This repository has been archived on 2024-10-22. You can view files and clone it, but cannot push or open issues or pull requests.
OM/Claudio_Maggioni_midterm/Claudio_Maggioni_midterm.md

59 lines
1.8 KiB
Markdown
Raw Normal View History

<!-- vim: set ts=2 sw=2 et tw=80: -->
---
header-includes:
- \usepackage{amsmath}
- \usepackage{hyperref}
- \usepackage[utf8]{inputenc}
- \usepackage[margin=2.5cm]{geometry}
---
\title{Midterm -- Optimization Methods}
\author{Claudio Maggioni}
\maketitle
# Exercise 1
## Point 1
### Question (a)
As already covered in the course, the gradient of a standard quadratic form at a
point $ x_0$ is equal to:
$$ \nabla f(x_0) = A x_0 - b $$
Plugging in the definition of $x_0$ and knowing that $\nabla f(x_m) = A x_m - b = 0$
(according to the first necessary condition for a minimizer), we obtain:
$$ \nabla f(x_0) = A (x_m + v) - b = A x_m + A v - b = b + \lambda v - b =
\lambda v $$
### Question (b)
The steepest descent method takes exactly one iteration to reach the exact
minimizer $x_m$ starting from the point $x_0$. This can be proven by first
noticing that $x_m$ is a point standing in the line that first descent direction
would trace, which is equal to:
$$g(\alpha) = - \alpha \cdot \nabla f(x_0) = - \alpha \lambda v$$
For $\alpha = \frac{1}{\lambda}$, and plugging in the definition of $x_0 = x_m +
v$, we would reach a new iterate $x_1$ equal to:
$$x_1 = x_0 - \alpha \lambda v = x_0 - v = x_m + v - v = x_m $$
The only question that we need to answer now is why the SD algorithm would
indeed choose $\alpha = \frac{1}{\lambda}$. To answer this, we recall that the
SD algorithm chooses $\alpha$ by solving a linear minimization option along the
step direction. Since we know $x_m$ is indeed the minimizer, $f(x_m)$ would be
obviously strictly less that any other $f(x_1 = x_0 - \alpha \lambda v)$ with
$\alpha \neq \frac{1}{\lambda}$.
Therefore, since $x_1 = x_m$, we have proven SD
converges to the minimizer in one iteration.
### Point 2
The right answer is choice (a), since the energy norm of the error indeed always
decreases monotonically.