
title('Sharp Image (rcg)')
|
||||
matlab2tikz('showInfo', false, '../img_rcg.tex');
|
||||
|
||||
|
||||
|
||||
%% Validate Test values
|
||||
|
@ -24,6 +76,6 @@ load('test_data/x_test_exact.mat');
|
|||
load('test_data/b_test.mat');
|
||||
|
||||
%res=||x^*-A^{-1}b||
|
||||
res=x_test_exact-inv(A_test)*b_test
|
||||
norm(res)
|
||||
res=x_test_exact-inv(A_test)*b_test;
|
||||
norm(res);
|
||||
%(Now do it with your CG and Matlab's PCG routine!!!)
|
||||
|
|
257
mp5/img_my.tex
Normal file
257
mp5/img_my.tex
Normal file
|
@ -0,0 +1,257 @@
|
|||
% This file was created by matlab2tikz.
|
||||
%
|
||||
\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
|
||||
\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}%
|
||||
%
|
||||
\begin{tikzpicture}
|
||||
|
||||
\begin{axis}[%
|
||||
width=4.521in,
|
||||
height=3.566in,
|
||||
at={(0.758in,0.481in)},
|
||||
scale only axis,
|
||||
xmin=0,
|
||||
xmax=250,
|
||||
ymode=log,
|
||||
ymin=1e-06,
|
||||
ymax=118.544185368288,
|
||||
yminorticks=true,
|
||||
axis background/.style={fill=white},
|
||||
title style={font=\bfseries},
|
||||
title={Sharp Image (myCG)}
|
||||
]
|
||||
\addplot [color=mycolor1, forget plot]
|
||||
table[row sep=crcr]{%
|
||||
1 11.1886780605947\\
|
||||
2 37.688016651504\\
|
||||
3 20.5612191459901\\
|
||||
4 10.1126098486914\\
|
||||
5 6.60295496425051\\
|
||||
6 4.03660691189902\\
|
||||
7 2.83696084221764\\
|
||||
8 2.02776259797851\\
|
||||
9 1.55623996384361\\
|
||||
10 1.26373343652138\\
|
||||
11 0.968080560648255\\
|
||||
12 0.808014633949812\\
|
||||
13 0.666010141343337\\
|
||||
14 0.547935882226161\\
|
||||
15 0.455778233603678\\
|
||||
16 0.379140935249178\\
|
||||
17 0.325385471261729\\
|
||||
18 0.27468130551472\\
|
||||
19 0.241318492631058\\
|
||||
20 0.203089896725741\\
|
||||
21 0.186402910640978\\
|
||||
22 0.164285195168731\\
|
||||
23 0.161498606695505\\
|
||||
24 0.13554465057248\\
|
||||
25 0.108256329622331\\
|
||||
26 0.096685060868788\\
|
||||
27 0.0901032819163635\\
|
||||
28 0.0846560423043152\\
|
||||
29 0.0720452421305809\\
|
||||
30 0.0638081561682231\\
|
||||
31 0.0586938472203618\\
|
||||
32 0.0524931123015411\\
|
||||
33 0.0500311324114693\\
|
||||
34 0.0441377829780386\\
|
||||
35 0.0430660141184194\\
|
||||
36 0.0399007401033348\\
|
||||
37 0.0357338939687774\\
|
||||
38 0.0334582949737502\\
|
||||
39 0.0301143079798452\\
|
||||
40 0.0277450095617363\\
|
||||
41 0.0246457162237748\\
|
||||
42 0.0226451015644127\\
|
||||
43 0.0214585559097522\\
|
||||
44 0.0197750620834928\\
|
||||
45 0.0184656387170807\\
|
||||
46 0.01424126114094\\
|
||||
47 0.014925314691824\\
|
||||
48 0.0138939777471367\\
|
||||
49 0.0124854196790047\\
|
||||
50 0.0121443393806818\\
|
||||
51 0.0111248201462271\\
|
||||
52 0.0117048407914948\\
|
||||
53 0.0113323279545552\\
|
||||
54 0.0106729739632728\\
|
||||
55 0.00944425804326873\\
|
||||
56 0.00871066933482761\\
|
||||
57 0.00881210600673333\\
|
||||
58 0.00795156096327054\\
|
||||
59 0.00726613636631538\\
|
||||
60 0.00700470814378812\\
|
||||
61 0.00621935380743637\\
|
||||
62 0.00580029695866593\\
|
||||
63 0.00557779006381989\\
|
||||
64 0.00510498070037545\\
|
||||
65 0.0047009622833176\\
|
||||
66 0.00438789538442034\\
|
||||
67 0.00435585711109691\\
|
||||
68 0.00396640165581629\\
|
||||
69 0.00393477324085466\\
|
||||
70 0.00371617606606877\\
|
||||
71 0.00327886320159879\\
|
||||
72 0.00312237367539779\\
|
||||
73 0.00299349690875735\\
|
||||
74 0.00284074963413765\\
|
||||
75 0.00287860679448775\\
|
||||
76 0.0027731320103853\\
|
||||
77 0.00263952084059243\\
|
||||
78 0.00233720240014001\\
|
||||
79 0.00212697729708345\\
|
||||
80 0.00199788688851914\\
|
||||
81 0.00191003161317315\\
|
||||
82 0.00189242158319258\\
|
||||
83 0.00174836410231261\\
|
||||
84 0.0016140985772839\\
|
||||
85 0.00153318949743614\\
|
||||
86 0.00147245713810495\\
|
||||
87 0.00150762346036416\\
|
||||
88 0.00141698818640003\\
|
||||
89 0.00132612374554337\\
|
||||
90 0.0012294024439175\\
|
||||
91 0.00124357808130644\\
|
||||
92 0.00117351874267278\\
|
||||
93 0.00118805545766119\\
|
||||
94 0.00114318803197479\\
|
||||
95 0.00110915873689051\\
|
||||
96 0.00101959224657441\\
|
||||
97 0.00102415265668903\\
|
||||
98 0.000975302119471475\\
|
||||
99 0.000987996366258813\\
|
||||
100 0.00095742632740931\\
|
||||
101 0.000934265103971271\\
|
||||
102 0.000867894211150555\\
|
||||
103 0.000857812123034294\\
|
||||
104 0.000756099336226914\\
|
||||
105 0.000691162784782045\\
|
||||
106 0.000695473018163751\\
|
||||
107 0.000633925014757231\\
|
||||
108 0.000590287819831721\\
|
||||
109 0.000535337664369594\\
|
||||
110 0.000538252780320825\\
|
||||
111 0.000525826256051619\\
|
||||
112 0.000497879429315293\\
|
||||
113 0.000454616010876659\\
|
||||
114 0.000458838481347935\\
|
||||
115 0.000424839125494755\\
|
||||
116 0.000394335524998984\\
|
||||
117 0.000385945051019674\\
|
||||
118 0.000369692359961463\\
|
||||
119 0.000344267565220491\\
|
||||
120 0.000327893992619588\\
|
||||
121 0.000325828293258797\\
|
||||
122 0.000289237146884203\\
|
||||
123 0.000285070703523818\\
|
||||
124 0.000254192839215692\\
|
||||
125 0.000243444971741076\\
|
||||
126 0.000232080954193898\\
|
||||
127 0.000232619238643129\\
|
||||
128 0.000221784687572175\\
|
||||
129 0.000220230466851297\\
|
||||
130 0.000211029395043088\\
|
||||
131 0.000193736708718616\\
|
||||
132 0.000173392267570507\\
|
||||
133 0.000177242279228775\\
|
||||
134 0.000176692274847942\\
|
||||
135 0.000163578052215373\\
|
||||
136 0.000154604812916662\\
|
||||
137 0.000144545518887022\\
|
||||
138 0.00014456301163485\\
|
||||
139 0.000142459358743701\\
|
||||
140 0.0001308824450235\\
|
||||
141 0.000115457857714896\\
|
||||
142 0.00011695471803412\\
|
||||
143 0.000113103879953932\\
|
||||
144 0.000105257482462195\\
|
||||
145 0.000106888699118678\\
|
||||
146 0.000102374869876372\\
|
||||
147 9.76413644339824e-05\\
|
||||
148 8.4851357550636e-05\\
|
||||
149 7.68259382254786e-05\\
|
||||
150 7.45049326964518e-05\\
|
||||
151 7.30876640535304e-05\\
|
||||
152 7.5125116902824e-05\\
|
||||
153 7.84305708028061e-05\\
|
||||
154 8.45501238033231e-05\\
|
||||
155 8.17331778157062e-05\\
|
||||
156 7.55108766404751e-05\\
|
||||
157 7.48398655259728e-05\\
|
||||
158 7.14089505651308e-05\\
|
||||
159 6.99224620714426e-05\\
|
||||
160 7.04197347847714e-05\\
|
||||
161 6.53525683701177e-05\\
|
||||
162 6.08288863097357e-05\\
|
||||
163 5.89421929587584e-05\\
|
||||
164 5.72484731968775e-05\\
|
||||
165 5.18959286578684e-05\\
|
||||
166 5.16052819357681e-05\\
|
||||
167 5.18373975156787e-05\\
|
||||
168 5.1438260693119e-05\\
|
||||
169 4.74780120078228e-05\\
|
||||
170 4.76692285194498e-05\\
|
||||
171 4.63049226435535e-05\\
|
||||
172 4.3021574259984e-05\\
|
||||
173 4.34691080338747e-05\\
|
||||
174 4.07308380659776e-05\\
|
||||
175 3.92273577862465e-05\\
|
||||
176 3.78686988818524e-05\\
|
||||
177 3.75780813333193e-05\\
|
||||
178 3.89427911494855e-05\\
|
||||
179 3.55021611298483e-05\\
|
||||
180 3.21423511450592e-05\\
|
||||
181 3.1976175682275e-05\\
|
||||
182 3.15208931332488e-05\\
|
||||
183 3.02809343645595e-05\\
|
||||
184 2.93752192595988e-05\\
|
||||
185 2.83798341644248e-05\\
|
||||
186 2.84874468500327e-05\\
|
||||
187 2.6372748821241e-05\\
|
||||
188 2.83572106563901e-05\\
|
||||
189 2.73404573666424e-05\\
|
||||
190 2.64050982491902e-05\\
|
||||
191 2.68346097335579e-05\\
|
||||
192 2.66791537496404e-05\\
|
||||
193 2.44823861206895e-05\\
|
||||
194 2.44167662294569e-05\\
|
||||
195 2.42329915293711e-05\\
|
||||
196 2.57959950015393e-05\\
|
||||
197 2.5330918832603e-05\\
|
||||
198 2.43122483048608e-05\\
|
||||
199 2.29066675778814e-05\\
|
||||
200 2.28422313595056e-05\\
|
||||
201 2.2009103500163e-05\\
|
||||
};
|
||||
\addplot [color=mycolor2, forget plot]
|
||||
table[row sep=crcr]{%
|
||||
1 118.544185368288\\
|
||||
2 0.687337944312083\\
|
||||
3 0.0352052378196977\\
|
||||
4 0.0177116530504275\\
|
||||
5 0.00921115423330148\\
|
||||
6 0.00742079353381528\\
|
||||
7 0.00435978025623298\\
|
||||
8 0.00269077966124769\\
|
||||
9 0.00326151218772164\\
|
||||
10 0.00207394458931424\\
|
||||
11 0.00295893040643868\\
|
||||
12 0.00133204038205353\\
|
||||
13 0.00183522720801244\\
|
||||
14 0.00145996981575274\\
|
||||
15 0.000990797743084482\\
|
||||
16 0.00126621063572918\\
|
||||
17 0.000551496956428083\\
|
||||
18 0.000515017395303755\\
|
||||
19 0.000232316315215174\\
|
||||
20 0.000223232804362511\\
|
||||
21 0.000208790455128303\\
|
||||
22 0.000151172313680646\\
|
||||
23 0.000161588020568097\\
|
||||
24 0.000122705865740307\\
|
||||
25 0.000118687703674217\\
|
||||
26 0.000113287133295243\\
|
||||
};
|
||||
\end{axis}
|
||||
\end{tikzpicture}%
|
BIN
mp5/img_rcg-1.png
Normal file
BIN
mp5/img_rcg-1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 58 KiB |
26
mp5/img_rcg.tex
Normal file
26
mp5/img_rcg.tex
Normal file
|
@ -0,0 +1,26 @@
|
|||
% This file was created by matlab2tikz.
|
||||
%
|
||||
\begin{tikzpicture}
|
||||
|
||||
\begin{axis}[%
|
||||
width=2.604in,
|
||||
height=2.604in,
|
||||
at={(0.962in,0.66in)},
|
||||
scale only axis,
|
||||
point meta min=-0.0235938830592846,
|
||||
point meta max=0.993939917509565,
|
||||
axis on top,
|
||||
xmin=0.5,
|
||||
xmax=250.5,
|
||||
tick align=outside,
|
||||
y dir=reverse,
|
||||
ymin=0.5,
|
||||
ymax=250.5,
|
||||
axis line style={draw=none},
|
||||
ticks=none,
|
||||
title style={font=\bfseries},
|
||||
title={Sharp Image (rcg)}
|
||||
]
|
||||
\addplot [forget plot] graphics [xmin=0.5, xmax=250.5, ymin=0.5, ymax=250.5] {img_rcg-1.png};
|
||||
\end{axis}
|
||||
\end{tikzpicture}%
|
257
mp5/res_log.tex
Normal file
257
mp5/res_log.tex
Normal file
|
@ -0,0 +1,257 @@
|
|||
% This file was created by matlab2tikz.
|
||||
%
|
||||
\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
|
||||
\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}%
|
||||
%
|
||||
\begin{tikzpicture}
|
||||
|
||||
\begin{axis}[%
|
||||
width=4.521in,
|
||||
height=3.566in,
|
||||
at={(0.758in,0.481in)},
|
||||
scale only axis,
|
||||
xmin=0,
|
||||
xmax=250,
|
||||
ymode=log,
|
||||
ymin=1e-06,
|
||||
ymax=118.544185368288,
|
||||
yminorticks=true,
|
||||
axis background/.style={fill=white},
|
||||
title style={font=\bfseries},
|
||||
title={Residual norms over iteration (y is log)}
|
||||
]
|
||||
\addplot [color=mycolor1, forget plot]
|
||||
table[row sep=crcr]{%
|
||||
1 11.1886780605947\\
|
||||
2 37.688016651504\\
|
||||
3 20.5612191459901\\
|
||||
4 10.1126098486914\\
|
||||
5 6.60295496425051\\
|
||||
6 4.03660691189902\\
|
||||
7 2.83696084221764\\
|
||||
8 2.02776259797851\\
|
||||
9 1.55623996384361\\
|
||||
10 1.26373343652138\\
|
||||
11 0.968080560648255\\
|
||||
12 0.808014633949812\\
|
||||
13 0.666010141343337\\
|
||||
14 0.547935882226161\\
|
||||
15 0.455778233603678\\
|
||||
16 0.379140935249178\\
|
||||
17 0.325385471261729\\
|
||||
18 0.27468130551472\\
|
||||
19 0.241318492631058\\
|
||||
20 0.203089896725741\\
|
||||
21 0.186402910640978\\
|
||||
22 0.164285195168731\\
|
||||
23 0.161498606695505\\
|
||||
24 0.13554465057248\\
|
||||
25 0.108256329622331\\
|
||||
26 0.096685060868788\\
|
||||
27 0.0901032819163635\\
|
||||
28 0.0846560423043152\\
|
||||
29 0.0720452421305809\\
|
||||
30 0.0638081561682231\\
|
||||
31 0.0586938472203618\\
|
||||
32 0.0524931123015411\\
|
||||
33 0.0500311324114693\\
|
||||
34 0.0441377829780386\\
|
||||
35 0.0430660141184194\\
|
||||
36 0.0399007401033348\\
|
||||
37 0.0357338939687774\\
|
||||
38 0.0334582949737502\\
|
||||
39 0.0301143079798452\\
|
||||
40 0.0277450095617363\\
|
||||
41 0.0246457162237748\\
|
||||
42 0.0226451015644127\\
|
||||
43 0.0214585559097522\\
|
||||
44 0.0197750620834928\\
|
||||
45 0.0184656387170807\\
|
||||
46 0.01424126114094\\
|
||||
47 0.014925314691824\\
|
||||
48 0.0138939777471367\\
|
||||
49 0.0124854196790047\\
|
||||
50 0.0121443393806818\\
|
||||
51 0.0111248201462271\\
|
||||
52 0.0117048407914948\\
|
||||
53 0.0113323279545552\\
|
||||
54 0.0106729739632728\\
|
||||
55 0.00944425804326873\\
|
||||
56 0.00871066933482761\\
|
||||
57 0.00881210600673333\\
|
||||
58 0.00795156096327054\\
|
||||
59 0.00726613636631538\\
|
||||
60 0.00700470814378812\\
|
||||
61 0.00621935380743637\\
|
||||
62 0.00580029695866593\\
|
||||
63 0.00557779006381989\\
|
||||
64 0.00510498070037545\\
|
||||
65 0.0047009622833176\\
|
||||
66 0.00438789538442034\\
|
||||
67 0.00435585711109691\\
|
||||
68 0.00396640165581629\\
|
||||
69 0.00393477324085466\\
|
||||
70 0.00371617606606877\\
|
||||
71 0.00327886320159879\\
|
||||
72 0.00312237367539779\\
|
||||
73 0.00299349690875735\\
|
||||
74 0.00284074963413765\\
|
||||
75 0.00287860679448775\\
|
||||
76 0.0027731320103853\\
|
||||
77 0.00263952084059243\\
|
||||
78 0.00233720240014001\\
|
||||
79 0.00212697729708345\\
|
||||
80 0.00199788688851914\\
|
||||
81 0.00191003161317315\\
|
||||
82 0.00189242158319258\\
|
||||
83 0.00174836410231261\\
|
||||
84 0.0016140985772839\\
|
||||
85 0.00153318949743614\\
|
||||
86 0.00147245713810495\\
|
||||
87 0.00150762346036416\\
|
||||
88 0.00141698818640003\\
|
||||
89 0.00132612374554337\\
|
||||
90 0.0012294024439175\\
|
||||
91 0.00124357808130644\\
|
||||
92 0.00117351874267278\\
|
||||
93 0.00118805545766119\\
|
||||
94 0.00114318803197479\\
|
||||
95 0.00110915873689051\\
|
||||
96 0.00101959224657441\\
|
||||
97 0.00102415265668903\\
|
||||
98 0.000975302119471475\\
|
||||
99 0.000987996366258813\\
|
||||
100 0.00095742632740931\\
|
||||
101 0.000934265103971271\\
|
||||
102 0.000867894211150555\\
|
||||
103 0.000857812123034294\\
|
||||
104 0.000756099336226914\\
|
||||
105 0.000691162784782045\\
|
||||
106 0.000695473018163751\\
|
||||
107 0.000633925014757231\\
|
||||
108 0.000590287819831721\\
|
||||
109 0.000535337664369594\\
|
||||
110 0.000538252780320825\\
|
||||
111 0.000525826256051619\\
|
||||
112 0.000497879429315293\\
|
||||
113 0.000454616010876659\\
|
||||
114 0.000458838481347935\\
|
||||
115 0.000424839125494755\\
|
||||
116 0.000394335524998984\\
|
||||
117 0.000385945051019674\\
|
||||
118 0.000369692359961463\\
|
||||
119 0.000344267565220491\\
|
||||
120 0.000327893992619588\\
|
||||
121 0.000325828293258797\\
|
||||
122 0.000289237146884203\\
|
||||
123 0.000285070703523818\\
|
||||
124 0.000254192839215692\\
|
||||
125 0.000243444971741076\\
|
||||
126 0.000232080954193898\\
|
||||
127 0.000232619238643129\\
|
||||
128 0.000221784687572175\\
|
||||
129 0.000220230466851297\\
|
||||
130 0.000211029395043088\\
|
||||
131 0.000193736708718616\\
|
||||
132 0.000173392267570507\\
|
||||
133 0.000177242279228775\\
|
||||
134 0.000176692274847942\\
|
||||
135 0.000163578052215373\\
|
||||
136 0.000154604812916662\\
|
||||
137 0.000144545518887022\\
|
||||
138 0.00014456301163485\\
|
||||
139 0.000142459358743701\\
|
||||
140 0.0001308824450235\\
|
||||
141 0.000115457857714896\\
|
||||
142 0.00011695471803412\\
|
||||
143 0.000113103879953932\\
|
||||
144 0.000105257482462195\\
|
||||
145 0.000106888699118678\\
|
||||
146 0.000102374869876372\\
|
||||
147 9.76413644339824e-05\\
|
||||
148 8.4851357550636e-05\\
|
||||
149 7.68259382254786e-05\\
|
||||
150 7.45049326964518e-05\\
|
||||
151 7.30876640535304e-05\\
|
||||
152 7.5125116902824e-05\\
|
||||
153 7.84305708028061e-05\\
|
||||
154 8.45501238033231e-05\\
|
||||
155 8.17331778157062e-05\\
|
||||
156 7.55108766404751e-05\\
|
||||
157 7.48398655259728e-05\\
|
||||
158 7.14089505651308e-05\\
|
||||
159 6.99224620714426e-05\\
|
||||
160 7.04197347847714e-05\\
|
||||
161 6.53525683701177e-05\\
|
||||
162 6.08288863097357e-05\\
|
||||
163 5.89421929587584e-05\\
|
||||
164 5.72484731968775e-05\\
|
||||
165 5.18959286578684e-05\\
|
||||
166 5.16052819357681e-05\\
|
||||
167 5.18373975156787e-05\\
|
||||
168 5.1438260693119e-05\\
|
||||
169 4.74780120078228e-05\\
|
||||
170 4.76692285194498e-05\\
|
||||
171 4.63049226435535e-05\\
|
||||
172 4.3021574259984e-05\\
|
||||
173 4.34691080338747e-05\\
|
||||
174 4.07308380659776e-05\\
|
||||
175 3.92273577862465e-05\\
|
||||
176 3.78686988818524e-05\\
|
||||
177 3.75780813333193e-05\\
|
||||
178 3.89427911494855e-05\\
|
||||
179 3.55021611298483e-05\\
|
||||
180 3.21423511450592e-05\\
|
||||
181 3.1976175682275e-05\\
|
||||
182 3.15208931332488e-05\\
|
||||
183 3.02809343645595e-05\\
|
||||
184 2.93752192595988e-05\\
|
||||
185 2.83798341644248e-05\\
|
||||
186 2.84874468500327e-05\\
|
||||
187 2.6372748821241e-05\\
|
||||
188 2.83572106563901e-05\\
|
||||
189 2.73404573666424e-05\\
|
||||
190 2.64050982491902e-05\\
|
||||
191 2.68346097335579e-05\\
|
||||
192 2.66791537496404e-05\\
|
||||
193 2.44823861206895e-05\\
|
||||
194 2.44167662294569e-05\\
|
||||
195 2.42329915293711e-05\\
|
||||
196 2.57959950015393e-05\\
|
||||
197 2.5330918832603e-05\\
|
||||
198 2.43122483048608e-05\\
|
||||
199 2.29066675778814e-05\\
|
||||
200 2.28422313595056e-05\\
|
||||
201 2.2009103500163e-05\\
|
||||
};
|
||||
\addplot [color=mycolor2, forget plot]
|
||||
table[row sep=crcr]{%
|
||||
1 118.544185368288\\
|
||||
2 0.687337944312083\\
|
||||
3 0.0352052378196977\\
|
||||
4 0.0177116530504275\\
|
||||
5 0.00921115423330148\\
|
||||
6 0.00742079353381528\\
|
||||
7 0.00435978025623298\\
|
||||
8 0.00269077966124769\\
|
||||
9 0.00326151218772164\\
|
||||
10 0.00207394458931424\\
|
||||
11 0.00295893040643868\\
|
||||
12 0.00133204038205353\\
|
||||
13 0.00183522720801244\\
|
||||
14 0.00145996981575274\\
|
||||
15 0.000990797743084482\\
|
||||
16 0.00126621063572918\\
|
||||
17 0.000551496956428083\\
|
||||
18 0.000515017395303755\\
|
||||
19 0.000232316315215174\\
|
||||
20 0.000223232804362511\\
|
||||
21 0.000208790455128303\\
|
||||
22 0.000151172313680646\\
|
||||
23 0.000161588020568097\\
|
||||
24 0.000122705865740307\\
|
||||
25 0.000118687703674217\\
|
||||
26 0.000113287133295243\\
|
||||
};
|
||||
\end{axis}
|
||||
\end{tikzpicture}%
|
Reference in a new issue