47 lines
1.4 KiB
Markdown
47 lines
1.4 KiB
Markdown
|
<!-- vim: set ts=2 sw=2 et tw=80: -->
|
||
|
|
||
|
---
|
||
|
title: Homework 5 -- Optimization Methods
|
||
|
author: Claudio Maggioni
|
||
|
header-includes:
|
||
|
- \usepackage{amsmath}
|
||
|
- \usepackage{hyperref}
|
||
|
- \usepackage[utf8]{inputenc}
|
||
|
- \usepackage[margin=2.5cm]{geometry}
|
||
|
- \usepackage[ruled,vlined]{algorithm2e}
|
||
|
- \usepackage{float}
|
||
|
- \floatplacement{figure}{H}
|
||
|
- \hypersetup{colorlinks=true,linkcolor=blue}
|
||
|
|
||
|
---
|
||
|
\maketitle
|
||
|
|
||
|
# Exercise 2
|
||
|
|
||
|
## Exercise 2.1
|
||
|
|
||
|
The resulting MATLAB plot of each constraint and of the feasible region is shown
|
||
|
below:
|
||
|
|
||
|
![Plot of feasible region and constraints](./ex2-1.png)
|
||
|
|
||
|
## Exercise 2.3
|
||
|
|
||
|
We then compute the objective function value for each basic feasible point
|
||
|
found, The smallest objective value will correspond with the constrained
|
||
|
minimizer problem solution.
|
||
|
|
||
|
$$
|
||
|
x_1 = \begin{bmatrix}0\\0\end{bmatrix} \;\;\; f(x_1) = 4 \cdot 0 + 3 \cdot 0 =
|
||
|
0$$$$
|
||
|
x_2 = \frac12 \cdot \begin{bmatrix}0\\3\end{bmatrix} \;\;\;
|
||
|
f(x_2) = 4 \cdot 0 + 3 \cdot \frac32 = \frac92$$$$
|
||
|
x_3 = \frac{1}{13} \cdot \begin{bmatrix}3\\24\end{bmatrix} \;\;\; f(x_3) = 4
|
||
|
\cdot \frac{3}{13} + 3 \cdot \frac{24}{13} = \frac{84}{13}$$$$
|
||
|
x_4 = \frac12 \cdot \begin{bmatrix}3\\2\end{bmatrix} \;\;\; f(x_4) = 4 \cdot
|
||
|
frac32 + 3 \cdot 1 = 9$$$$
|
||
|
x_5 = \begin{bmatrix}2\\0\end{bmatrix} \;\;\; 4 \cdot 2 + 1 \cdot 0 = 8$$
|
||
|
|
||
|
Therefore, $x^* = x_1$ is the global constrained minimizer with $\lambda^* = \lambda_1 = NaN$ as
|
||
|
the slack variable value.
|