Università Institute of Computational Svizzera Science italiana ICS

Numerical Computing

della

Student: Claudio Maggioni

Solution for Project 3

Due date: Wednesday, 4 November 2020, 11:55 PM

Numerical Computing 2020 — Submission Instructions (Please, notice that following instructions are mandatory: submissions that don't comply with, won't be considered)

• Assignments must be submitted to iCorsi (i.e. in electronic format).

Provide both executable package and sources (e.g. C/C++ files, Matlab). If you are using libraries, please add them in the file. Sources must be organized in directories called: Project_number_lastname_firstname

and the file must be called:

- $project_number_lastname_firstname.zip$
- project_number_lastname_firstname.pdf
- The TAs will grade your project by reviewing your project write-up, and looking at the implementation you attempted, and benchmarking your code's performance.
- must list anyone you discussed problems with and (ii) you must write up your submission independently.

1. Install METIS 5.0.2, and the corresponding Matlab mex interface

2. Implement various graph partitioning algorithms

I summarize the various benchmark results in table 1. Please note that this table can be generated at will with the script ex2_bisection_table.m.

3. Visualize the Fiedler eigenvector

In figure 1 there are graph outputs respectively from Grid9, Small, and Eppstein.

4. Recursively bisecting meshes

I summarize my results in table 2. Additionally, the graph plots for a recursive partition in 16 parts of *Crack* are available in figure 2.

5. Compare recursive bisection to direct k-way partitioning (10 Points)

Summarize your results in table 3.

You are allowed to discuss all questions with anyone you like; however: (i) your submission

(60 Points)

Discussed with: –

2020

(20 Points)

(10 Points)

(c) Plot for *Eppstein*

Figure 1: Graph outputs for the 3 adjacency matrices.

Mesh	Coordinate	Metis 5.0.2	Spectral	Inertial
grid5rect(10,100)	10	10	10	10
grid5rect(100,10)	10	10	10	10
grid5recRotate(100, 10, -45)	18	10	10	10
$\operatorname{gridt}(40)$	58	58	58	58
grid9(30)	88	92	104	88
Smallmesh	25	13	12	30
Tapir	55	34	18	49
Eppstein	42	48	45	45

Table 1: Bisection results

Figure 2: Graph outputs for *Crack* graph with n = 16

Table 2: Edge-cut results for recursive bi-partitioning (data for n = 8 on the left and n = 16 on the right).

Case	Spectral	Metis 5.0.2		Coordinate		Inertial	
airfoil1	327 578	320	563	516	819	577	897
3elt	$372 \ 671$	395	651	733	1168	880	1342
barth4	$505 \ 758$	405	689	875	1306	891	1350
mesh3e1	72 111	75	117	75	122	67	102
crack	8041303	784	1290	1343	1860	1061	1618

Table 3: Comparing the number of cut edges for recursive bisection and direct multiway partitioning in Metis 5.0.2.

Partitions	crack	airfoil1
16		
32		