hw2: added plots to report

This commit is contained in:
Claudio Maggioni 2021-04-09 16:29:32 +02:00
parent 430c222fb7
commit 4ef1ea486a
9 changed files with 1194 additions and 0 deletions

View file

@ -1,5 +1,6 @@
\documentclass{scrartcl} \documentclass{scrartcl}
\usepackage[utf8]{inputenc} \usepackage[utf8]{inputenc}
\usepackage{float}
\usepackage{graphicx} \usepackage{graphicx}
\usepackage{subcaption} \usepackage{subcaption}
\usepackage{amsmath} \usepackage{amsmath}
@ -72,6 +73,18 @@ use semilogy) as functions of the iterations.}
The solution of this task can be found in Section 1.5 of the script \texttt{main.m}. The solution of this task can be found in Section 1.5 of the script \texttt{main.m}.
\begin{figure}[H]
\begin{subfigure}{0.5\textwidth}
\resizebox{\textwidth}{\textwidth}{\input{obvalues}}
\caption{Objective function values w.r.t. iteration number}
\end{subfigure}
\begin{subfigure}{0.5\textwidth}
\resizebox{\textwidth}{\textwidth}{\input{gnorms}}
\caption{Norm of the gradient w.r.t. iteration number \\ (y-axis is log scaled)}
\end{subfigure}
\caption{Plots for Exercise 1.4.}
\end{figure}
\subsection{Finally, explain why the Conjugate Gradient method is a Krylov subspace method.} \subsection{Finally, explain why the Conjugate Gradient method is a Krylov subspace method.}
Because theorem 5.3 holds, which itself holds mainly because of this (5.10, page 106 [127]): Because theorem 5.3 holds, which itself holds mainly because of this (5.10, page 106 [127]):
@ -104,6 +117,26 @@ and plot it with respect to the number of iteration.}
The solution of this task can be found in section 2.3 of the \texttt{main.m} MATLAB script. The solution of this task can be found in section 2.3 of the \texttt{main.m} MATLAB script.
\begin{figure}[H]
\begin{subfigure}{0.5\textwidth}
\resizebox{\textwidth}{!}{\input{a1}}
\caption{First matrix}
\end{subfigure}
\begin{subfigure}{0.5\textwidth}
\resizebox{\textwidth}{!}{\input{a2}}
\caption{Second matrix}
\end{subfigure}
\begin{subfigure}{0.5\textwidth}
\resizebox{\textwidth}{!}{\input{a3}}
\caption{Third matrix}
\end{subfigure}
\begin{subfigure}{0.5\textwidth}
\resizebox{\textwidth}{!}{\input{a4}}
\caption{Fourth matrix}
\end{subfigure}
\caption{Plots of logarithm energy norm of the error per iteration. Minus infinity logarithms not shown in the plot.}
\end{figure}
\subsection{Comment on the convergence of the method for the different matrices. What can you say observing \subsection{Comment on the convergence of the method for the different matrices. What can you say observing
the number of iterations obtained and the number of clusters of the eigenvalues of the related the number of iterations obtained and the number of clusters of the eigenvalues of the related
matrix?} matrix?}

32
Claudio_Maggioni_2/a1.tex Normal file
View file

@ -0,0 +1,32 @@
% This file was created by matlab2tikz.
%
\begin{tikzpicture}
\begin{axis}[%
width=6.028in,
height=4.754in,
at={(1.011in,0.642in)},
scale only axis,
unbounded coords=jump,
xmin=-1,
xmax=11,
ymin=-35,
ymax=2,
axis background/.style={fill=white}
]
\addplot [color=black, mark=*, mark options={solid, black}, forget plot]
table[row sep=crcr]{%
0 0.47805830470258\\
1 -0.302580121524669\\
2 -1.39791624910794\\
3 -2.56715639075687\\
4 -3.69859649313088\\
5 -5.18451648631276\\
6 -7.47482224276235\\
7 -11.0156865949418\\
8 -13.5280651039553\\
9 -17.307632058672\\
10 -inf\\
};
\end{axis}
\end{tikzpicture}%

23
Claudio_Maggioni_2/a2.tex Normal file
View file

@ -0,0 +1,23 @@
% This file was created by matlab2tikz.
%
\begin{tikzpicture}
\begin{axis}[%
width=6.028in,
height=4.754in,
at={(1.011in,0.642in)},
scale only axis,
unbounded coords=jump,
xmin=-1,
xmax=11,
ymin=-35,
ymax=2,
axis background/.style={fill=white}
]
\addplot [color=black, mark=*, mark options={solid, black}, forget plot]
table[row sep=crcr]{%
0 1.60311336470871\\
1 -inf\\
};
\end{axis}
\end{tikzpicture}%

27
Claudio_Maggioni_2/a3.tex Normal file
View file

@ -0,0 +1,27 @@
% This file was created by matlab2tikz.
%
\begin{tikzpicture}
\begin{axis}[%
width=6.028in,
height=4.754in,
at={(1.011in,0.642in)},
scale only axis,
unbounded coords=jump,
xmin=-1,
xmax=11,
ymin=-35,
ymax=2,
axis background/.style={fill=white}
]
\addplot [color=black, mark=*, mark options={solid, black}, forget plot]
table[row sep=crcr]{%
0 0.761005788008382\\
1 0.175131370307115\\
2 -0.895425635095078\\
3 -3.07519833588777\\
4 -6.90756348665296\\
5 -inf\\
};
\end{axis}
\end{tikzpicture}%

31
Claudio_Maggioni_2/a4.tex Normal file
View file

@ -0,0 +1,31 @@
% This file was created by matlab2tikz.
%
\begin{tikzpicture}
\begin{axis}[%
width=6.028in,
height=4.754in,
at={(1.011in,0.642in)},
scale only axis,
unbounded coords=jump,
xmin=-1,
xmax=11,
ymin=-35,
ymax=2,
axis background/.style={fill=white}
]
\addplot [color=black, mark=*, mark options={solid, black}, forget plot]
table[row sep=crcr]{%
0 1.20231179447017\\
1 -1.83226396109046\\
2 -5.71516331372262\\
3 -9.4737370445464\\
4 -13.1531086466742\\
5 -17.1786161833937\\
6 -21.6665209383152\\
7 -27.3164913486317\\
8 -32.1088826096102\\
9 -inf\\
};
\end{axis}
\end{tikzpicture}%

View file

@ -0,0 +1,522 @@
% This file was created by matlab2tikz.
%
\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
%
\begin{tikzpicture}
\begin{axis}[%
width=6.028in,
height=4.754in,
at={(1.011in,0.642in)},
scale only axis,
xmin=-1,
xmax=500,
ymode=log,
yminorticks=true,
axis background/.style={fill=white}
]
\addplot [color=mycolor1, forget plot]
table[row sep=crcr]{%
0 3.1654415173795e-05\\
1 0.0157797180267188\\
2 0.0157322760591951\\
3 0.015684881732118\\
4 0.0156375350934236\\
5 0.0155902361911929\\
6 0.0155429850736525\\
7 0.0154957817891757\\
8 0.0154486263862827\\
9 0.015401518913642\\
10 0.0153544594200704\\
11 0.0153074479545346\\
12 0.0152604845661512\\
13 0.0152135693041879\\
14 0.0151667022180643\\
15 0.0151198833573523\\
16 0.0150731127717775\\
17 0.0150263905112192\\
18 0.0149797166257119\\
19 0.0149330911654459\\
20 0.0148865141807679\\
21 0.0148399857221819\\
22 0.0147935058403503\\
23 0.0147470745860942\\
24 0.014700692010395\\
25 0.0146543581643943\\
26 0.0146080730993955\\
27 0.0145618368668644\\
28 0.0145156495184298\\
29 0.0144695111058849\\
30 0.0144234216811875\\
31 0.0143773812964618\\
32 0.0143313900039983\\
33 0.0142854478562552\\
34 0.0142395549058595\\
35 0.014193711205607\\
36 0.0141479168084645\\
37 0.0141021717675699\\
38 0.0140564761362333\\
39 0.0140108299679372\\
40 0.0139652333163394\\
41 0.0139196862352715\\
42 0.0138741887787422\\
43 0.013828741000936\\
44 0.0137833429562163\\
45 0.0137379946991244\\
46 0.0136926962843823\\
47 0.0136474477668921\\
48 0.0136022492017384\\
49 0.013557100644188\\
50 0.0135120021496921\\
51 0.0134669537738862\\
52 0.0134219555725925\\
53 0.0133770076018191\\
54 0.0133321099177632\\
55 0.01328726257681\\
56 0.0132424656355356\\
57 0.0131977191507067\\
58 0.0131530231792828\\
59 0.013108377778416\\
60 0.0130637830054538\\
61 0.0130192389179382\\
62 0.0129747455736087\\
63 0.012930303030402\\
64 0.0128859113464542\\
65 0.0128415705801008\\
66 0.0127972807898792\\
67 0.0127530420345284\\
68 0.0127088543729918\\
69 0.0126647178644173\\
70 0.0126206325681578\\
71 0.0125765985437747\\
72 0.0125326158510353\\
73 0.0124886845499201\\
74 0.0124448047006168\\
75 0.0124009763635278\\
76 0.0123571995992663\\
77 0.0123134744686614\\
78 0.0122698010327579\\
79 0.012226179352818\\
80 0.0121826094903207\\
81 0.0121390915069656\\
82 0.0120956254646736\\
83 0.0120522114255878\\
84 0.0120088494520737\\
85 0.0119655396067225\\
86 0.0119222819523521\\
87 0.0118790765520081\\
88 0.0118359234689638\\
89 0.0117928227667239\\
90 0.0117497745090249\\
91 0.0117067787598372\\
92 0.011663835583364\\
93 0.0116209450440459\\
94 0.011578107206561\\
95 0.0115353221358268\\
96 0.0114925898969997\\
97 0.0114499105554792\\
98 0.0114072841769085\\
99 0.011364710827176\\
100 0.0113221905724149\\
101 0.0112797234790075\\
102 0.0112373096135872\\
103 0.0111949490430363\\
104 0.0111526418344911\\
105 0.0111103880553406\\
106 0.0110681877732329\\
107 0.0110260410560709\\
108 0.0109839479720182\\
109 0.0109419085894973\\
110 0.0108999229771967\\
111 0.010857991204066\\
112 0.0108161133393225\\
113 0.0107742894524492\\
114 0.0107325196132016\\
115 0.0106908038916034\\
116 0.0106491423579531\\
117 0.0106075350828215\\
118 0.0105659821370593\\
119 0.0105244835917926\\
120 0.0104830395184291\\
121 0.0104416499886565\\
122 0.0104003150744496\\
123 0.0103590348480659\\
124 0.0103178093820521\\
125 0.0102766387492424\\
126 0.0102355230227656\\
127 0.0101944622760411\\
128 0.0101534565827851\\
129 0.0101125060170093\\
130 0.0100716106530278\\
131 0.0100307705654531\\
132 0.00998998582920282\\
133 0.00994925651949814\\
134 0.00990858271187067\\
135 0.00986796448215906\\
136 0.00982740190651517\\
137 0.0097868950614029\\
138 0.00974644402360517\\
139 0.00970604887022049\\
140 0.00966570967866934\\
141 0.00962542652669294\\
142 0.00958519949236043\\
143 0.00954502865406551\\
144 0.00950491409053283\\
145 0.00946485588081696\\
146 0.00942485410430954\\
147 0.00938490884073612\\
148 0.00934502017016165\\
149 0.0093051881729941\\
150 0.00926541292998292\\
151 0.00922569452222382\\
152 0.00918603303116333\\
153 0.00914642853859694\\
154 0.0091068811266738\\
155 0.00906739087790145\\
156 0.00902795787514411\\
157 0.00898858220162735\\
158 0.00894926394094302\\
159 0.00891000317704674\\
160 0.00887079999426647\\
161 0.00883165447730008\\
162 0.00879256671122033\\
163 0.00875353678147975\\
164 0.00871456477390919\\
165 0.00867565077472273\\
166 0.00863679487052276\\
167 0.00859799714829781\\
168 0.00855925769543122\\
169 0.00852057659969908\\
170 0.00848195394927536\\
171 0.00844338983273706\\
172 0.00840488433906299\\
173 0.00836643755763896\\
174 0.00832804957826307\\
175 0.00828972049114384\\
176 0.00825145038690911\\
177 0.00821323935660422\\
178 0.00817508749169748\\
179 0.00813699488408549\\
180 0.00809896162609229\\
181 0.00806098781047477\\
182 0.00802307353042824\\
183 0.00798521887958488\\
184 0.00794742395202286\\
185 0.00790968884226493\\
186 0.00787201364528408\\
187 0.00783439845650918\\
188 0.00779684337182447\\
189 0.0077593484875753\\
190 0.00772191390057391\\
191 0.00768453970809832\\
192 0.00764722600790168\\
193 0.00760997289821125\\
194 0.00757278047773439\\
195 0.00753564884566447\\
196 0.00749857810168078\\
197 0.0074615683459546\\
198 0.00742461967915527\\
199 0.00738773220244956\\
200 0.00735090601751125\\
201 0.00731414122652058\\
202 0.00727743793217055\\
203 0.00724079623767324\\
204 0.00720421624675944\\
205 0.00716769806368845\\
206 0.00713124179324783\\
207 0.00709484754075991\\
208 0.00705851541208838\\
209 0.0070222455136389\\
210 0.00698603795236574\\
211 0.00694989283577857\\
212 0.00691381027194255\\
213 0.0068777903694885\\
214 0.00684183323761315\\
215 0.00680593898608611\\
216 0.00677010772525691\\
217 0.00673433956605603\\
218 0.00669863462000215\\
219 0.00666299299920925\\
220 0.00662741481638734\\
221 0.00659190018485302\\
222 0.00655644921853034\\
223 0.00652106203195822\\
224 0.00648573874029798\\
225 0.00645047945933504\\
226 0.00641528430548656\\
227 0.00638015339580917\\
228 0.00634508684800024\\
229 0.00631008478040902\\
230 0.00627514731203806\\
231 0.00624027456255124\\
232 0.00620546665228187\\
233 0.00617072370223502\\
234 0.00613604583409576\\
235 0.0061014331702375\\
236 0.006066885833724\\
237 0.00603240394832098\\
238 0.00599798763849837\\
239 0.00596363702943893\\
240 0.00592935224704701\\
241 0.00589513341795163\\
242 0.00586098066951542\\
243 0.00582689412984363\\
244 0.00579287392778691\\
245 0.00575892019295364\\
246 0.00572503305571297\\
247 0.00569121264720421\\
248 0.00565745909934627\\
249 0.00562377254484168\\
250 0.00559015311718629\\
251 0.00555660095067903\\
252 0.00552311618042564\\
253 0.00548969894235178\\
254 0.00545634937320699\\
255 0.00542306761057491\\
256 0.00538985379288368\\
257 0.00535670805940993\\
258 0.00532363055029368\\
259 0.00529062140654112\\
260 0.00525768077003668\\
261 0.0052248087835537\\
262 0.00519200559076005\\
263 0.00515927133622939\\
264 0.00512660616545254\\
265 0.00509401022484292\\
266 0.00506148366175127\\
267 0.00502902662447137\\
268 0.00499663926225206\\
269 0.00496432172530924\\
270 0.00493207416483222\\
271 0.00489989673299904\\
272 0.0048677895829831\\
273 0.00483575286896589\\
274 0.00480378674614987\\
275 0.00477189137076559\\
276 0.00474006690008788\\
277 0.00470831349244334\\
278 0.00467663130722396\\
279 0.00464502050490086\\
280 0.00461348124703293\\
281 0.00458201369628163\\
282 0.00455061801642291\\
283 0.0045192943723595\\
284 0.00448804293013615\\
285 0.0044568638569488\\
286 0.00442575732116265\\
287 0.00439472349232172\\
288 0.00436376254116446\\
289 0.00433287463963956\\
290 0.00430205996091684\\
291 0.00427131867940353\\
292 0.00424065097076077\\
293 0.0042100570119147\\
294 0.00417953698107631\\
295 0.00414909105775303\\
296 0.00411871942276631\\
297 0.00408842225826936\\
298 0.00405819974775964\\
299 0.0040280520761\\
300 0.00399797942953172\\
301 0.00396798199569348\\
302 0.00393805996364055\\
303 0.00390821352385935\\
304 0.0038784428682873\\
305 0.00384874819033299\\
306 0.00381912968489116\\
307 0.00378958754836631\\
308 0.00376012197868838\\
309 0.00373073317533429\\
310 0.00370142133934982\\
311 0.00367218667336645\\
312 0.00364302938162671\\
313 0.00361394967000176\\
314 0.00358494774601489\\
315 0.00355602381886526\\
316 0.00352717809944686\\
317 0.00349841080037579\\
318 0.00346972213601006\\
319 0.00344111232247518\\
320 0.00341258157769011\\
321 0.00338413012138901\\
322 0.00335575817514826\\
323 0.00332746596241382\\
324 0.00329925370852406\\
325 0.00327112164074077\\
326 0.00324306998827306\\
327 0.00321509898230687\\
328 0.00318720885603513\\
329 0.0031593998446833\\
330 0.00313167218554325\\
331 0.00310402611800003\\
332 0.00307646188356444\\
333 0.00304897972590616\\
334 0.00302157989088305\\
335 0.00299426262657563\\
336 0.00296702818332233\\
337 0.00293987681375033\\
338 0.00291280877281477\\
339 0.0028858243178311\\
340 0.00285892370851336\\
341 0.00283210720701309\\
342 0.0028053750779542\\
343 0.00277872758847611\\
344 0.00275216500827033\\
345 0.00272568760962288\\
346 0.00269929566745765\\
347 0.00267298945937576\\
348 0.00264676926570329\\
349 0.00262063536953265\\
350 0.00259458805676995\\
351 0.00256862761618329\\
352 0.00254275433944795\\
353 0.00251696852119695\\
354 0.00249127045907285\\
355 0.0024656604537759\\
356 0.00244013880912067\\
357 0.00241470583208676\\
358 0.00238936183287563\\
359 0.00236410712496877\\
360 0.00233894202518255\\
361 0.0023138668537316\\
362 0.00228888193428664\\
363 0.00226398759403862\\
364 0.00223918416376428\\
365 0.00221447197788892\\
366 0.00218985137455768\\
367 0.00216532269570178\\
368 0.00214088628711106\\
369 0.00211654249850854\\
370 0.00209229168362315\\
371 0.00206813420026647\\
372 0.0020440704104159\\
373 0.00202010068029071\\
374 0.00199622538044178\\
375 0.00197244488583009\\
376 0.00194875957592076\\
377 0.001925169834773\\
378 0.00190167605113088\\
379 0.00187827861852296\\
380 0.00185497793535806\\
381 0.00183177440502798\\
382 0.00180866843601563\\
383 0.00178566044199606\\
384 0.00176275084195269\\
385 0.00173994006029262\\
386 0.00171722852695989\\
387 0.00169461667756041\\
388 0.00167210495348647\\
389 0.00164969380204556\\
390 0.00162738367659497\\
391 0.00160517503667887\\
392 0.00158306834816748\\
393 0.0015610640834086\\
394 0.0015391627213757\\
395 0.00151736474782592\\
396 0.00149567065545892\\
397 0.0014740809440871\\
398 0.00145259612080798\\
399 0.00143121670018043\\
400 0.00140994320441235\\
401 0.00138877616355118\\
402 0.00136771611567928\\
403 0.00134676360712423\\
404 0.0013259191926667\\
405 0.00130518343576434\\
406 0.00128455690877751\\
407 0.00126404019320747\\
408 0.00124363387994308\\
409 0.00122333856951558\\
410 0.00120315487236122\\
411 0.00118308340910146\\
412 0.00116312481082477\\
413 0.00114327971938729\\
414 0.0011235487877217\\
415 0.00110393268015729\\
416 0.00108443207275845\\
417 0.00106504765367342\\
418 0.00104578012349787\\
419 0.00102663019565582\\
420 0.00100759859679339\\
421 0.000988686067195324\\
422 0.000969893361216197\\
423 0.00095122124773175\\
424 0.000932670510608069\\
425 0.000914241949201074\\
426 0.000895936378867371\\
427 0.000877754631508528\\
428 0.000859697556137518\\
429 0.000841766019473127\\
430 0.000823960906565026\\
431 0.000806283121448403\\
432 0.000788733587831909\\
433 0.000771313249822707\\
434 0.000754023072687432\\
435 0.000736864043657104\\
436 0.000719837172769218\\
437 0.000702943493760668\\
438 0.000686184065011434\\
439 0.000669559970537391\\
440 0.000653072321041874\\
441 0.000636722255029885\\
442 0.000620510939986573\\
443 0.000604439573630549\\
444 0.000588509385236614\\
445 0.00057272163704996\\
446 0.000557077625787128\\
447 0.000541578684230604\\
448 0.000526226182934612\\
449 0.000511021532042753\\
450 0.000495966183230885\\
451 0.000481061631787299\\
452 0.000466309418840188\\
453 0.000451711133747819\\
454 0.000437268416668315\\
455 0.000422982961323787\\
456 0.000408856517981088\\
457 0.000394890896668832\\
458 0.000381087970655137\\
459 0.000367449680220597\\
460 0.000353978036748788\\
461 0.000340675127175451\\
462 0.000327543118842089\\
463 0.000314584264791908\\
464 0.00030180090957059\\
465 0.000289195495589093\\
466 0.000276770570127334\\
467 0.000264528793057209\\
468 0.000252472945386399\\
469 0.00024060593873623\\
470 0.000228930825897021\\
471 0.00021745081260729\\
472 0.000206169270765922\\
473 0.000195089753292042\\
474 0.000184216010914346\\
475 0.000173552011227236\\
476 0.000163101960414044\\
477 0.000152870328142166\\
478 0.000142861876255546\\
479 0.000133081692029448\\
480 0.000123535226978182\\
481 0.000114228342456702\\
482 0.000105167363667044\\
483 9.63591441704975e-05\\
484 8.78111436770309e-05\\
485 7.9531522846157e-05\\
486 7.15292601814999e-05\\
487 6.38142980942563e-05\\
488 5.63977281764285e-05\\
489 4.9292030273616e-05\\
490 4.25113871340903e-05\\
491 3.6072108144126e-05\\
492 2.99932155320352e-05\\
493 2.4297281571859e-05\\
494 1.90116702899788e-05\\
495 1.4170462377942e-05\\
496 9.81758432223143e-06\\
497 6.01201802407357e-06\\
498 2.83409247558248e-06\\
499 4.26545343219991e-16\\
};
\end{axis}
\end{tikzpicture}%

View file

@ -26,11 +26,13 @@ if plots
plot(0:(size(ys,1)-1), ys); plot(0:(size(ys,1)-1), ys);
sgtitle("Objective function values per iteration"); sgtitle("Objective function values per iteration");
axis([-1 500 -inf +inf]); axis([-1 500 -inf +inf]);
%matlab2tikz('showInfo', false, './obvalues.tex');
figure; figure;
semilogy(0:(size(gnorms,1)-1), gnorms); semilogy(0:(size(gnorms,1)-1), gnorms);
sgtitle("Log of gradient norm per iteration"); sgtitle("Log of gradient norm per iteration");
axis([-1 500 -inf +inf]); axis([-1 500 -inf +inf]);
%matlab2tikz('showInfo', false, './gnorms.tex');
end end
%% 2.1 - Matrix definitions %% 2.1 - Matrix definitions
@ -56,12 +58,16 @@ n = 10;
if plots if plots
enl_plot(x1, xs1, A1); enl_plot(x1, xs1, A1);
sgtitle("Log energy norm of the error per iter. (matrix A1)"); sgtitle("Log energy norm of the error per iter. (matrix A1)");
%matlab2tikz('showInfo', false, './a1.tex');
enl_plot(x2, xs2, A2); enl_plot(x2, xs2, A2);
sgtitle("Log energy norm of the error per iter. (matrix A2)"); sgtitle("Log energy norm of the error per iter. (matrix A2)");
%matlab2tikz('showInfo', false, './a2.tex');
enl_plot(x3, xs3, A3) enl_plot(x3, xs3, A3)
sgtitle("Log energy norm of the error per iter. (matrix A3)"); sgtitle("Log energy norm of the error per iter. (matrix A3)");
%matlab2tikz('showInfo', false, './a3.tex');
enl_plot(x4, xs4, A4); enl_plot(x4, xs4, A4);
sgtitle("Log energy norm of the error per iter. (matrix A4)"); sgtitle("Log energy norm of the error per iter. (matrix A4)");
%matlab2tikz('showInfo', false, './a4.tex');
end end
function enl_plot(xsol, xs, A) function enl_plot(xsol, xs, A)

View file

@ -0,0 +1,520 @@
% This file was created by matlab2tikz.
%
\definecolor{mycolor1}{rgb}{0.00000,0.44700,0.74100}%
%
\begin{tikzpicture}
\begin{axis}[%
width=6.028in,
height=4.754in,
at={(1.011in,0.642in)},
scale only axis,
xmin=-1,
xmax=500,
axis background/.style={fill=white}
]
\addplot [color=mycolor1, forget plot]
table[row sep=crcr]{%
0 0\\
1 -2.49999498998749e-07\\
2 -4.98998000007523e-07\\
3 -7.46997511046363e-07\\
4 -9.94000040135306e-07\\
5 -1.2400075952944e-06\\
6 -1.48502218454367e-06\\
7 -1.72904581590317e-06\\
8 -1.97208049739294e-06\\
9 -2.21412823703301e-06\\
10 -2.45519104284342e-06\\
11 -2.69527092284423e-06\\
12 -2.93436988505546e-06\\
13 -3.17248993749715e-06\\
14 -3.40963308818935e-06\\
15 -3.64580134515209e-06\\
16 -3.88099671640543e-06\\
17 -4.11522120996938e-06\\
18 -4.348476833864e-06\\
19 -4.58076559610935e-06\\
20 -4.81208950472541e-06\\
21 -5.04245056773228e-06\\
22 -5.27185079314997e-06\\
23 -5.50029218899853e-06\\
24 -5.72777676329799e-06\\
25 -5.95430652406841e-06\\
26 -6.1798834793298e-06\\
27 -6.40450963710222e-06\\
28 -6.6281870054057e-06\\
29 -6.85091759226031e-06\\
30 -7.07270340568605e-06\\
31 -7.29354645370299e-06\\
32 -7.51344874433114e-06\\
33 -7.73241228559059e-06\\
34 -7.95043908550132e-06\\
35 -8.16753115208339e-06\\
36 -8.38369049335685e-06\\
37 -8.59891911734177e-06\\
38 -8.81321903205812e-06\\
39 -9.02659224552598e-06\\
40 -9.2390407657654e-06\\
41 -9.45056660079637e-06\\
42 -9.66117175863905e-06\\
43 -9.87085824731335e-06\\
44 -1.00796280748393e-05\\
45 -1.02874832492371e-05\\
46 -1.04944257785266e-05\\
47 -1.0700457670728e-05\\
48 -1.09055809338613e-05\\
49 -1.11097975759464e-05\\
50 -1.13131096050035e-05\\
51 -1.15155190290526e-05\\
52 -1.17170278561137e-05\\
53 -1.19176380942069e-05\\
54 -1.21173517513522e-05\\
55 -1.23161708355696e-05\\
56 -1.25140973548793e-05\\
57 -1.27111333173011e-05\\
58 -1.29072807308553e-05\\
59 -1.31025416035617e-05\\
60 -1.32969179434405e-05\\
61 -1.34904117585117e-05\\
62 -1.36830250567953e-05\\
63 -1.38747598463113e-05\\
64 -1.40656181350799e-05\\
65 -1.42556019311211e-05\\
66 -1.44447132424548e-05\\
67 -1.46329540771011e-05\\
68 -1.48203264430801e-05\\
69 -1.50068323484119e-05\\
70 -1.51924738011164e-05\\
71 -1.53772528092136e-05\\
72 -1.55611713807237e-05\\
73 -1.57442315236667e-05\\
74 -1.59264352460625e-05\\
75 -1.61077845559314e-05\\
76 -1.62882814612932e-05\\
77 -1.6467927970168e-05\\
78 -1.66467260905761e-05\\
79 -1.6824677830537e-05\\
80 -1.70017851980713e-05\\
81 -1.71780502011986e-05\\
82 -1.73534748479392e-05\\
83 -1.75280611463132e-05\\
84 -1.77018111043402e-05\\
85 -1.78747267300409e-05\\
86 -1.80468100314348e-05\\
87 -1.82180630165421e-05\\
88 -1.8388487693383e-05\\
89 -1.85580860699773e-05\\
90 -1.87268601543451e-05\\
91 -1.88948119545067e-05\\
92 -1.90619434784818e-05\\
93 -1.92282567342906e-05\\
94 -1.93937537299532e-05\\
95 -1.95584364734893e-05\\
96 -1.97223069729193e-05\\
97 -1.98853672362632e-05\\
98 -2.0047619271541e-05\\
99 -2.02090650867726e-05\\
100 -2.03697066899782e-05\\
101 -2.05295460891778e-05\\
102 -2.06885852923914e-05\\
103 -2.08468263076392e-05\\
104 -2.10042711429409e-05\\
105 -2.11609218063169e-05\\
106 -2.13167803057871e-05\\
107 -2.14718486493715e-05\\
108 -2.16261288450902e-05\\
109 -2.17796229009631e-05\\
110 -2.19323328250106e-05\\
111 -2.20842606252522e-05\\
112 -2.22354083097083e-05\\
113 -2.2385777886399e-05\\
114 -2.25353713633441e-05\\
115 -2.26841907485638e-05\\
116 -2.28322380500781e-05\\
117 -2.29795152759071e-05\\
118 -2.31260244340707e-05\\
119 -2.32717675325889e-05\\
120 -2.3416746579482e-05\\
121 -2.35609635827698e-05\\
122 -2.37044205504726e-05\\
123 -2.38471194906101e-05\\
124 -2.39890624112026e-05\\
125 -2.41302513202701e-05\\
126 -2.42706882258324e-05\\
127 -2.44103751359098e-05\\
128 -2.45493140585224e-05\\
129 -2.46875070016901e-05\\
130 -2.48249559734329e-05\\
131 -2.4961662981771e-05\\
132 -2.50976300347242e-05\\
133 -2.52328591403127e-05\\
134 -2.53673523065564e-05\\
135 -2.55011115414756e-05\\
136 -2.56341388530901e-05\\
137 -2.57664362494202e-05\\
138 -2.58980057384856e-05\\
139 -2.60288493283066e-05\\
140 -2.61589690269032e-05\\
141 -2.62883668422953e-05\\
142 -2.6417044782503e-05\\
143 -2.65450048555465e-05\\
144 -2.66722490694456e-05\\
145 -2.67987794322206e-05\\
146 -2.69245979518913e-05\\
147 -2.70497066364779e-05\\
148 -2.71741074940006e-05\\
149 -2.72978025324786e-05\\
150 -2.74207937599329e-05\\
151 -2.75430831843832e-05\\
152 -2.76646728138492e-05\\
153 -2.77855646563519e-05\\
154 -2.79057607199107e-05\\
155 -2.80252630125452e-05\\
156 -2.81440735422763e-05\\
157 -2.8262194317123e-05\\
158 -2.83796273451063e-05\\
159 -2.84963746342461e-05\\
160 -2.8612438192562e-05\\
161 -2.87278200280746e-05\\
162 -2.88425221488035e-05\\
163 -2.89565465627689e-05\\
164 -2.90698952779907e-05\\
165 -2.91825703024894e-05\\
166 -2.92945736442844e-05\\
167 -2.94059073113959e-05\\
168 -2.95165733118442e-05\\
169 -2.96265736536492e-05\\
170 -2.9735910344831e-05\\
171 -2.98445853934095e-05\\
172 -2.99526008074053e-05\\
173 -3.00599585948374e-05\\
174 -3.01666607637271e-05\\
175 -3.02727093220927e-05\\
176 -3.0378106277956e-05\\
177 -3.04828536393361e-05\\
178 -3.05869534142538e-05\\
179 -3.06904076107282e-05\\
180 -3.07932182367798e-05\\
181 -3.08953873004289e-05\\
182 -3.09969168096946e-05\\
183 -3.10978087725977e-05\\
184 -3.11980651971581e-05\\
185 -3.12976880913968e-05\\
186 -3.13966794633319e-05\\
187 -3.14950413209845e-05\\
188 -3.15927756723748e-05\\
189 -3.16898845255228e-05\\
190 -3.17863698884481e-05\\
191 -3.18822337691713e-05\\
192 -3.19774781757112e-05\\
193 -3.20721051160898e-05\\
194 -3.21661165983263e-05\\
195 -3.22595146304395e-05\\
196 -3.23523012204516e-05\\
197 -3.24444783763807e-05\\
198 -3.25360481062477e-05\\
199 -3.26270124180731e-05\\
200 -3.27173733198765e-05\\
201 -3.28071328196771e-05\\
202 -3.28962929254965e-05\\
203 -3.29848556453538e-05\\
204 -3.30728229872694e-05\\
205 -3.31601969592628e-05\\
206 -3.32469795693543e-05\\
207 -3.33331728255645e-05\\
208 -3.34187787359135e-05\\
209 -3.35037993084193e-05\\
210 -3.35882365511042e-05\\
211 -3.36720924719877e-05\\
212 -3.37553690790896e-05\\
213 -3.38380683804296e-05\\
214 -3.39201923840285e-05\\
215 -3.40017430979061e-05\\
216 -3.40827225300819e-05\\
217 -3.41631326885767e-05\\
218 -3.42429755814097e-05\\
219 -3.43222532166018e-05\\
220 -3.4400967602173e-05\\
221 -3.44791207461421e-05\\
222 -3.45567146565305e-05\\
223 -3.46337513413574e-05\\
224 -3.47102328086444e-05\\
225 -3.47861610664094e-05\\
226 -3.48615381226735e-05\\
227 -3.49363659854567e-05\\
228 -3.50106466627788e-05\\
229 -3.50843821626602e-05\\
230 -3.51575744931207e-05\\
231 -3.52302256621806e-05\\
232 -3.53023376778599e-05\\
233 -3.53739125481775e-05\\
234 -3.54449522811552e-05\\
235 -3.55154588848124e-05\\
236 -3.55854343671688e-05\\
237 -3.56548807362442e-05\\
238 -3.57238000000597e-05\\
239 -3.57921941666347e-05\\
240 -3.5860065243989e-05\\
241 -3.59274152401429e-05\\
242 -3.59942461631166e-05\\
243 -3.60605600209297e-05\\
244 -3.61263588216028e-05\\
245 -3.61916445731555e-05\\
246 -3.62564192836083e-05\\
247 -3.63206849609801e-05\\
248 -3.63844436132928e-05\\
249 -3.64476972485651e-05\\
250 -3.6510447874817e-05\\
251 -3.65726975000693e-05\\
252 -3.66344481323419e-05\\
253 -3.6695701779654e-05\\
254 -3.67564604500267e-05\\
255 -3.68167261514788e-05\\
256 -3.68765008920319e-05\\
257 -3.6935786679705e-05\\
258 -3.69945855225181e-05\\
259 -3.70528994284917e-05\\
260 -3.71107304056457e-05\\
261 -3.71680804620006e-05\\
262 -3.7224951605575e-05\\
263 -3.72813458443905e-05\\
264 -3.73372651864663e-05\\
265 -3.73927116398226e-05\\
266 -3.74476872124801e-05\\
267 -3.75021939124574e-05\\
268 -3.75562337477762e-05\\
269 -3.76098087264556e-05\\
270 -3.76629208565149e-05\\
271 -3.77155721459756e-05\\
272 -3.77677646028569e-05\\
273 -3.78195002351795e-05\\
274 -3.7870781050963e-05\\
275 -3.79216090582271e-05\\
276 -3.79719862649921e-05\\
277 -3.80219146792792e-05\\
278 -3.80713963091063e-05\\
279 -3.81204331624946e-05\\
280 -3.81690272474643e-05\\
281 -3.82171805720353e-05\\
282 -3.82648951442273e-05\\
283 -3.83121729720608e-05\\
284 -3.8359016063556e-05\\
285 -3.84054264267319e-05\\
286 -3.84514060696092e-05\\
287 -3.84969570002087e-05\\
288 -3.85420812265484e-05\\
289 -3.85867807566506e-05\\
290 -3.8631057598534e-05\\
291 -3.86749137602193e-05\\
292 -3.87183512497264e-05\\
293 -3.87613720750746e-05\\
294 -3.88039782442848e-05\\
295 -3.88461717653767e-05\\
296 -3.88879546463705e-05\\
297 -3.89293288952863e-05\\
298 -3.89702965201432e-05\\
299 -3.90108595289633e-05\\
300 -3.90510199297643e-05\\
301 -3.90907797305675e-05\\
302 -3.91301409393933e-05\\
303 -3.91691055642609e-05\\
304 -3.92076756131906e-05\\
305 -3.92458530942022e-05\\
306 -3.92836400153165e-05\\
307 -3.93210383845528e-05\\
308 -3.9358050209931e-05\\
309 -3.93946774994719e-05\\
310 -3.94309222611957e-05\\
311 -3.94667865031211e-05\\
312 -3.95022722332695e-05\\
313 -3.95373814596599e-05\\
314 -3.95721161903128e-05\\
315 -3.96064784332487e-05\\
316 -3.96404701964871e-05\\
317 -3.96740934880475e-05\\
318 -3.97073503159513e-05\\
319 -3.97402426882182e-05\\
320 -3.97727726128671e-05\\
321 -3.9804942097919e-05\\
322 -3.98367531513941e-05\\
323 -3.98682077813113e-05\\
324 -3.98993079956921e-05\\
325 -3.99300558025555e-05\\
326 -3.99604532099222e-05\\
327 -3.99905022258122e-05\\
328 -4.00202048582442e-05\\
329 -4.00495631152405e-05\\
330 -4.00785790048194e-05\\
331 -4.01072545350018e-05\\
332 -4.01355917138077e-05\\
333 -4.0163592549256e-05\\
334 -4.0191259049368e-05\\
335 -4.02185932221634e-05\\
336 -4.0245597075662e-05\\
337 -4.02722726178848e-05\\
338 -4.02986218568505e-05\\
339 -4.03246468005798e-05\\
340 -4.03503494570928e-05\\
341 -4.0375731834409e-05\\
342 -4.04007959405494e-05\\
343 -4.04255437835334e-05\\
344 -4.04499773713804e-05\\
345 -4.04740987121121e-05\\
346 -4.04979098137474e-05\\
347 -4.05214126843061e-05\\
348 -4.05446093318094e-05\\
349 -4.05675017642757e-05\\
350 -4.05900919897264e-05\\
351 -4.06123820161814e-05\\
352 -4.06343738516606e-05\\
353 -4.06560695041833e-05\\
354 -4.06774709817706e-05\\
355 -4.06985802924417e-05\\
356 -4.07193994442172e-05\\
357 -4.0739930445117e-05\\
358 -4.07601753031609e-05\\
359 -4.07801360263692e-05\\
360 -4.07998146227615e-05\\
361 -4.08192131003588e-05\\
362 -4.08383334671805e-05\\
363 -4.08571777312461e-05\\
364 -4.08757479005769e-05\\
365 -4.08940459831921e-05\\
366 -4.09120739871118e-05\\
367 -4.09298339203564e-05\\
368 -4.09473277909454e-05\\
369 -4.09645576068992e-05\\
370 -4.09815253762379e-05\\
371 -4.09982331069807e-05\\
372 -4.1014682807149e-05\\
373 -4.10308764847627e-05\\
374 -4.10468161478408e-05\\
375 -4.10625038044038e-05\\
376 -4.1077941462472e-05\\
377 -4.10931311300654e-05\\
378 -4.11080748152034e-05\\
379 -4.11227745259067e-05\\
380 -4.11372322701953e-05\\
381 -4.11514500560885e-05\\
382 -4.11654298916077e-05\\
383 -4.11791737847719e-05\\
384 -4.11926837436015e-05\\
385 -4.12059617761164e-05\\
386 -4.12190098903368e-05\\
387 -4.12318300942827e-05\\
388 -4.12444243959737e-05\\
389 -4.12567948034309e-05\\
390 -4.12689433246734e-05\\
391 -4.12808719677215e-05\\
392 -4.12925827405955e-05\\
393 -4.13040776513146e-05\\
394 -4.13153587078997e-05\\
395 -4.13264279183704e-05\\
396 -4.13372872907473e-05\\
397 -4.13479388330498e-05\\
398 -4.13583845532985e-05\\
399 -4.13686264595122e-05\\
400 -4.13786665597124e-05\\
401 -4.13885068619189e-05\\
402 -4.13981493741518e-05\\
403 -4.14075961044303e-05\\
404 -4.14168490607745e-05\\
405 -4.14259102512055e-05\\
406 -4.14347816837422e-05\\
407 -4.14434653664058e-05\\
408 -4.14519633072155e-05\\
409 -4.1460277514191e-05\\
410 -4.14684099953535e-05\\
411 -4.14763627587221e-05\\
412 -4.14841378123176e-05\\
413 -4.14917371641589e-05\\
414 -4.1499162822267e-05\\
415 -4.15064167946621e-05\\
416 -4.15135010893635e-05\\
417 -4.15204177143913e-05\\
418 -4.1527168677766e-05\\
419 -4.15337559875071e-05\\
420 -4.15401816516357e-05\\
421 -4.15464476781711e-05\\
422 -4.15525560751325e-05\\
423 -4.15585088505413e-05\\
424 -4.1564308012417e-05\\
425 -4.15699555687797e-05\\
426 -4.15754535276496e-05\\
427 -4.15808038970462e-05\\
428 -4.15860086849903e-05\\
429 -4.15910698995011e-05\\
430 -4.15959895485994e-05\\
431 -4.16007696403049e-05\\
432 -4.16054121826373e-05\\
433 -4.16099191836174e-05\\
434 -4.16142926512643e-05\\
435 -4.16185345935989e-05\\
436 -4.16226470186414e-05\\
437 -4.16266319344109e-05\\
438 -4.16304913489283e-05\\
439 -4.16342272702127e-05\\
440 -4.16378417062846e-05\\
441 -4.16413366651644e-05\\
442 -4.16447141548716e-05\\
443 -4.16479761834271e-05\\
444 -4.16511247588496e-05\\
445 -4.16541618891607e-05\\
446 -4.16570895823782e-05\\
447 -4.1659909846525e-05\\
448 -4.16626246896192e-05\\
449 -4.1665236119681e-05\\
450 -4.16677461447311e-05\\
451 -4.1670156772789e-05\\
452 -4.16724700118754e-05\\
453 -4.16746878700097e-05\\
454 -4.16768123552124e-05\\
455 -4.16788454755031e-05\\
456 -4.16807892389022e-05\\
457 -4.16826456534285e-05\\
458 -4.16844167271039e-05\\
459 -4.16861044679475e-05\\
460 -4.16877108839802e-05\\
461 -4.16892379832203e-05\\
462 -4.16906877736888e-05\\
463 -4.16920622634066e-05\\
464 -4.16933634603923e-05\\
465 -4.1694593372667e-05\\
466 -4.16957540082503e-05\\
467 -4.16968473751621e-05\\
468 -4.16978754814228e-05\\
469 -4.16988403350517e-05\\
470 -4.16997439440699e-05\\
471 -4.17005883164966e-05\\
472 -4.1701375460352e-05\\
473 -4.17021073836576e-05\\
474 -4.17027860944303e-05\\
475 -4.17034136006933e-05\\
476 -4.17039919104647e-05\\
477 -4.17045230317654e-05\\
478 -4.17050089726151e-05\\
479 -4.17054517410336e-05\\
480 -4.17058533450415e-05\\
481 -4.17062157926589e-05\\
482 -4.17065410919058e-05\\
483 -4.17068312508013e-05\\
484 -4.17070882773665e-05\\
485 -4.17073141796206e-05\\
486 -4.17075109655854e-05\\
487 -4.17076806432783e-05\\
488 -4.17078252207211e-05\\
489 -4.17079467059335e-05\\
490 -4.17080471069358e-05\\
491 -4.1708128431747e-05\\
492 -4.17081926883885e-05\\
493 -4.17082418848793e-05\\
494 -4.17082780292402e-05\\
495 -4.17083031294906e-05\\
496 -4.1708319193651e-05\\
497 -4.17083282297417e-05\\
498 -4.17083322457828e-05\\
499 -4.17083332497933e-05\\
};
\end{axis}
\end{tikzpicture}%