mp5: done

This commit is contained in:
Claudio Maggioni (maggicl) 2020-11-30 21:02:20 +01:00
parent 0b1939a9d2
commit f001099b7a
11 changed files with 296 additions and 366 deletions

Binary file not shown.

View file

@ -89,7 +89,8 @@ The plot of the squared residual 2-norms over all iterations can be found in Fig
\ref{fig:plot1}.
\begin{figure}[h]
\input{test_semilogy}
\centering
\resizebox{0.6\textwidth}{!}{\input{test_semilogy}}
\caption{Semilog plot of the plot of the squared residual 2-norms over all iterations}\label{fig:plot1}
\end{figure}
@ -104,7 +105,8 @@ reflected in the eigenvalue plot, which shows a not so
drastic increase of the first eigenvalues ordered in increasing order.
\begin{figure}[h]
\input{A_eig}
\centering
\resizebox{0.6\textwidth}{!}{\input{A_eig}}
\caption{Semilog plot of the eigenvalues of A}\label{fig:plot2}
\end{figure}
@ -120,13 +122,39 @@ $max\_iter=200$ $tol= 10^{-6}$. Plot the convergence (residual
vs iteration) of each solver and display the original and final
deblurred image.}
Plots already rendered.
My implementation is in the file \texttt{deblurring.m}. Plots for the original image, the deblurred image from
\texttt{myCG}, the deblurred image from \texttt{pcg}, and a semi-logarithmic plot on the y-axis of the residuals
from the two conjugate gradient functions over the iteration count can be found respectively in figure \ref{fig:orig},
\ref{fig:mycg}, \ref{fig:pcg}, and \ref{fig:rvec}.
\begin{figure}[h]
\begin{subfigure}{0.33\textwidth}
\centering
\resizebox{0.8\textwidth}{!}{\input{img_orig}}
\caption{Original image grayscale matrix}\label{fig:orig}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\centering
\resizebox{0.8\textwidth}{!}{\input{img_my}}
\caption{Deblurred image using \texttt{myCG}}\label{fig:mycg}
\end{subfigure}
\begin{subfigure}{0.33\textwidth}
\centering
\resizebox{0.8\textwidth}{!}{\input{img_rcg}}
\caption{Deblurred image using \texttt{rcg}}\label{fig:pcg}
\end{subfigure}
\caption{Blurred and deblurred images}
\end{figure}
\begin{figure}[h]
\centering
\resizebox{0.6\textwidth}{!}{\input{res_log}}
\caption{Residuals of \texttt{myCG} (in blue) and \texttt{rcg} (in orange) over iteration count (y axis is a log scale)}\label{fig:rvec}
\end{figure}
\subsection{ When would \texttt{pcg} be worth the added computational cost?
What about if you are debluring lots of images with the same
blur operator?}
\textit{pcg} better for many, myCG better for one thanks to cost of ichol.
The \textit{pcg} algorithm provided by MATLAB would be worth for many deblurring operations useing the same blur operator, since the cost of computing the incomplete cholesky decomposition (i.e. \texttt{ichol}) can be payed only once and thus amortized. \texttt{myCG} is better for few iterations thanks to not needing any seed that is expensive to compute.
\end{document}

View file

@ -14,6 +14,7 @@ im_l=min(min(B));
im_u=max(max(B));
imshow(B,[im_l,im_u])
title('Blured Image')
matlab2tikz('showInfo', false, '../img_orig.tex');
% Vectorize the image (row by row)
b=B';
@ -64,15 +65,3 @@ im_u=max(max(X2));
imshow(X2,[im_l,im_u])
title('Sharp Image (rcg)')
matlab2tikz('showInfo', false, '../img_rcg.tex');
%% Validate Test values
load('test_data/A_test.mat');
load('test_data/x_test_exact.mat');
load('test_data/b_test.mat');
%res=||x^*-A^{-1}b||
res=x_test_exact-inv(A_test)*b_test;
norm(res);
%(Now do it with your CG and Matlab's PCG routine!!!)

View file

@ -0,0 +1,69 @@
close all;
clear; clc;
addpath /Users/maggicl/Git/matlab2tikz/src/;
%% Load Default Img Data
load('blur_data/B.mat');
B=double(B);
load('blur_data/A.mat');
A=double(A);
% Show Image
figure;
im_l=min(min(B));
im_u=max(max(B));
imshow(B,[im_l,im_u])
title('Blurred Image')
matlab2tikz('showInfo', false, '../img_orig.tex');
% Vectorize the image (row by row)
b=B';
b=b(:);
AT = A' * A;
bt = A' * b;
IL = ichol(AT, struct('type', 'nofill', 'diagcomp', 0.01));
[x, rvec] = myCG(AT, bt, zeros(size(b)), 200, 1e-6);
[x2, ~, ~, ~, rvec2] = pcg(AT, bt, 1e-6, 200, IL, IL');
X2 = zeros(250, 250);
for i = 0:249
for j = 1:250
X2(i + 1, j) = x2(i * 250 + j);
end
end
figure;
im_l=min(min(X2));
im_u=max(max(X2));
imshow(X2,[im_l,im_u])
title('Sharp Image (rcg)')
matlab2tikz('showInfo', false, '../img_rcg.tex');
X = zeros(250, 250);
for i = 0:249
for j = 1:250
X(i + 1, j) = x(i * 250 + j);
end
end
figure;
im_l=min(min(X));
im_u=max(max(X));
imshow(X,[im_l,im_u])
title('Sharp Image (myCG)')
matlab2tikz('showInfo', false, '../img_my.tex');
figure;
semilogy(rvec / norm(bt));
hold on;
semilogy(rvec2 / norm(bt));
hold off;
title('Residual norms over iteration (y is log)')
matlab2tikz('showInfo', false, '../res_log.tex');

Binary file not shown.

Before

Width:  |  Height:  |  Size: 56 KiB

After

Width:  |  Height:  |  Size: 58 KiB

View file

@ -1,208 +1,26 @@
% This file was created by matlab2tikz.
%
\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
\definecolor{mycolor2}{rgb}{0.85000,0.32500,0.09800}%
%
\begin{tikzpicture}
\begin{axis}[%
width=6.028in,
height=4.754in,
at={(1.011in,0.642in)},
width=2.604in,
height=2.604in,
at={(0.962in,0.66in)},
scale only axis,
xmin=0,
xmax=160,
ymode=log,
ymin=1e-09,
ymax=1,
yminorticks=true,
axis background/.style={fill=white},
point meta min=-0.0128979816802523,
point meta max=0.983438722992887,
axis on top,
xmin=0.5,
xmax=250.5,
tick align=outside,
y dir=reverse,
ymin=0.5,
ymax=250.5,
axis line style={draw=none},
ticks=none,
title style={font=\bfseries},
title={Sharp Image (myCG)}
]
\addplot [color=mycolor1, forget plot]
table[row sep=crcr]{%
1 1\\
2 0.557596535615506\\
3 0.0776565625508993\\
4 0.0198777323861488\\
5 0.00796998880225869\\
6 0.00379999756962287\\
7 0.0020374948726527\\
8 0.00117378505868276\\
9 0.000679072640424649\\
10 0.000460205525227464\\
11 0.000299176988582771\\
12 0.000208705837325249\\
13 0.000154155368421638\\
14 0.000112123271112138\\
15 8.51723029158506e-05\\
16 6.84145894011081e-05\\
17 5.22773173463893e-05\\
18 4.19658990284636e-05\\
19 3.35813556680048e-05\\
20 2.69909819855066e-05\\
21 2.16953761012216e-05\\
22 1.75366202909715e-05\\
23 1.58613744370523e-05\\
24 1.07527796769547e-05\\
25 1.21386374874815e-05\\
26 1.02818699879239e-05\\
27 8.94827138078525e-06\\
28 7.32098660262362e-06\\
29 6.29855369167726e-06\\
30 5.75608316894847e-06\\
31 5.01303204699423e-06\\
32 4.32711144148808e-06\\
33 3.75161010629661e-06\\
34 3.13429056757287e-06\\
35 2.97535388105766e-06\\
36 2.59579082920428e-06\\
37 2.35613630297938e-06\\
38 2.13570046200869e-06\\
39 1.91918226507556e-06\\
40 1.79412386278695e-06\\
41 1.60497187780807e-06\\
42 1.50673230165654e-06\\
43 1.29912483256279e-06\\
44 1.18346887626955e-06\\
45 1.20647020748118e-06\\
46 9.3251240253618e-07\\
47 1.0443397517104e-06\\
48 7.81977076368339e-07\\
49 7.06367946061837e-07\\
50 6.4448540591806e-07\\
51 5.8599197172186e-07\\
52 5.19890971305916e-07\\
53 4.77565688325081e-07\\
54 4.45837257417211e-07\\
55 4.52354751810163e-07\\
56 4.29038013881601e-07\\
57 4.19929738903634e-07\\
58 3.83172910236919e-07\\
59 3.69121286102551e-07\\
60 3.7162945951419e-07\\
61 3.46046785121521e-07\\
62 3.2757610333777e-07\\
63 3.15320978192865e-07\\
64 2.96758711344714e-07\\
65 2.96817636331721e-07\\
66 2.71124713000919e-07\\
67 2.62909013135003e-07\\
68 2.43462036182122e-07\\
69 2.28404291071355e-07\\
70 2.24415864473535e-07\\
71 2.28468445317059e-07\\
72 2.16184931431001e-07\\
73 2.03658004162582e-07\\
74 1.83416377348938e-07\\
75 1.77025922497321e-07\\
76 1.70006600401098e-07\\
77 1.63491825605367e-07\\
78 1.57088823572816e-07\\
79 1.6232157488019e-07\\
80 1.55517018193347e-07\\
81 1.44132341985942e-07\\
82 1.33984748126276e-07\\
83 1.25196828216566e-07\\
84 1.21215390780978e-07\\
85 1.15338855777099e-07\\
86 1.08276150400162e-07\\
87 1.04805124156927e-07\\
88 1.01804326380992e-07\\
89 1.0010166263465e-07\\
90 9.48101967192271e-08\\
91 8.89240656896784e-08\\
92 8.81989115707906e-08\\
93 8.26647202805855e-08\\
94 7.78552030683533e-08\\
95 8.16807953528358e-08\\
96 7.66807903209987e-08\\
97 7.25436978662745e-08\\
98 6.71702595720625e-08\\
99 7.01343166575355e-08\\
100 6.80449977565014e-08\\
101 6.68192875014292e-08\\
102 6.22828481503855e-08\\
103 6.14945471895087e-08\\
104 6.70743224722449e-08\\
105 6.88753801346713e-08\\
106 6.74234915967769e-08\\
107 6.38752997351369e-08\\
108 6.10832293660283e-08\\
109 5.60972305767953e-08\\
110 5.08646226781961e-08\\
111 4.95616876939365e-08\\
112 4.46580704289759e-08\\
113 4.2687817302539e-08\\
114 4.10291135987935e-08\\
115 3.78768817309767e-08\\
116 3.73532344958446e-08\\
117 3.51670172127996e-08\\
118 3.22365221541983e-08\\
119 3.0914108557954e-08\\
120 3.02505081670252e-08\\
121 2.87114558023773e-08\\
122 2.66853087438055e-08\\
123 2.60049357892773e-08\\
124 2.51289922847544e-08\\
125 2.39005712471205e-08\\
126 2.24094810183141e-08\\
127 2.01607019229326e-08\\
128 1.92164353138885e-08\\
129 1.82687256142865e-08\\
130 1.78764123154733e-08\\
131 1.90420480961642e-08\\
132 1.79866998160551e-08\\
133 1.62987103158868e-08\\
134 1.64054691550642e-08\\
135 1.53093691487969e-08\\
136 1.48209887890633e-08\\
137 1.48119659868498e-08\\
138 1.39479300275188e-08\\
139 1.30269784768553e-08\\
140 1.39128297693094e-08\\
141 1.35601176412506e-08\\
142 1.31199716923384e-08\\
143 1.16605449828788e-08\\
144 1.1256315915413e-08\\
145 1.10059046096852e-08\\
146 1.05336940404569e-08\\
147 9.87947792918718e-09\\
148 9.87385221564589e-09\\
149 9.86634931285779e-09\\
150 9.87265433744658e-09\\
151 8.57424740655266e-09\\
152 7.71781430780305e-09\\
};
\addplot [color=mycolor2, forget plot]
table[row sep=crcr]{%
1 1\\
2 0.00579815823253321\\
3 0.000296979878939853\\
4 0.000149409715840567\\
5 7.77022863220549e-05\\
6 6.2599388664747e-05\\
7 3.67776811885644e-05\\
8 2.26985377046381e-05\\
9 2.75130507463434e-05\\
10 1.74951186586756e-05\\
11 2.49605697423791e-05\\
12 1.12366572676273e-05\\
13 1.54813768580115e-05\\
14 1.23158281548519e-05\\
15 8.35804590504644e-06\\
16 1.06813390449761e-05\\
17 4.65224806020403e-06\\
18 4.34451840639611e-06\\
19 1.95974449943222e-06\\
20 1.88311897094728e-06\\
21 1.76128803348428e-06\\
22 1.275240225499e-06\\
23 1.36310372428718e-06\\
24 1.03510657531701e-06\\
25 1.00121067351798e-06\\
26 9.55653227048963e-07\\
};
\addplot [forget plot] graphics [xmin=0.5, xmax=250.5, ymin=0.5, ymax=250.5] {img_my-1.png};
\end{axis}
\end{tikzpicture}%

BIN
mp5/img_orig-1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

26
mp5/img_orig.tex Normal file
View file

@ -0,0 +1,26 @@
% This file was created by matlab2tikz.
%
\begin{tikzpicture}
\begin{axis}[%
width=2.604in,
height=2.604in,
at={(0.962in,0.66in)},
scale only axis,
point meta min=0.0282583971491394,
point meta max=0.921555841989536,
axis on top,
xmin=0.5,
xmax=250.5,
tick align=outside,
y dir=reverse,
ymin=0.5,
ymax=250.5,
axis line style={draw=none},
ticks=none,
title style={font=\bfseries},
title={Blurred Image}
]
\addplot [forget plot] graphics [xmin=0.5, xmax=250.5, ymin=0.5, ymax=250.5] {img_orig-1.png};
\end{axis}
\end{tikzpicture}%

Binary file not shown.

Before

Width:  |  Height:  |  Size: 58 KiB

After

Width:  |  Height:  |  Size: 58 KiB

View file

@ -3,12 +3,12 @@
\begin{tikzpicture}
\begin{axis}[%
width=1.736in,
height=1.736in,
at={(0.75in,0.653in)},
width=2.604in,
height=2.604in,
at={(0.962in,0.66in)},
scale only axis,
point meta min=-0.0128981437433609,
point meta max=0.983438542582913,
point meta min=-0.0235938830592846,
point meta max=0.993939917509565,
axis on top,
xmin=0.5,
xmax=250.5,

View file

@ -6,14 +6,14 @@
\begin{tikzpicture}
\begin{axis}[%
width=6.028in,
height=4.754in,
at={(1.011in,0.642in)},
width=4.521in,
height=3.566in,
at={(0.758in,0.481in)},
scale only axis,
xmin=0,
xmax=160,
ymode=log,
ymin=1e-09,
ymin=1e-10,
ymax=1,
yminorticks=true,
axis background/.style={fill=white},
@ -24,40 +24,40 @@ title={Residual norms over iteration (y is log)}
table[row sep=crcr]{%
1 1\\
2 0.557596535615506\\
3 0.0776565625508993\\
3 0.0776565625508994\\
4 0.0198777323861488\\
5 0.00796998880225869\\
6 0.00379999756962287\\
7 0.0020374948726527\\
5 0.0079699888022587\\
6 0.00379999756962288\\
7 0.00203749487265271\\
8 0.00117378505868276\\
9 0.000679072640424649\\
10 0.000460205525227464\\
9 0.000679072640424651\\
10 0.000460205525227465\\
11 0.000299176988582771\\
12 0.000208705837325249\\
13 0.000154155368421638\\
13 0.000154155368421639\\
14 0.000112123271112138\\
15 8.51723029158506e-05\\
16 6.84145894011081e-05\\
17 5.22773173463893e-05\\
18 4.19658990284636e-05\\
15 8.51723029158507e-05\\
16 6.84145894011082e-05\\
17 5.22773173463894e-05\\
18 4.19658990284637e-05\\
19 3.35813556680048e-05\\
20 2.69909819855066e-05\\
20 2.69909819855067e-05\\
21 2.16953761012216e-05\\
22 1.75366202909715e-05\\
23 1.58613744370523e-05\\
24 1.07527796769547e-05\\
25 1.21386374874815e-05\\
26 1.02818699879239e-05\\
27 8.94827138078525e-06\\
28 7.32098660262362e-06\\
29 6.29855369167726e-06\\
30 5.75608316894847e-06\\
31 5.01303204699423e-06\\
32 4.32711144148808e-06\\
33 3.75161010629661e-06\\
34 3.13429056757287e-06\\
35 2.97535388105766e-06\\
36 2.59579082920428e-06\\
26 1.0281869987924e-05\\
27 8.94827138078528e-06\\
28 7.32098660262364e-06\\
29 6.29855369167728e-06\\
30 5.75608316894849e-06\\
31 5.01303204699424e-06\\
32 4.32711144148809e-06\\
33 3.75161010629662e-06\\
34 3.13429056757288e-06\\
35 2.97535388105767e-06\\
36 2.59579082920429e-06\\
37 2.35613630297938e-06\\
38 2.13570046200869e-06\\
39 1.91918226507556e-06\\
@ -65,115 +65,115 @@ title={Residual norms over iteration (y is log)}
41 1.60497187780807e-06\\
42 1.50673230165654e-06\\
43 1.29912483256279e-06\\
44 1.18346887626955e-06\\
44 1.18346887626956e-06\\
45 1.20647020748118e-06\\
46 9.3251240253618e-07\\
47 1.0443397517104e-06\\
48 7.81977076368339e-07\\
49 7.06367946061837e-07\\
50 6.4448540591806e-07\\
51 5.8599197172186e-07\\
52 5.19890971305916e-07\\
53 4.77565688325081e-07\\
54 4.45837257417211e-07\\
55 4.52354751810163e-07\\
56 4.29038013881601e-07\\
57 4.19929738903634e-07\\
58 3.83172910236919e-07\\
59 3.69121286102551e-07\\
60 3.7162945951419e-07\\
61 3.46046785121521e-07\\
62 3.2757610333777e-07\\
63 3.15320978192865e-07\\
64 2.96758711344714e-07\\
65 2.96817636331721e-07\\
66 2.71124713000919e-07\\
67 2.62909013135003e-07\\
68 2.43462036182122e-07\\
69 2.28404291071355e-07\\
70 2.24415864473535e-07\\
71 2.28468445317059e-07\\
72 2.16184931431001e-07\\
73 2.03658004162582e-07\\
74 1.83416377348938e-07\\
75 1.77025922497321e-07\\
76 1.70006600401098e-07\\
77 1.63491825605367e-07\\
78 1.57088823572816e-07\\
79 1.6232157488019e-07\\
80 1.55517018193347e-07\\
81 1.44132341985942e-07\\
82 1.33984748126276e-07\\
83 1.25196828216566e-07\\
84 1.21215390780978e-07\\
85 1.15338855777099e-07\\
86 1.08276150400162e-07\\
87 1.04805124156927e-07\\
88 1.01804326380992e-07\\
89 1.0010166263465e-07\\
90 9.48101967192271e-08\\
91 8.89240656896784e-08\\
92 8.81989115707906e-08\\
93 8.26647202805855e-08\\
94 7.78552030683533e-08\\
95 8.16807953528358e-08\\
96 7.66807903209987e-08\\
97 7.25436978662745e-08\\
98 6.71702595720625e-08\\
99 7.01343166575355e-08\\
100 6.80449977565014e-08\\
101 6.68192875014292e-08\\
102 6.22828481503855e-08\\
103 6.14945471895087e-08\\
104 6.70743224722449e-08\\
105 6.88753801346713e-08\\
106 6.74234915967769e-08\\
107 6.38752997351369e-08\\
108 6.10832293660283e-08\\
109 5.60972305767953e-08\\
110 5.08646226781961e-08\\
111 4.95616876939365e-08\\
112 4.46580704289759e-08\\
113 4.2687817302539e-08\\
114 4.10291135987935e-08\\
115 3.78768817309767e-08\\
116 3.73532344958446e-08\\
117 3.51670172127996e-08\\
118 3.22365221541983e-08\\
119 3.0914108557954e-08\\
120 3.02505081670252e-08\\
121 2.87114558023773e-08\\
122 2.66853087438055e-08\\
123 2.60049357892773e-08\\
124 2.51289922847544e-08\\
125 2.39005712471205e-08\\
126 2.24094810183141e-08\\
127 2.01607019229326e-08\\
128 1.92164353138885e-08\\
129 1.82687256142865e-08\\
130 1.78764123154733e-08\\
131 1.90420480961642e-08\\
132 1.79866998160551e-08\\
133 1.62987103158868e-08\\
134 1.64054691550642e-08\\
135 1.53093691487969e-08\\
136 1.48209887890633e-08\\
137 1.48119659868498e-08\\
138 1.39479300275188e-08\\
139 1.30269784768553e-08\\
140 1.39128297693094e-08\\
141 1.35601176412506e-08\\
142 1.31199716923384e-08\\
143 1.16605449828788e-08\\
144 1.1256315915413e-08\\
145 1.10059046096852e-08\\
146 1.05336940404569e-08\\
147 9.87947792918718e-09\\
148 9.87385221564589e-09\\
149 9.86634931285779e-09\\
150 9.87265433744658e-09\\
151 8.57424740655266e-09\\
152 7.71781430780305e-09\\
46 9.32512402536184e-07\\
47 1.04433975171041e-06\\
48 7.81977076368343e-07\\
49 7.06367946061841e-07\\
50 6.44485405918065e-07\\
51 5.85991971721864e-07\\
52 5.19890971305921e-07\\
53 4.77565688325085e-07\\
54 4.45837257417216e-07\\
55 4.52354751810169e-07\\
56 4.29038013881607e-07\\
57 4.1992973890364e-07\\
58 3.83172910236925e-07\\
59 3.69121286102558e-07\\
60 3.71629459514197e-07\\
61 3.46046785121528e-07\\
62 3.27576103337777e-07\\
63 3.15320978192872e-07\\
64 2.96758711344721e-07\\
65 2.96817636331728e-07\\
66 2.71124713000926e-07\\
67 2.6290901313501e-07\\
68 2.43462036182129e-07\\
69 2.28404291071362e-07\\
70 2.24415864473542e-07\\
71 2.28468445317066e-07\\
72 2.16184931431008e-07\\
73 2.03658004162589e-07\\
74 1.83416377348944e-07\\
75 1.77025922497327e-07\\
76 1.70006600401104e-07\\
77 1.63491825605372e-07\\
78 1.57088823572822e-07\\
79 1.62321574880195e-07\\
80 1.55517018193352e-07\\
81 1.44132341985947e-07\\
82 1.33984748126281e-07\\
83 1.2519682821657e-07\\
84 1.21215390780982e-07\\
85 1.15338855777103e-07\\
86 1.08276150400166e-07\\
87 1.0480512415693e-07\\
88 1.01804326380995e-07\\
89 1.00101662634653e-07\\
90 9.48101967192299e-08\\
91 8.8924065689681e-08\\
92 8.8198911570793e-08\\
93 8.26647202805877e-08\\
94 7.78552030683553e-08\\
95 8.16807953528378e-08\\
96 7.66807903210005e-08\\
97 7.25436978662762e-08\\
98 6.71702595720641e-08\\
99 7.01343166575373e-08\\
100 6.80449977565033e-08\\
101 6.68192875014314e-08\\
102 6.22828481503882e-08\\
103 6.14945471895139e-08\\
104 6.70743224722515e-08\\
105 6.88753801346864e-08\\
106 6.74234915968034e-08\\
107 6.3875299735169e-08\\
108 6.10832293660889e-08\\
109 5.60972305769167e-08\\
110 5.08646226784856e-08\\
111 4.9561687694454e-08\\
112 4.46580704300798e-08\\
113 4.26878173046204e-08\\
114 4.10291136047614e-08\\
115 3.78768817391897e-08\\
116 3.73532345146491e-08\\
117 3.51670172399507e-08\\
118 3.22365221922065e-08\\
119 3.09141086362976e-08\\
120 3.02505083958211e-08\\
121 2.87114562212435e-08\\
122 2.66853094500274e-08\\
123 2.6004937830953e-08\\
124 2.5128996812777e-08\\
125 2.3900587385536e-08\\
126 2.2409516154494e-08\\
127 2.01607767874174e-08\\
128 1.92165407176116e-08\\
129 1.82690090540455e-08\\
130 1.78770817200396e-08\\
131 1.90428945268579e-08\\
132 1.79884322125703e-08\\
133 1.63052075399289e-08\\
134 1.64180505448727e-08\\
135 1.53303006209212e-08\\
136 1.4871760637339e-08\\
137 1.49330577072074e-08\\
138 1.41966980752516e-08\\
139 1.34094869141848e-08\\
140 1.38131070735712e-08\\
141 1.32790829181307e-08\\
142 1.29281208590769e-08\\
143 1.15621456920523e-08\\
144 1.12246784883697e-08\\
145 1.09924839400482e-08\\
146 1.05286801140992e-08\\
147 9.87772386372883e-09\\
148 9.8725860305187e-09\\
149 9.86619410929918e-09\\
150 9.8729284798242e-09\\
151 8.57478280643735e-09\\
152 7.71779322745324e-09\\
};
\addplot [color=mycolor2, forget plot]
table[row sep=crcr]{%
@ -185,24 +185,24 @@ title={Residual norms over iteration (y is log)}
6 6.2599388664747e-05\\
7 3.67776811885644e-05\\
8 2.26985377046381e-05\\
9 2.75130507463434e-05\\
10 1.74951186586756e-05\\
9 2.75130507463433e-05\\
10 1.74951186586757e-05\\
11 2.49605697423791e-05\\
12 1.12366572676273e-05\\
13 1.54813768580115e-05\\
14 1.23158281548519e-05\\
15 8.35804590504644e-06\\
15 8.3580459050464e-06\\
16 1.06813390449761e-05\\
17 4.65224806020403e-06\\
18 4.34451840639611e-06\\
19 1.95974449943222e-06\\
20 1.88311897094728e-06\\
21 1.76128803348428e-06\\
22 1.275240225499e-06\\
23 1.36310372428718e-06\\
24 1.03510657531701e-06\\
25 1.00121067351798e-06\\
26 9.55653227048963e-07\\
17 4.65224806020401e-06\\
18 4.34451840639607e-06\\
19 1.9597444994322e-06\\
20 1.88311897094725e-06\\
21 1.76128803348424e-06\\
22 1.27524022549895e-06\\
23 1.36310372428712e-06\\
24 1.03510657531695e-06\\
25 1.00121067351792e-06\\
26 9.55653227050214e-07\\
};
\end{axis}
\end{tikzpicture}%