midterm: done 1.1 (1.2 done on scratch paper)
This commit is contained in:
parent
ae30030661
commit
0220738cc6
2 changed files with 58 additions and 0 deletions
58
Claudio_Maggioni_midterm/Claudio_Maggioni_midterm.md
Normal file
58
Claudio_Maggioni_midterm/Claudio_Maggioni_midterm.md
Normal file
|
@ -0,0 +1,58 @@
|
||||||
|
<!-- vim: set ts=2 sw=2 et tw=80: -->
|
||||||
|
|
||||||
|
---
|
||||||
|
header-includes:
|
||||||
|
- \usepackage{amsmath}
|
||||||
|
- \usepackage{hyperref}
|
||||||
|
- \usepackage[utf8]{inputenc}
|
||||||
|
- \usepackage[margin=2.5cm]{geometry}
|
||||||
|
---
|
||||||
|
\title{Midterm -- Optimization Methods}
|
||||||
|
\author{Claudio Maggioni}
|
||||||
|
\maketitle
|
||||||
|
|
||||||
|
# Exercise 1
|
||||||
|
|
||||||
|
## Point 1
|
||||||
|
|
||||||
|
### Question (a)
|
||||||
|
|
||||||
|
As already covered in the course, the gradient of a standard quadratic form at a
|
||||||
|
point $ x_0$ is equal to:
|
||||||
|
|
||||||
|
$$ \nabla f(x_0) = A x_0 - b $$
|
||||||
|
|
||||||
|
Plugging in the definition of $x_0$ and knowing that $\nabla f(x_m) = A x_m - b = 0$
|
||||||
|
(according to the first necessary condition for a minimizer), we obtain:
|
||||||
|
|
||||||
|
$$ \nabla f(x_0) = A (x_m + v) - b = A x_m + A v - b = b + \lambda v - b =
|
||||||
|
\lambda v $$
|
||||||
|
|
||||||
|
### Question (b)
|
||||||
|
|
||||||
|
The steepest descent method takes exactly one iteration to reach the exact
|
||||||
|
minimizer $x_m$ starting from the point $x_0$. This can be proven by first
|
||||||
|
noticing that $x_m$ is a point standing in the line that first descent direction
|
||||||
|
would trace, which is equal to:
|
||||||
|
|
||||||
|
$$g(\alpha) = - \alpha \cdot \nabla f(x_0) = - \alpha \lambda v$$
|
||||||
|
|
||||||
|
For $\alpha = \frac{1}{\lambda}$, and plugging in the definition of $x_0 = x_m +
|
||||||
|
v$, we would reach a new iterate $x_1$ equal to:
|
||||||
|
|
||||||
|
$$x_1 = x_0 - \alpha \lambda v = x_0 - v = x_m + v - v = x_m $$
|
||||||
|
|
||||||
|
The only question that we need to answer now is why the SD algorithm would
|
||||||
|
indeed choose $\alpha = \frac{1}{\lambda}$. To answer this, we recall that the
|
||||||
|
SD algorithm chooses $\alpha$ by solving a linear minimization option along the
|
||||||
|
step direction. Since we know $x_m$ is indeed the minimizer, $f(x_m)$ would be
|
||||||
|
obviously strictly less that any other $f(x_1 = x_0 - \alpha \lambda v)$ with
|
||||||
|
$\alpha \neq \frac{1}{\lambda}$.
|
||||||
|
|
||||||
|
Therefore, since $x_1 = x_m$, we have proven SD
|
||||||
|
converges to the minimizer in one iteration.
|
||||||
|
|
||||||
|
### Point 2
|
||||||
|
|
||||||
|
The right answer is choice (a), since the energy norm of the error indeed always
|
||||||
|
decreases monotonically.
|
BIN
Claudio_Maggioni_midterm/Claudio_Maggioni_midterm.pdf
Normal file
BIN
Claudio_Maggioni_midterm/Claudio_Maggioni_midterm.pdf
Normal file
Binary file not shown.
Reference in a new issue