hw4: done 1,2.1
This commit is contained in:
parent
1518fb304c
commit
23c00f39a9
2 changed files with 15 additions and 1 deletions
|
@ -88,12 +88,26 @@ X = X_4 \approx \begin{bmatrix}-0.966\\-0.199\\-0.166\end{bmatrix}$$
|
|||
$$f(X_1) = -1.1304 \;\; f(X_2) = -1.59219 \;\; f(X_3) = 4.64728 \;\; f(X_4) =
|
||||
-5.36549$$
|
||||
|
||||
We therefore choose $(\lambda_4, X_4)$ since $f(X_4)$ is the smallest objective
|
||||
## Exercise 1.3
|
||||
|
||||
To find the optimal solution, we choose $(\lambda_4, X_4)$ since $f(X_4)$ is the
|
||||
smallest objective
|
||||
value out of all the feasible points. Therefore, the solution to the
|
||||
minimization problem is:
|
||||
|
||||
$$X \approx \begin{bmatrix}-0.966\\-0.199\\-0.166\end{bmatrix}$$
|
||||
|
||||
# Exercise 2
|
||||
|
||||
## Exercise 2.1
|
||||
|
||||
To reformulate the problem, we first rewrite the explicit values of $G$, $c$,
|
||||
$A$ and $b$:
|
||||
|
||||
$$G = \begin{bmatrix}3&0&0\\2&2.5&0\\1&2&2\end{bmatrix}$$
|
||||
$$c = \begin{bmatrix}-8\\-3\\-3\end{bmatrix}$$
|
||||
$$A = \begin{bmatrix}1&0&1\\0&1&1\end{bmatrix}$$
|
||||
$$b = \begin{bmatrix}3\\0\end{bmatrix}$$
|
||||
|
||||
|
||||
|
||||
|
|
Binary file not shown.
Reference in a new issue