hw3: done all but 1.5 and 2.5

This commit is contained in:
Claudio Maggioni (maggicl) 2021-04-22 16:39:35 +02:00
parent ca2a294fc7
commit 421192b7e5
18 changed files with 361 additions and 84819 deletions

View file

@ -1,4 +1,4 @@
%% Homework 2 - Optimization Methods 0%% Homework 2 - Optimization Methods
% Author: Claudio Maggioni % Author: Claudio Maggioni
% %
% Note: exercises are not in the right order due to matlab constraints of % Note: exercises are not in the right order due to matlab constraints of

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

View file

@ -0,0 +1,147 @@
\documentclass{scrartcl}
\usepackage{pdfpages}
\usepackage[utf8]{inputenc}
\usepackage{float}
\usepackage{graphicx}
\usepackage[ruled,vlined]{algorithm2e}
\usepackage{subcaption}
\usepackage{hyperref}
\usepackage{amsmath}
\usepackage{pgfplots}
\pgfplotsset{compat=newest}
\usetikzlibrary{plotmarks}
\usetikzlibrary{arrows.meta}
\usepgfplotslibrary{patchplots}
\usepackage{grffile}
\usepackage{amsmath}
\usepackage{subcaption}
\usepgfplotslibrary{external}
\tikzexternalize
\usepackage[margin=2.5cm]{geometry}
% To compile:
% sed -i 's#title style={font=\\bfseries#title style={yshift=1ex, font=\\tiny\\bfseries#' *.tex
% luatex -enable-write18 -shellescape main.tex
\pgfplotsset{every x tick label/.append style={font=\tiny, yshift=0.5ex}}
\pgfplotsset{every title/.append style={font=\tiny, align=center}}
\pgfplotsset{every y tick label/.append style={font=\tiny, xshift=0.5ex}}
\pgfplotsset{every z tick label/.append style={font=\tiny, xshift=0.5ex}}
\setlength{\parindent}{0cm}
\setlength{\parskip}{0.5\baselineskip}
\title{Optimization methods -- Homework 3}
\author{Claudio Maggioni}
\begin{document}
\maketitle
\section{Exercise 1}
\subsection{Exercise 1.1}
Please consult the MATLAB implementation in the files \texttt{Newton.m}, \texttt{GD.m}, and \texttt{backtracking.m}.
Please note that, for this and subsequent exercises, the gradient descent method without backtracking activated uses a
fixed $\alpha=1$ despite the indications on the assignment sheet. This was done in order to comply with the forum post
on iCorsi found here: \url{https://www.icorsi.ch/mod/forum/discuss.php?d=81144}.
\subsection{Exercise 1.2}
Please consult the MATLAB implementation in the file \texttt{main.m} in section 1.2.
\subsection{Exercise 1.3}
Please find the requested plots in figure \ref{fig:1}. The code used to generate these plots can be found in section 1.3 of \texttt{main.m}.
\begin{figure}[h]
\begin{subfigure}{0.5\textwidth}
\resizebox{\textwidth}{\textwidth}{\includegraphics{ex1-3.jpg}}
\caption{Zoomed plot on $x = (-1,1)$ and $y = (-1,1)$}
\end{subfigure}
\begin{subfigure}{0.5\textwidth}
\resizebox{\textwidth}{\textwidth}{\input{ex1-3-gd}}
\caption{Complete plot}
\end{subfigure}
\caption{Steps in the energy landscape for Newton and GD methods}\label{fig:1}
\end{figure}
\subsection{Exercise 1.4}
Please find the requested plots in figure \ref{fig:gsppn}. The code used to generate these plots can be found in section 1.4 of \texttt{main.m}.
\begin{figure}[h]
\begin{subfigure}{0.45\textwidth}
\resizebox{\textwidth}{\textwidth}{\includegraphics{1-4-grad-nonlog.jpg}}
\caption{Gradient norms \\(zoomed, y axis is linear for this plot)}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\resizebox{\textwidth}{\textwidth}{\includegraphics{1-4-ys-nonlog.jpg}}
\caption{Objective function values \\(zoomed, y axis is linear for this plot)}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\resizebox{\textwidth}{\textwidth}{\includegraphics{1-4-grad.jpg}}
\caption{Gradient norms (zoomed)}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\resizebox{\textwidth}{\textwidth}{\includegraphics{1-4-ys.jpg}}
\caption{Objective function values (zoomed)}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\resizebox{\textwidth}{\textwidth}{\includegraphics{1-4-grad-large.jpg}}
\caption{Gradient norms}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\centering
\resizebox{\textwidth}{\textwidth}{\includegraphics{1-4-ys-large.jpg}}
\caption{Objective function values}
\end{subfigure}
\caption{Gradient norms and objective function values (y-axes) w.r.t. iteration numbers (x-axis) for Newton and GD methods (y-axis is log scaled, points at $y=0$ not shown due to log scale)}\label{fig:gsppn}
\end{figure}
\section{Exercise 1.5}
TBD
\section{Exercise 2}
\subsection{Exercise 2.1}
Please consult the MATLAB implementation in the file \texttt{BGFS.m}.
\subsection{Exercise 2.2}
Please consult the MATLAB implementation in the file \texttt{main.m} in section 2.2.
\subsection{Exercise 2.3}
Please find the requested plots in figure \ref{fig:3}. The code used to generate these plots can be found in section 2.3 of \texttt{main.m}.
\begin{figure}[h]
\centering
\resizebox{.6\textwidth}{.6\textwidth}{\input{ex2-3}}
\caption{Steps in the energy landscape for BGFS method}\label{fig:3}
\end{figure}
\subsection{Exercise 2.4}
Please find the requested plots in figure \ref{fig:4}. The code used to generate these plots can be found in section 2.4 of \texttt{main.m}.
\begin{figure}[h]
\begin{subfigure}{0.5\textwidth}`
\resizebox{\textwidth}{\textwidth}{\input{ex2-4-grad}}
\caption{Gradient norms}
\end{subfigure}
\begin{subfigure}{0.5\textwidth}
\resizebox{\textwidth}{\textwidth}{\input{ex2-4-ys}}
\caption{Objective function values}
\end{subfigure}
\caption{Gradient norms and objective function values (y-axes) w.r.t. iteration numbers (x-axis) for BFGS method (y-axis is log scaled, points at $y=0$ not shown due to log scale)}\label{fig:4}
\end{figure}
\subsection{Exercise 2.5}
TBD
\end{document}

View file

@ -1,34 +0,0 @@
% This file was created by matlab2tikz.
%
\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
%
\begin{tikzpicture}
\begin{axis}[%
width=4.617in,
height=3.641in,
at={(0.774in,0.491in)},
scale only axis,
unbounded coords=jump,
xmin=-5e+127,
xmax=3e+128,
ymin=0,
ymax=1.8e+86,
axis background/.style={fill=white},
legend style={legend cell align=left, align=left, draw=white!15!black}
]
\addplot [color=mycolor1, mark=*, mark options={solid, mycolor1}]
table[row sep=crcr]{%
0 0\\
2 0\\
-3200 800\\
13106176003202 2047840800\\
-9.00508836393827e+41 3.43543698853816e+28\\
2.92094868655132e+128 1.62183232884673e+86\\
-inf 1.70638824589317e+259\\
nan inf\\
};
\addlegendentry{GD (alpha=1)}
\end{axis}
\end{tikzpicture}%

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 KiB

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,36 +0,0 @@
% This file was created by matlab2tikz.
%
\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
%
\begin{tikzpicture}
\begin{axis}[%
width=4.617in,
height=3.641in,
at={(0.774in,0.491in)},
scale only axis,
unbounded coords=jump,
xmin=0,
xmax=4,
ymode=log,
ymin=1,
ymax=1e+200,
yminorticks=true,
axis background/.style={fill=white},
legend style={legend cell align=left, align=left, draw=white!15!black}
]
\addplot [color=mycolor1, mark=*, mark options={solid, mycolor1}]
table[row sep=crcr]{%
0 1\\
1 1601\\
2 1.04841216742464e+16\\
3 2.95055682555403e+54\\
4 6.57585025723101e+169\\
5 inf\\
6 inf\\
7 nan\\
};
\addlegendentry{GD + backtracking}
\end{axis}
\end{tikzpicture}%

File diff suppressed because it is too large Load diff

176
Claudio_Maggioni_3/main.asv Normal file
View file

@ -0,0 +1,176 @@
%% Homework 3 - Optimization Methods
% Author: Claudio Maggioni
%
% Note: exercises are not in the right order due to matlab constraints of
% functions inside of scripts.
clc
clear
close all
% Set to non-zero to generate LaTeX for graphs
enable_m2tikz = 0;
if enable_m2tikz
addpath /home/claudio/git/matlab2tikz/src
else
matlab2tikz = @(a,b,c) 0;
end
syms x y;
f = (1 - x)^2 + 100 * (y - x^2)^2;
global fl
fl = matlabFunction(f);
%% 1.3 - Newton and GD solutions and energy plot
[x1, xs1, gs1] = Newton(f, [0;0], 50000, 1e-6, true);
plot(xs1(1, :), xs1(2, :), 'Marker', '.');
fprintf("Newton backtracking: it=%d\n", size(xs1, 2)-1);
xlim([-0.01 1.01])
ylim([-0.01 1.01])
hold on;
[x2, xs2, gs2] = Newton(f, [0;0], 50000, 1e-6, false);
plot(xs2(1, :), xs2(2, :), 'Marker', '.');
fprintf("Newton: it=%d\n", size(xs2, 2)-1);
[x3, xs3, gs3] = GD(f, [0;0], 50000, 1e-6, true);
plot(xs3(1, :), xs3(2, :), 'Marker', '.');
fprintf("GD backtracking: it=%d\n", size(xs3, 2)-1);
[x4, xs4, gs4] = GD(f, [0;0], 50000, 1e-6, false);
plot(xs4(1, :), xs4(2, :), 'Marker', '.');
fprintf("GD: it=%d\n", size(xs4, 2)-1);
hold off;
legend('Newton + backtracking', 'Newton', 'GD + backtracking', 'GD (alpha=1)')
sgtitle("Iterations of Newton and Gradient descent methods over 2D energy landscape");
matlab2tikz('showInfo', false, './ex1-3.tex');
figure;
plot(xs4(1, :), xs4(2, :), 'Marker', '.');
legend('GD (alpha=1)')
sgtitle("Iterations of Newton and Gradient descent methods over 2D energy landscape");
matlab2tikz('showInfo', false, './ex1-3-large.tex');
%% 2.3 - BGFS solution and energy plot
figure;
[x5, xs5, gs5] = BGFS(f, [0;0], eye(2), 50000, 1e-6);
xlim([-0.01 1.01])
ylim([-0.01 1.01])
plot(xs5(1, :), xs5(2, :), 'Marker', '.');
fprintf("BGFS backtracking: it=%d\n", size(xs5, 2)-1);
sgtitle("Iterations of BGFS method over 2D energy landscape");
matlab2tikz('showInfo', false, './ex2-3.tex');
%% 1.4 - Newton and GD gradient norm log
figure;
semilogy(0:size(xs1, 2)-1, gs1, 'Marker', '.');
ylim([5e-10, 1e12]);
xlim([-1, 30]);
hold on
semilogy(0:size(xs2, 2)-1, gs2, 'Marker', '.');
semilogy(0:size(xs3, 2)-1, gs3, 'Marker', '.');
semilogy(0:size(xs4, 2)-1, gs4, 'Marker', '.');
hold off
legend('Newton + backtracking', 'Newton', 'GD + backtracking', 'GD (alpha=1)')
sgtitle("Gradient norm w.r.t. iteration number for Newton and GD methods");
matlab2tikz('showInfo', false, './ex1-4-grad.tex');
figure;
plot(0:size(xs1, 2)-1, gs1, 'Marker', '.');
ylim([5e-10, 25]);
xlim([-1, 30]);
hold on
plot(0:size(xs2, 2)-1, gs2, 'Marker', '.');
plot(0:size(xs3, 2)-1, gs3, 'Marker', '.');
plot(0:size(xs4, 2)-1, gs4, 'Marker', '.');
hold off
legend('Newton + backtracking', 'Newton', 'GD + backtracking', 'GD (alpha=1)')
sgtitle("Gradient norm w.r.t. iteration number for Newton and GD methods");
matlab2tikz('showInfo', false, './ex1-4-grad.tex');
figure;
semilogy(0:size(xs3, 2)-1, gs3, 'Marker', '.');
ylim([1e-7, 1e10]);
hold on
semilogy(0:size(xs4, 2)-1, gs4, 'Marker', '.');
hold off
legend('GD + backtracking', 'GD (alpha=1)')
sgtitle("Gradient norm w.r.t. iteration number for Newton and GD methods");
matlab2tikz('showInfo', false, './ex1-4-grad-large.tex');
figure;
ys1 = funvalues(xs1);
ys2 = funvalues(xs2);
ys3 = funvalues(xs3);
ys4 = funvalues(xs4);
ys5 = funvalues(xs5);
semilogy(0:size(xs1, 2)-1, ys1, 'Marker', '.');
ylim([5e-19, 1e12]);
xlim([-1, 30]);
hold on
semilogy(0:size(xs2, 2)-1, ys2, 'Marker', '.');
semilogy(0:size(xs3, 2)-1, ys3, 'Marker', '.');
semilogy(0:size(xs4, 2)-1, ys4, 'Marker', '.');
hold off
legend('Newton + backtracking', 'Newton', 'GD + backtracking', 'GD (alpha=1)')
sgtitle("Objective function value w.r.t. iteration number for Newton and GD methods");
matlab2tikz('showInfo', false, './ex1-4-ys.tex');
ys1 = funvalues(xs1);
ys2 = funvalues(xs2);
ys3 = funvalues(xs3);
ys4 = funvalues(xs4);
ys5 = funvalues(xs5);
semilogy(0:size(xs1, 2)-1, ys1, 'Marker', '.');
ylim([5e-19, 20]);
xlim([-1, 30]);
hold on
semilogy(0:size(xs2, 2)-1, ys2, 'Marker', '.');
semilogy(0:size(xs3, 2)-1, ys3, 'Marker', '.');
semilogy(0:size(xs4, 2)-1, ys4, 'Marker', '.');
hold off
legend('Newton + backtracking', 'Newton', 'GD + backtracking', 'GD (alpha=1)')
sgtitle("Objective function value w.r.t. iteration number for Newton and GD methods");
matlab2tikz('showInfo', false, './ex1-4-ys.tex');
figure;
semilogy(0:size(xs3, 2)-1, ys3, 'Marker', '.');
semilogy(0:size(xs4, 2)-1, ys4, 'Marker', '.');
legend('GD + backtracking', 'GD (alpha=1)')
sgtitle("Objective function value w.r.t. iteration number for Newton and GD methods");
matlab2tikz('showInfo', false, './ex1-4-ys-large.tex');
%% 2.4 - BGFS gradient norms plot
figure;
semilogy(0:size(xs5, 2)-1, gs5, 'Marker', '.');
sgtitle("Gradient norm w.r.t. iteration number for BGFS method");
matlab2tikz('showInfo', false, './ex2-4-grad.tex');
%% 2.4 - BGFS objective values plot
figure;
semilogy(0:size(xs5, 2)-1, ys5, 'Marker', '.');
sgtitle("Objective function value w.r.t. iteration number for BGFS methods");
matlab2tikz('showInfo', false, './ex2-4-ys.tex');
function ys = funvalues(xs)
ys = zeros(1, size(xs, 2));
global fl
for i = 1:size(xs, 2)
ys(i) = fl(xs(1,i), xs(2,i));
end
end

View file

@ -9,7 +9,7 @@ clear
close all close all
% Set to non-zero to generate LaTeX for graphs % Set to non-zero to generate LaTeX for graphs
enable_m2tikz = 1; enable_m2tikz = 0;
if enable_m2tikz if enable_m2tikz
addpath /home/claudio/git/matlab2tikz/src addpath /home/claudio/git/matlab2tikz/src
else else
@ -21,23 +21,26 @@ f = (1 - x)^2 + 100 * (y - x^2)^2;
global fl global fl
fl = matlabFunction(f); fl = matlabFunction(f);
%% 1.3 - Newton and GD solutions and energy plot %% 1.2 - Minimizing the Rosenbrock function
[x1, xs1, gs1] = Newton(f, [0;0], 50000, 1e-6, true); [x1, xs1, gs1] = Newton(f, [0;0], 50000, 1e-6, true);
[x2, xs2, gs2] = Newton(f, [0;0], 50000, 1e-6, false);
[x3, xs3, gs3] = GD(f, [0;0], 50000, 1e-6, true);
[x4, xs4, gs4] = GD(f, [0;0], 50000, 1e-6, false);
%% 1.3 - Newton and GD solutions and energy plot
plot(xs1(1, :), xs1(2, :), 'Marker', '.'); plot(xs1(1, :), xs1(2, :), 'Marker', '.');
fprintf("Newton backtracking: it=%d\n", size(xs1, 2)-1); fprintf("Newton backtracking: it=%d\n", size(xs1, 2)-1);
xlim([-0.01 1.01]) xlim([-0.01 1.01])
ylim([-0.01 1.01]) ylim([-0.01 1.01])
hold on; hold on;
[x2, xs2, gs2] = Newton(f, [0;0], 50000, 1e-6, false);
plot(xs2(1, :), xs2(2, :), 'Marker', '.'); plot(xs2(1, :), xs2(2, :), 'Marker', '.');
fprintf("Newton: it=%d\n", size(xs2, 2)-1); fprintf("Newton: it=%d\n", size(xs2, 2)-1);
[x3, xs3, gs3] = GD(f, [0;0], 50000, 1e-6, true);
plot(xs3(1, :), xs3(2, :), 'Marker', '.'); plot(xs3(1, :), xs3(2, :), 'Marker', '.');
fprintf("GD backtracking: it=%d\n", size(xs3, 2)-1); fprintf("GD backtracking: it=%d\n", size(xs3, 2)-1);
[x4, xs4, gs4] = GD(f, [0;0], 50000, 1e-6, false);
plot(xs4(1, :), xs4(2, :), 'Marker', '.'); plot(xs4(1, :), xs4(2, :), 'Marker', '.');
fprintf("GD: it=%d\n", size(xs4, 2)-1); fprintf("GD: it=%d\n", size(xs4, 2)-1);
hold off; hold off;
@ -79,6 +82,21 @@ legend('Newton + backtracking', 'Newton', 'GD + backtracking', 'GD (alpha=1)')
sgtitle("Gradient norm w.r.t. iteration number for Newton and GD methods"); sgtitle("Gradient norm w.r.t. iteration number for Newton and GD methods");
matlab2tikz('showInfo', false, './ex1-4-grad.tex'); matlab2tikz('showInfo', false, './ex1-4-grad.tex');
figure;
plot(0:size(xs1, 2)-1, gs1, 'Marker', '.');
ylim([5e-10, 401]);
xlim([-1, 30]);
hold on
plot(0:size(xs2, 2)-1, gs2, 'Marker', '.');
plot(0:size(xs3, 2)-1, gs3, 'Marker', '.');
plot(0:size(xs4, 2)-1, gs4, 'Marker', '.');
hold off
legend('Newton + backtracking', 'Newton', 'GD + backtracking', 'GD (alpha=1)')
sgtitle("Gradient norm w.r.t. iteration number for Newton and GD methods");
matlab2tikz('showInfo', false, './ex1-4-grad.tex');
figure; figure;
semilogy(0:size(xs3, 2)-1, gs3, 'Marker', '.'); semilogy(0:size(xs3, 2)-1, gs3, 'Marker', '.');
ylim([1e-7, 1e10]); ylim([1e-7, 1e10]);
@ -97,7 +115,7 @@ ys3 = funvalues(xs3);
ys4 = funvalues(xs4); ys4 = funvalues(xs4);
ys5 = funvalues(xs5); ys5 = funvalues(xs5);
semilogy(0:size(xs1, 2)-1, ys1, 'Marker', '.'); semilogy(0:size(xs1, 2)-1, ys1, 'Marker', '.');
ylim([5e-19, 1e12]); ylim([0, 1e12]);
xlim([-1, 30]); xlim([-1, 30]);
hold on hold on
semilogy(0:size(xs2, 2)-1, ys2, 'Marker', '.'); semilogy(0:size(xs2, 2)-1, ys2, 'Marker', '.');
@ -109,6 +127,19 @@ legend('Newton + backtracking', 'Newton', 'GD + backtracking', 'GD (alpha=1)')
sgtitle("Objective function value w.r.t. iteration number for Newton and GD methods"); sgtitle("Objective function value w.r.t. iteration number for Newton and GD methods");
matlab2tikz('showInfo', false, './ex1-4-ys.tex'); matlab2tikz('showInfo', false, './ex1-4-ys.tex');
plot(0:size(xs1, 2)-1, ys1, 'Marker', '.');
ylim([0, 101]);
xlim([-1, 30]);
hold on
plot(0:size(xs2, 2)-1, ys2, 'Marker', '.');
plot(0:size(xs3, 2)-1, ys3, 'Marker', '.');
plot(0:size(xs4, 2)-1, ys4, 'Marker', '.');
hold off
legend('Newton + backtracking', 'Newton', 'GD + backtracking', 'GD (alpha=1)')
sgtitle("Objective function value w.r.t. iteration number for Newton and GD methods");
matlab2tikz('showInfo', false, './ex1-4-ys.tex');
figure; figure;
semilogy(0:size(xs3, 2)-1, ys3, 'Marker', '.'); semilogy(0:size(xs3, 2)-1, ys3, 'Marker', '.');