\documentclass[unicode,11pt,a4paper,oneside,numbers=endperiod,openany]{scrartcl} \usepackage{graphicx} \usepackage{subcaption} \usepackage{amsmath} \input{assignment.sty} \usepackage{pgfplots} \pgfplotsset{compat=newest} \usetikzlibrary{plotmarks} \usetikzlibrary{arrows.meta} \usepgfplotslibrary{patchplots} \usepackage{grffile} \usepackage{amsmath} \usepackage{subcaption} \usepgfplotslibrary{external} \tikzexternalize \hyphenation{PageRank} \hyphenation{PageRanks} \begin{document} \setassignment \setduedate{Wednesday, 4 November 2020, 11:55 PM} \serieheader{Numerical Computing}{2020}{Student: Claudio Maggioni}{Discussed with: --}{Solution for Project 3}{} \newline \assignmentpolicy %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Install METIS 5.0.2, and the corresponding Matlab mex interface} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Implement various graph partitioning algorithms \punkte{60}} I summarize the various benchmark results in table \ref{table:bisection}. Please note that this table can be generated at will with the script \texttt{ex2\_bisection\_table.m}. \section{Visualize the Fiedler eigenvector\punkte{10}} In figure \ref{fig:run1} there are graph outputs respectively from \textit{Grid9}, \textit{Small}, and \textit{Eppstein}. \begin{figure}[h] \begin{subfigure}{0.5\textwidth} \centering \includegraphics[trim=50 200 50 200,clip,width=\textwidth]{ex3_grid9.pdf} \caption{Plot for \textit{Grid9}} \end{subfigure} \begin{subfigure}{0.5\textwidth} \centering \includegraphics[trim=50 200 50 200,clip,width=\textwidth]{ex3_small.pdf} \caption{Plot for \textit{Small}} \end{subfigure} \begin{subfigure}{0.5\textwidth} \includegraphics[trim=50 200 50 200,clip,width=\textwidth]{ex3_eppstein.pdf} \caption{Plot for \textit{Eppstein}} \end{subfigure} \caption{Graph outputs for the 3 adjacency matrices.} \label{fig:run1} \end{figure} \section{Recursively bisecting meshes \punkte{20}} I summarize my results in table \ref{table:Rec_bisection}. Additionaly, the graph plots for a recursive partition in 16 parts of \textit{Crack} are avaliable in figure \ref{fig:bicrack}. \begin{figure}[h] \begin{subfigure}{0.5\textwidth} \centering \resizebox{0.8\linewidth}{!}{ \input{ex4_Spectral}} \caption{Spectral bisection} \end{subfigure} \begin{subfigure}{0.5\textwidth} \centering \resizebox{0.8\linewidth}{!}{ \input{ex4_Coordinate}} \caption{Coordinate bisection} \end{subfigure} \begin{subfigure}{0.5\textwidth} \centering \resizebox{0.8\linewidth}{!}{ \input{ex4_METIS}} \caption{METIS bisection} \end{subfigure} \begin{subfigure}{0.5\textwidth} \centering \resizebox{0.8\linewidth}{!}{ \input{ex4_Inertial}} \caption{Inertial bisection} \end{subfigure} \caption{Graph outputs for \textit{Crack} graph with $n=16$} \label{fig:bicrack} \end{figure} \section{Compare recursive bisection to direct $k$-way partitioning\punkte{10}} Summarize your results in table \ref{table:Compare_Metis}. \begin{table}[h] \caption{Bisection results} \centering \begin{tabular}{|l|r|r|r|r|} \hline\hline Mesh & Coordinate & Metis 5.0.2 & Spectral & Inertial \\ \hline grid5rect(10,100)& 10 & 10 & 10 & 10 \\ grid5rect(100,10)& 10 & 10 & 10 & 10 \\ grid5recRotate(100,10,-45)& 18 & 10 & 10 & 10 \\ gridt(40) & 58 & 58 & 58 & 58 \\ grid9(30) & 88 & 92 & 104 & 88 \\ Smallmesh & 25 & 13 & 12 & 30 \\ Tapir & 55 & 34 & 18 & 49 \\ Eppstein & 42 & 48 & 45 & 45 \\ \hline \hline \end{tabular} \label{table:bisection} \end{table} \begin{table}[h] \caption{Edge-cut results for recursive bi-partitioning (data for $n=8$ on the left and $n=16$ on the right).} \centering \begin{tabular}{|l|r|r|r|r|p{4cm}|} \hline\hline Case & Spectral & Metis 5.0.2 & Coordinate & Inertial \\ \hline airfoil1 & 327\hfill578 & 320\hfill563 & 516\hfill819 & 577\hfill897\\ 3elt & 372\hfill671 & 395\hfill651 & 733\hfill1168 & 880\hfill1342\\ barth4 & 505\hfill758 & 405\hfill689 & 875\hfill1306 & 891\hfill1350\\ mesh3e1 & 72\hfill111 & 75\hfill117 & 75\hfill122 & 67\hfill102\\ crack & 804\hfill1303 & 784\hfill1290 & 1343\hfill1860 & 1061 \hfill 1618\\\hline\hline \end{tabular} \label{table:Rec_bisection} \end{table} \begin{table}[h] \caption{Comparing the number of cut edges for recursive bisection and direct multiway partitioning in Metis 5.0.2.} \centering \begin{tabular}{|l|r|r|r|r|} \hline\hline Partitions & crack & airfoil1 \\ \hline 16 & & \\ 32 & & \\ \hline \hline \end{tabular} \label{table:Compare_Metis} \end{table} \end{document}