midterm: hw2 matlab mostly done

This commit is contained in:
Claudio Maggioni (maggicl) 2021-05-03 16:32:30 +02:00
parent 87746f945f
commit 3f8034123e
3 changed files with 103 additions and 0 deletions

View file

@ -0,0 +1,12 @@
function pk = cauchy(B, g, deltak)
gbg = (g' * B * g);
if gbg <= 0
tau = 1;
else
tau = min(norm(g, 2)^3 / (deltak * gbg), 1);
end
pk = -tau * deltak / norm(g, 2) * g;
end

View file

@ -0,0 +1,20 @@
function pk = dogleg(B, g, deltak)
pnewton = - (B \ g);
if norm(pnewton, 2) <= deltak
pk = pnewton;
else
pu = - dot(g, g) / (g' * B * g) * g;
if norm(pu, 2) > deltak
pk = cauchy(B, g, deltak);
else
syms taux
eqn = norm(pu + taux * (pnewton - pu))^2 == deltak^2;
tau = solve(eqn, taux);
tau = double(max(tau));
pk = pu + tau * (pnewton - pu);
end
end
end

View file

@ -0,0 +1,71 @@
syms x y
f1 = (y - 4 * x^2)^2 + (1 - x)^2;
[x, xs, gnorms] = trust_reg(f1, 2, 1, 0.2, [0;0], 1e-8, 1000);
% Convert lambda to accept vector parameters
function vl = vecLambda(fl)
vl = @(x) fl(x(1), x(2));
end
% Compute quadratic form
function y = qf(B, g, p, fk)
y = fk + 1/2 * p' * B * p + dot(g, p);
end
function [xk, xs, gnorms] = trust_reg(f, delta_hat, delta0, eta, x0, tol, max_n)
xs = zeros(2, max_n);
gnorms = zeros(max_n);
xk = x0;
deltak = delta0;
fl = vecLambda(matlabFunction(f));
gl = vecLambda(matlabFunction(gradient(f)));
hl = vecLambda(matlabFunction(hessian(f)));
xs(:, 1) = x0;
for i = 2:max_n
fk = fl(xk);
B = hl(xk);
g = gl(xk);
gnorms(i - 1) = norm(g);
if gnorms(i - 1) < tol
gnorms = gnorms(1:i-1);
xs = xs(:, 1:i-1);
break
end
pk = dogleg(B, g, deltak);
rho_k = (fl(xk) - fl(xk + pk)) / ...
(qf(B, g, [0;0], fk) - qf(B, g, pk, fk));
if rho_k < 1/4
deltak = 1/4 * deltak;
% When comparing the method's execution with some classmates, we
% found some numerical instability in the comparison between the
% step's norm and the trust region radius. To sum up, using
% different Matlab versions (2020b vs 2019a) we obtained different
% results on that comparison (true vs. false) on seemingly
% identical values. It seems there is some difference w.r.t.
% comparisons in the unnormalized double range, and therefore we
% both approximated that equality with the subtraction you will find
% below
elseif rho_k > 3/4 && (norm(pk, 2) - deltak) < eps
deltak = min(2 * deltak, delta_hat);
end
% otherwhise do not change delta
if rho_k > eta
xk = xk + pk;
end
% otherwise do not change xk
xs(:, i) = xk;
end
end