2021-05-25 08:41:07 +00:00
|
|
|
<!-- vim: set ts=2 sw=2 et tw=80: -->
|
|
|
|
|
|
|
|
---
|
2021-05-25 08:43:02 +00:00
|
|
|
title: Homework 4 -- Optimization Methods
|
2021-05-25 08:41:07 +00:00
|
|
|
author: Claudio Maggioni
|
|
|
|
header-includes:
|
|
|
|
- \usepackage{amsmath}
|
|
|
|
- \usepackage{hyperref}
|
|
|
|
- \usepackage[utf8]{inputenc}
|
|
|
|
- \usepackage[margin=2.5cm]{geometry}
|
|
|
|
- \usepackage[ruled,vlined]{algorithm2e}
|
|
|
|
- \usepackage{float}
|
|
|
|
- \floatplacement{figure}{H}
|
|
|
|
- \hypersetup{colorlinks=true,linkcolor=blue}
|
|
|
|
|
|
|
|
---
|
|
|
|
\maketitle
|
|
|
|
|
|
|
|
# Exercise 1
|
|
|
|
|
|
|
|
## Exercise 1.1
|
|
|
|
|
|
|
|
The lagrangian is the following:
|
|
|
|
|
|
|
|
$$L(X,\lambda) = f(X) - \lambda \left(c(x) - 0\right) = -3x^2 + y^2 + 2x^2 +
|
|
|
|
2(x+y+z) - \lambda x^2 - \lambda y^2 -\lambda z^2 + \lambda =$$$$= (-3 -\lambda)x^2 + (1-
|
|
|
|
\lambda)y^2 + (2-\lambda)z^2 + 2 (x+y+z) + \lambda$$
|
|
|
|
|
|
|
|
The KKT conditions are the following:
|
|
|
|
|
|
|
|
First we have the condition on the partial derivatives of the Lagrangian w.r.t.
|
|
|
|
$X$:
|
|
|
|
|
|
|
|
$$\nabla_X L(X,\lambda) = \begin{bmatrix}(-3-\lambda)x^* + 1\\(1-\lambda)y^* +
|
|
|
|
1\\(2-\lambda)z^* + 1\end{bmatrix} = 0 \Leftrightarrow
|
|
|
|
\begin{bmatrix}x^*\\y^*\\z^*\end{bmatrix} =
|
|
|
|
\begin{bmatrix}\frac1{3+\lambda}\\-\frac1{1-\lambda}\\-\frac{1}{2-\lambda}\end{bmatrix}$$
|
|
|
|
|
2021-05-26 17:13:56 +00:00
|
|
|
Then we have the complementarity condition:
|
2021-05-25 08:41:07 +00:00
|
|
|
|
|
|
|
$$c(X) = {x^*}^2 + {y^*}^2 + {z^*}^2 - 1 = 0 \Leftrightarrow \|X^*\| = 1$$
|
|
|
|
|
|
|
|
$$\lambda^* c(X^*) = 0 \Leftarrow c(X^*) = 0 \text{ which is true if the above
|
|
|
|
condition is true.}$$
|
|
|
|
|
|
|
|
Since we have no inequality constraints, we don't need to apply the KKT
|
|
|
|
conditions realated to inequality constraints.
|
|
|
|
|
|
|
|
## Exercise 1.2
|
|
|
|
|
|
|
|
To find feasible solutions to the problem, we apply the KKT conditions. Since we
|
|
|
|
have a way to derive $X^*$ from $\lambda^*$ thanks to the first KKT condition,
|
|
|
|
we try to find the values of $\lambda$ that satisfies the second KKT condition:
|
|
|
|
|
|
|
|
$$c(x) = \left( \frac{1}{3+\lambda} \right)^2 + \left( -\frac{1}{1-\lambda} \right)^2 +
|
|
|
|
\left(-\frac{1}{2-\lambda}\right)^2 - 1 =
|
|
|
|
\frac{1}{(3+\lambda)^2} + \frac{1}{(1-\lambda)^2} + \frac{1}{(2-\lambda)^2} - 1 =$$$$=
|
|
|
|
\frac{(1-\lambda)^2(2-\lambda)^2 + (3+\lambda)^2(2-\lambda)^2 +
|
|
|
|
(3+\lambda)^2
|
|
|
|
(1-\lambda)^2 - (3+\lambda)^2 (1-\lambda)^2 (2-\lambda)^2}{(3+\lambda)^2
|
|
|
|
(1-\lambda)^2 (2-\lambda)^2} = 0
|
|
|
|
\Leftrightarrow$$$$\Leftrightarrow
|
|
|
|
(1-\lambda)^2(2-\lambda)^2 + (3+\lambda)^2(2-\lambda)^2 +
|
|
|
|
(3+\lambda)^2
|
|
|
|
(1-\lambda)^2 - (3+\lambda)^2 (1-\lambda)^2 (2-\lambda)^2 = 0
|
|
|
|
\Leftrightarrow$$$$\Leftrightarrow
|
|
|
|
(\lambda^4 - 6\lambda^3 + 13\lambda^2 - 12\lambda + 16) +
|
|
|
|
(\lambda^4 + 2\lambda^3 - 11\lambda^2 - 12\lambda + 36) +
|
|
|
|
(\lambda^4 + 4\lambda^3 - 2\lambda^2 - 12\lambda + 9)$$$$
|
2021-05-26 10:00:01 +00:00
|
|
|
+ (\lambda^6 -14\lambda^4 +12\lambda^3 +49\lambda^2 -84\lambda + 36) = $$$$
|
|
|
|
=-\lambda^6 +17\lambda^4 -12\lambda^3 -49\lambda^2 +48\lambda +13 = 0
|
2021-05-25 08:41:07 +00:00
|
|
|
\Leftrightarrow $$$$ \Leftrightarrow
|
|
|
|
\lambda = \lambda_1 \approx -0.224 \lor
|
|
|
|
\lambda = \lambda_2 \approx -1.892 \lor
|
|
|
|
\lambda = \lambda_3 \approx 3.149 \lor
|
|
|
|
\lambda = \lambda_4 \approx -4.035$$
|
|
|
|
|
|
|
|
We then compute $X$ from each solution and evaluate the objective each time:
|
|
|
|
|
|
|
|
$$X = \begin{bmatrix}\frac1{3+\lambda}\\-\frac1{1-\lambda}\\
|
|
|
|
-\frac{1}{2-\lambda}\end{bmatrix}
|
|
|
|
\Leftrightarrow$$$$\Leftrightarrow
|
|
|
|
X = X_1 \approx \begin{bmatrix}0.360\\-0.817\\-0.450\end{bmatrix} \lor
|
|
|
|
X = X_2 \approx \begin{bmatrix}0.902\\-0.346\\-0.257\end{bmatrix} \lor
|
|
|
|
X = X_3 \approx \begin{bmatrix}0.163\\0.465\\0.870\end{bmatrix} \lor
|
|
|
|
X = X_4 \approx \begin{bmatrix}-0.966\\-0.199\\-0.166\end{bmatrix}$$
|
|
|
|
|
|
|
|
$$f(X_1) = -1.1304 \;\; f(X_2) = -1.59219 \;\; f(X_3) = 4.64728 \;\; f(X_4) =
|
|
|
|
-5.36549$$
|
|
|
|
|
2021-05-25 12:55:19 +00:00
|
|
|
## Exercise 1.3
|
|
|
|
|
|
|
|
To find the optimal solution, we choose $(\lambda_4, X_4)$ since $f(X_4)$ is the
|
|
|
|
smallest objective
|
2021-05-25 08:41:07 +00:00
|
|
|
value out of all the feasible points. Therefore, the solution to the
|
|
|
|
minimization problem is:
|
|
|
|
|
|
|
|
$$X \approx \begin{bmatrix}-0.966\\-0.199\\-0.166\end{bmatrix}$$
|
|
|
|
|
2021-05-25 12:55:19 +00:00
|
|
|
# Exercise 2
|
|
|
|
|
|
|
|
## Exercise 2.1
|
|
|
|
|
|
|
|
To reformulate the problem, we first rewrite the explicit values of $G$, $c$,
|
|
|
|
$A$ and $b$:
|
|
|
|
|
2021-05-25 19:09:29 +00:00
|
|
|
$$G = 2 \cdot \begin{bmatrix}3&0&0\\2&2.5&0\\1&2&2\end{bmatrix}$$
|
|
|
|
$$c = \begin{bmatrix}-8\\-3\\-3\end{bmatrix}$$
|
2021-05-25 12:55:19 +00:00
|
|
|
$$A = \begin{bmatrix}1&0&1\\0&1&1\end{bmatrix}$$
|
|
|
|
$$b = \begin{bmatrix}3\\0\end{bmatrix}$$
|
2021-05-25 08:41:07 +00:00
|
|
|
|
2021-05-25 19:09:29 +00:00
|
|
|
Then, using these variable values and the formulation given on the assignment
|
|
|
|
sheet the problem is restated in this new form.
|
2021-05-25 08:41:07 +00:00
|
|
|
|
2021-05-25 19:09:29 +00:00
|
|
|
## Exercise 2.2
|
2021-05-25 08:41:07 +00:00
|
|
|
|
2021-05-25 19:09:29 +00:00
|
|
|
The lagrangian for this problem is the following:
|
2021-05-25 08:41:07 +00:00
|
|
|
|
2021-05-25 19:09:29 +00:00
|
|
|
$$L(x, \lambda) = \frac12\langle x, Gx\rangle + \langle x, c \rangle - \lambda
|
|
|
|
(Ax - b) =$$$$= \begin{bmatrix}x_1&x_2&x_3\end{bmatrix}
|
|
|
|
\begin{bmatrix}3&0&0\\2&2.5&0\\1&2&2\end{bmatrix}
|
|
|
|
\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix} +
|
|
|
|
\begin{bmatrix}x_1&x_2&x_3\end{bmatrix}
|
|
|
|
\begin{bmatrix}-8\\-3\\-3\end{bmatrix} - \lambda
|
|
|
|
\left(\begin{bmatrix}1&0&1\\0&1&1\end{bmatrix}
|
|
|
|
\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix} -
|
|
|
|
\begin{bmatrix}3\\0\end{bmatrix}\right)$$
|
|
|
|
|
|
|
|
|
|
|
|
The KKT conditions are the following:
|
|
|
|
|
|
|
|
First we have the condition on the partial derivatives of the Lagrangian w.r.t.
|
|
|
|
$X$:
|
|
|
|
|
|
|
|
$$\nabla_x L(x, \lambda) = Gx + c - A^T \lambda = \begin{bmatrix}3 x_1 - 8 +
|
|
|
|
\lambda_1\\ 2x_1 + 2.5 x_2 - 3 + \lambda_2\\x_1 + 2x_2 + 2x_3 - 3 + \lambda_1
|
|
|
|
+ \lambda_2\end{bmatrix} > 0$$
|
|
|
|
|
|
|
|
Then we have the conditions on the equality constraint:
|
|
|
|
|
|
|
|
$$Ax - b = 0 \Leftrightarrow \begin{bmatrix}x_1 + x_3\\x_2 + x_3\end{bmatrix} =
|
|
|
|
\begin{bmatrix}3\\0\end{bmatrix}$$
|
|
|
|
|
2021-05-26 17:13:56 +00:00
|
|
|
Then we have the complementarity condition:
|
2021-05-25 19:09:29 +00:00
|
|
|
|
|
|
|
$$\lambda^T (Ax - b) = 0 \Leftarrow Ax - b = 0 \text{ which is true if the above
|
|
|
|
condition is true.}$$
|
|
|
|
|
|
|
|
Since we have no inequality constraints, we don't need to apply the KKT
|
|
|
|
conditions realated to inequality constraints.
|
2021-05-26 17:13:56 +00:00
|
|
|
|
|
|
|
# Exercise 3
|
|
|
|
|
|
|
|
## Exercise 3.1
|
|
|
|
|
|
|
|
The lagrangian of this problem is the following:
|
|
|
|
|
|
|
|
$$L(x, \lambda) = c^T x - \lambda^T (Ax - b) - s^T x$$
|
|
|
|
|
|
|
|
The KKT conditions are the following:
|
|
|
|
|
|
|
|
1. The partial derivative of the lagrangian w.r.t. $x$ is 0:
|
|
|
|
$$\nabla_x L(x, \lambda) = c - A^T \lambda - s = 0 \Leftrightarrow A^T \lambda
|
|
|
|
+ s = c$$
|
|
|
|
2. Equality constraints hold:
|
|
|
|
$$Ax - b = 0 \Leftrightarrow Ax = b$$
|
|
|
|
3. Inequality constraints hold:
|
|
|
|
$$x \geq 0$$
|
|
|
|
4. The lagrangian multipliers for inequality constraints are non-negative:
|
|
|
|
$$s \geq 0$$
|
|
|
|
5. The complementarity condition holds (here considering only inequality constraints,
|
|
|
|
since the condition trivially holds for equality ones):
|
|
|
|
$$s^T x \geq 0$$
|
|
|
|
|
|
|
|
## Exercise 3.2
|
|
|
|
|
|
|
|
We define the dual problem is the following way:
|
|
|
|
|
|
|
|
$$\max b^T \lambda \;\; \text{ s.t. } \;\; A^T \lambda + s = c \; \text{ and
|
|
|
|
}\; s \geq 0$$
|
|
|
|
|
|
|
|
To convert this maximization problem in a minimization one, we flip the sign of
|
|
|
|
the objective and we find:
|
|
|
|
|
|
|
|
$$\min - b^T \lambda \;\; \text{ s.t. } \;\; A^T \lambda + s = c \; \text{ and
|
|
|
|
}\; s \geq 0$$
|
|
|
|
|
|
|
|
We then compute the Lagrangian of the dual problem:
|
|
|
|
|
|
|
|
$$L(\lambda, x) = -b^T \lambda + x^T (A^T \lambda + s - c) - x^T s = - b^T \lambda + x^T (A^T \lambda - c)$$
|
|
|
|
|
|
|
|
The KKT conditions are the following:
|
|
|
|
|
|
|
|
1. The partial derivative of the lagrangian w.r.t. $x$ is 0:
|
|
|
|
$$\nabla_{\lambda} L(\lambda, x) = - b^T + x^T A^T = 0 \Leftrightarrow Ax = b$$
|
|
|
|
2. Equality constraints hold:
|
|
|
|
$$A^T \lambda + s = c$$
|
|
|
|
3. Inequality constraints hold:
|
|
|
|
$$c - A^T \lambda \geq 0 \Leftrightarrow s \geq 0 \;\;\; \text{ using 2.\ to find
|
|
|
|
that } s = c - A^T \lambda$$
|
|
|
|
4. The lagrangian multipliers for inequality constraints are non-negative:
|
|
|
|
$$x \geq 0$$
|
|
|
|
5. The complementarity condition holds (here considering only inequality constraints,
|
|
|
|
since the condition trivially holds for equality ones):
|
|
|
|
$$x^T s \geq 0 \Leftrightarrow s^T x \geq 0$$
|
|
|
|
|
|
|
|
Then, if we compare the KKT conditions of the primal problem with the ones above
|
|
|
|
we can match them to see that they are identical:
|
|
|
|
|
|
|
|
- 1.\ from the dual is identical to 2.\ from the primal;
|
|
|
|
- 2.\ from the dual is identical to 1.\ from the primal;
|
|
|
|
- 3.\ from the dual is identical to 4.\ from the primal;
|
|
|
|
- 4.\ from the dual is identical to 3.\ from the primal;
|
|
|
|
- 5.\ from the dual is identical to 5.\ from the primal.
|
|
|
|
|
|
|
|
Therefore, the primal and the dual problem are equivalent.
|