This repository has been archived on 2024-10-22. You can view files and clone it, but cannot push or open issues or pull requests.
OM/Claudio_Maggioni_5/Claudio_Maggioni_5.md

47 lines
1.4 KiB
Markdown
Raw Normal View History

2021-06-01 20:38:06 +00:00
<!-- vim: set ts=2 sw=2 et tw=80: -->
---
title: Homework 5 -- Optimization Methods
author: Claudio Maggioni
header-includes:
- \usepackage{amsmath}
- \usepackage{hyperref}
- \usepackage[utf8]{inputenc}
- \usepackage[margin=2.5cm]{geometry}
- \usepackage[ruled,vlined]{algorithm2e}
- \usepackage{float}
- \floatplacement{figure}{H}
- \hypersetup{colorlinks=true,linkcolor=blue}
---
\maketitle
# Exercise 2
## Exercise 2.1
The resulting MATLAB plot of each constraint and of the feasible region is shown
below:
![Plot of feasible region and constraints](./ex2-1.png)
## Exercise 2.3
We then compute the objective function value for each basic feasible point
found, The smallest objective value will correspond with the constrained
minimizer problem solution.
$$
x_1 = \begin{bmatrix}0\\0\end{bmatrix} \;\;\; f(x_1) = 4 \cdot 0 + 3 \cdot 0 =
0$$$$
x_2 = \frac12 \cdot \begin{bmatrix}0\\3\end{bmatrix} \;\;\;
f(x_2) = 4 \cdot 0 + 3 \cdot \frac32 = \frac92$$$$
x_3 = \frac{1}{13} \cdot \begin{bmatrix}3\\24\end{bmatrix} \;\;\; f(x_3) = 4
\cdot \frac{3}{13} + 3 \cdot \frac{24}{13} = \frac{84}{13}$$$$
x_4 = \frac12 \cdot \begin{bmatrix}3\\2\end{bmatrix} \;\;\; f(x_4) = 4 \cdot
frac32 + 3 \cdot 1 = 9$$$$
x_5 = \begin{bmatrix}2\\0\end{bmatrix} \;\;\; 4 \cdot 2 + 1 \cdot 0 = 8$$
Therefore, $x^* = x_1$ is the global constrained minimizer with $\lambda^* = \lambda_1 = NaN$ as
the slack variable value.