hw2: Done 1.1-5

This commit is contained in:
Claudio Maggioni (maggicl) 2021-04-08 20:14:19 +02:00
parent 7a298182e0
commit 91d5b2ccef

View file

@ -1,24 +1,52 @@
%% Homework 2 - Optimization Methods %% Homework 2 - Optimization Methods
% Author: Claudio Maggioni % Author: Claudio Maggioni
% %
% Note: exercises are not in the right order due to matlab constraints of
% functions inside of scripts.
%
% Sources: % Sources:
clear clear
clc clc
close all close all
[A, b] = build_poisson(4); %% 1.4 - Solution for 1D Poisson for N=1000 using CG
disp(A)
disp(b) n = 1000;
[A, b] = build_poisson(n);
A(2, 1) = 0;
A(n-1, n) = 0;
[x, ys, gnorms] = CGSolve(A, b, zeros(n,1), 1000, 1e-8);
display(x);
%% 1.5 - Plots for the 1D Poisson solution
plot(ys);
sgtitle("Objective function values per iteration");
figure;
semilogy(gnorms);
sgtitle("Log of gradient norm per iteration");
%% 1.1 - Build the Poisson matrix A and vector b (check this)
% Answer is a energy function does not exist. Since A is not symmetric
% (even if it is pd), the minimizer used for the c.g. method
% (i.e. (1/2)x^TAx - b^x) won't work
% since x^TAx might be negative and thus the minimizer does not point to
% the solution of Ax=B necessairly
% 1.1
function [A,b] = build_poisson(n) function [A,b] = build_poisson(n)
A = diag(2 * ones(1,n)); A = diag(2 * ones(1,n));
A(1,1) = 1; A(1,1) = 1;
A(n,n) = 1; A(n,n) = 1;
for i = 2:n-1 for i = 2:n-1
A(i, i+1) = -1; A(i, i+1) = -1;
A(i, i-1) = -1; A(i, i-1) = -1;
@ -31,14 +59,6 @@ function [A,b] = build_poisson(n)
b(n) = 0; b(n) = 0;
end end
%% 1.1 (check this)
% Answer is a energy function does not exist. Since A is not symmetric
% (even if it is pd), the minimizer used for the c.g. method
% (i.e. (1/2)x^TAx - b^x) won't work
% since x^TAx might be negative and thus the minimizer does not point to
% the solution of Ax=B necessairly
%% 1.2 %% 1.2
% we already enforce x(1) = x(n) = 0, since b(1) = b(n) = 0 and thus % we already enforce x(1) = x(n) = 0, since b(1) = b(n) = 0 and thus
@ -48,3 +68,33 @@ end
% The objective is therefore \phi(x) = (1/2)x^T\overline{A}x - b^x with a and b % The objective is therefore \phi(x) = (1/2)x^T\overline{A}x - b^x with a and b
% defined above, gradient is = \overline{A}x - b, hessian is = \overline{A} % defined above, gradient is = \overline{A}x - b, hessian is = \overline{A}
%% 1.3 - Implementation of Conjugate Gradient
function [x, ys, gnorms] = CGSolve(A, b, x, max_itr, tol)
ys = zeros(max_itr, 1);
gnorms = zeros(max_itr, 1);
r = b - A * x;
d = r;
delta_old = dot(r, r);
for i = 1:max_itr
ys(i) = 1/2 * dot(A*x, x) - dot(b, x);
gnorms(i) = sqrt(delta_old);
s = A * d;
alpha = delta_old / dot(d, s);
x = x + alpha * d;
r = r - alpha * s;
delta_new = dot(r, r);
beta = delta_new / delta_old;
d = r + beta * d;
delta_old = delta_new;
if delta_new / norm(b) < tol
ys = [ys(1:i); 1/2 * dot(A*x, x) - dot(b, x)];
gnorms = [gnorms(1:i); sqrt(delta_old)];
break
end
end
end