midterm: hw2 matlab mostly done
This commit is contained in:
parent
87746f945f
commit
3f8034123e
3 changed files with 103 additions and 0 deletions
12
Claudio_Maggioni_midterm/cauchy.m
Normal file
12
Claudio_Maggioni_midterm/cauchy.m
Normal file
|
@ -0,0 +1,12 @@
|
||||||
|
function pk = cauchy(B, g, deltak)
|
||||||
|
gbg = (g' * B * g);
|
||||||
|
|
||||||
|
if gbg <= 0
|
||||||
|
tau = 1;
|
||||||
|
else
|
||||||
|
tau = min(norm(g, 2)^3 / (deltak * gbg), 1);
|
||||||
|
end
|
||||||
|
|
||||||
|
pk = -tau * deltak / norm(g, 2) * g;
|
||||||
|
end
|
||||||
|
|
20
Claudio_Maggioni_midterm/dogleg.m
Normal file
20
Claudio_Maggioni_midterm/dogleg.m
Normal file
|
@ -0,0 +1,20 @@
|
||||||
|
function pk = dogleg(B, g, deltak)
|
||||||
|
pnewton = - (B \ g);
|
||||||
|
|
||||||
|
if norm(pnewton, 2) <= deltak
|
||||||
|
pk = pnewton;
|
||||||
|
else
|
||||||
|
pu = - dot(g, g) / (g' * B * g) * g;
|
||||||
|
|
||||||
|
if norm(pu, 2) > deltak
|
||||||
|
pk = cauchy(B, g, deltak);
|
||||||
|
else
|
||||||
|
syms taux
|
||||||
|
eqn = norm(pu + taux * (pnewton - pu))^2 == deltak^2;
|
||||||
|
tau = solve(eqn, taux);
|
||||||
|
tau = double(max(tau));
|
||||||
|
pk = pu + tau * (pnewton - pu);
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
71
Claudio_Maggioni_midterm/trust_region.m
Normal file
71
Claudio_Maggioni_midterm/trust_region.m
Normal file
|
@ -0,0 +1,71 @@
|
||||||
|
|
||||||
|
syms x y
|
||||||
|
f1 = (y - 4 * x^2)^2 + (1 - x)^2;
|
||||||
|
[x, xs, gnorms] = trust_reg(f1, 2, 1, 0.2, [0;0], 1e-8, 1000);
|
||||||
|
|
||||||
|
% Convert lambda to accept vector parameters
|
||||||
|
function vl = vecLambda(fl)
|
||||||
|
vl = @(x) fl(x(1), x(2));
|
||||||
|
end
|
||||||
|
|
||||||
|
% Compute quadratic form
|
||||||
|
function y = qf(B, g, p, fk)
|
||||||
|
y = fk + 1/2 * p' * B * p + dot(g, p);
|
||||||
|
end
|
||||||
|
|
||||||
|
function [xk, xs, gnorms] = trust_reg(f, delta_hat, delta0, eta, x0, tol, max_n)
|
||||||
|
xs = zeros(2, max_n);
|
||||||
|
gnorms = zeros(max_n);
|
||||||
|
|
||||||
|
xk = x0;
|
||||||
|
deltak = delta0;
|
||||||
|
|
||||||
|
fl = vecLambda(matlabFunction(f));
|
||||||
|
gl = vecLambda(matlabFunction(gradient(f)));
|
||||||
|
hl = vecLambda(matlabFunction(hessian(f)));
|
||||||
|
|
||||||
|
xs(:, 1) = x0;
|
||||||
|
|
||||||
|
for i = 2:max_n
|
||||||
|
fk = fl(xk);
|
||||||
|
B = hl(xk);
|
||||||
|
g = gl(xk);
|
||||||
|
|
||||||
|
gnorms(i - 1) = norm(g);
|
||||||
|
|
||||||
|
if gnorms(i - 1) < tol
|
||||||
|
gnorms = gnorms(1:i-1);
|
||||||
|
xs = xs(:, 1:i-1);
|
||||||
|
break
|
||||||
|
end
|
||||||
|
|
||||||
|
pk = dogleg(B, g, deltak);
|
||||||
|
|
||||||
|
rho_k = (fl(xk) - fl(xk + pk)) / ...
|
||||||
|
(qf(B, g, [0;0], fk) - qf(B, g, pk, fk));
|
||||||
|
|
||||||
|
if rho_k < 1/4
|
||||||
|
deltak = 1/4 * deltak;
|
||||||
|
|
||||||
|
% When comparing the method's execution with some classmates, we
|
||||||
|
% found some numerical instability in the comparison between the
|
||||||
|
% step's norm and the trust region radius. To sum up, using
|
||||||
|
% different Matlab versions (2020b vs 2019a) we obtained different
|
||||||
|
% results on that comparison (true vs. false) on seemingly
|
||||||
|
% identical values. It seems there is some difference w.r.t.
|
||||||
|
% comparisons in the unnormalized double range, and therefore we
|
||||||
|
% both approximated that equality with the subtraction you will find
|
||||||
|
% below
|
||||||
|
elseif rho_k > 3/4 && (norm(pk, 2) - deltak) < eps
|
||||||
|
deltak = min(2 * deltak, delta_hat);
|
||||||
|
end
|
||||||
|
% otherwhise do not change delta
|
||||||
|
|
||||||
|
if rho_k > eta
|
||||||
|
xk = xk + pk;
|
||||||
|
end
|
||||||
|
% otherwise do not change xk
|
||||||
|
|
||||||
|
xs(:, i) = xk;
|
||||||
|
end
|
||||||
|
end
|
Reference in a new issue