Università Institute of Computational Svizzera Science ICS

Numerical Computing

della

italiana

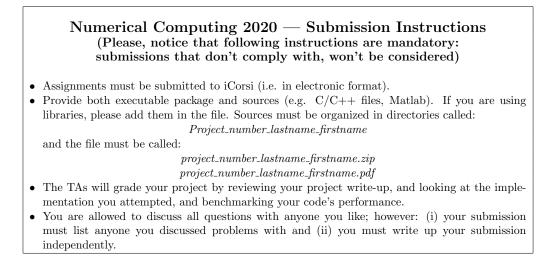
Student: Claudio Maggioni

Discussed with: -

2020

Solution for Project 3

Due date: Wednesday, 4 November 2020, 11:55 PM



Please note all scripts used can be found under the folder Project_3_Maggioni_Claudio/src.

Note on collaboration

Please note that in the spirit of collaboration I shared with some of my classmates the helper function drawgraph(...) used in exercise 3 and included in the file bisection_spectral.m, and the functions runtest(...) and recurse(...) in file bench_rec_bisection.m for exercise 4. I am therefore claiming here I am the sole author of these functions.

Please also note this sharing was done with Edoardo Vecchi's supervision.

1. Install METIS 5.0.2, and the corresponding Matlab mex interface

2. Implement various graph partitioning algorithms

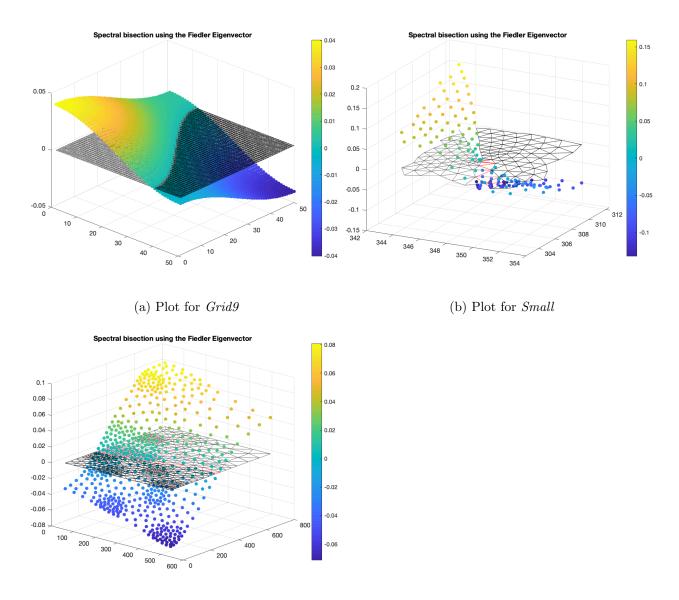
(60 Points)

I summarize the various benchmark results in table 1. Please note that this table can be generated at will with the script ex2_bisection_table.m.

3. Visualize the Fiedler eigenvector

In figure 1 there are graph outputs respectively from *Grid9*, *Small*, and *Eppstein*. Please note that these results can be reproduced using script ex3_plots.m.

Colors to represent the partitions and the eigenvector components are the same as the ones used in the the assignment's Figure 3. It is quite easy to evince from these plots that spectral partitioning indeed partitions the graph verticies based on the sign of their respective Fiedler eigenvector component: the only intersection between the Graph plane and the surface the eigenvector entries lay corresponds to the edgecut produced by spectral partitioning. This is due to the fact that in the figure the graph is positioned at z = 0.



(c) Plot for *Eppstein*

Figure 1: Graph outputs for the 3 adjacency matrices.

4. Recursively bisecting meshes

(20 Points)

I summarize my results in table 2. Additionally, the graph plots for a recursive partition in 16 parts of Crack are available in figure 2.

The figure shows the partitions and edge cuts with colors randomly assigned by MATLAB.

Again the data shown here can reproduced using a MATLAB script (Bench_rec_bisection.m). Please note that the given recursion helper function rec_bisection was not used. Instead, the function runtest was implemented to allow for partitioning graphs to be generated at will.

Please note that while computing spectral partitioning for *barth4* MATLAB emits a warning in the computation of the adjacency matrix eigenvalues stating that the matrix is ill conditioned. This warning was suppressed so as not to interfere with the table printout.

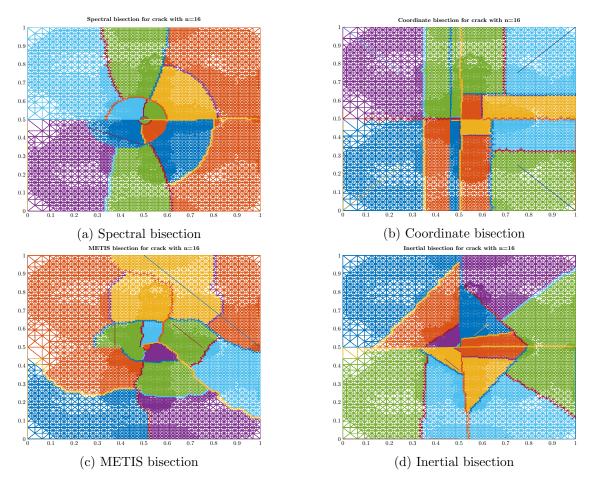


Figure 2: Graph outputs for *Crack* graph with n = 16

5. Compare recursive bisection to direct k-way partitioning (10 Points)

I summarize my results in table 3. Additionally, plots for the n = 32 cases can be found in figure 3. Please note that both the table and the plots can be reproduced using script Bench_metis.m.

The figure shows the resulting partitions with colors randomly assigned by MATLAB. All edge cuts are colored in black.

I had the suspicion that k-way partitioning would perform better in all cases, since in this the partitioning algorithm has a chance to see the entire problem and to perform decision that could affect all partitions. Instead, for the Crack mesh, recursive partitioning surprisedly performed better than k-way for both n = 16 and n = 32, producing slighly smaller edge cuts.

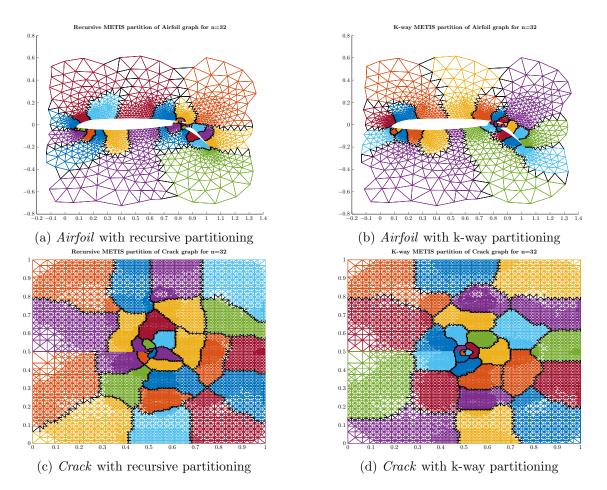


Figure 3: Graph outputs for *METIS* recursive and k-way partitioning with n = 32. Edge cuts are displayed in black

Mesh	Coordinate	Metis $5.0.2$	Spectral	Inertial
grid5rect(10,100)	10	10	10	10
grid5rect(100,10)	10	10	10	10
grid5recRotate(100, 10, -45)	18	10	10	10
$\operatorname{gridt}(40)$	58	58	58	58
grid9(30)	88	92	102	88
Smallmesh	25	13	12	30
Tapir	55	34	18	49
Eppstein	42	48	42	45

Table 1: Bisection results

Table 2: Edge-cut results for recursive bi-partitioning (data for n = 8 on the left and n = 16 on the right).

Case	Spectral	Metis 5.0.2	Coordinate	Inertial
airfoil1	327 578	320 563	516 819	577 897
3elt	372 671	$395 ext{ }651$	733 1168	880 1342
barth4	$505 \ 758$	405 689	875 1306	891 1350
mesh3e1	75 124	75 117	75 122	67 102
crack	804 1303	784 1290	1343 1860	1061 1618

Table 3: Comparing the number of cut edges for recursive bisection and direct multiway partitioning
in Metis 5.0.2. Results for recursive partitioning shown on the left, k-way on the right.

Partitions	crack	airfoil1
16	$10055 \ 10077$	$580 \ 564$
32	$10824 \ 10943$	$967 \ 947$