Initial commit

This commit is contained in:
Claudio Maggioni (maggicl) 2021-03-21 15:05:22 +01:00
commit 98b7349508
4 changed files with 263 additions and 0 deletions

150
.gitignore vendored Executable file
View file

@ -0,0 +1,150 @@
*.ijvm
*.mic1
# ---> TeX
## Core latex/pdflatex auxiliary files:
*.aux
*.lof
*.log
*.lot
*.fls
*.out
*.toc
## Intermediate documents:
*.dvi
*-converted-to.*
# these rules might exclude image files for figures etc.
# *.ps
# *.eps
# *.pdf
## Bibliography auxiliary files (bibtex/biblatex/biber):
*.bbl
*.bcf
*.blg
*-blx.aux
*-blx.bib
*.brf
*.run.xml
## Build tool auxiliary files:
*.fdb_latexmk
*.synctex
*.synctex.gz
*.synctex.gz(busy)
*.pdfsync
## Auxiliary and intermediate files from other packages:
# algorithms
*.alg
*.loa
# achemso
acs-*.bib
# amsthm
*.thm
# beamer
*.nav
*.snm
*.vrb
#(e)ledmac/(e)ledpar
*.end
*.[1-9]
*.[1-9][0-9]
*.[1-9][0-9][0-9]
*.[1-9]R
*.[1-9][0-9]R
*.[1-9][0-9][0-9]R
*.eledsec[1-9]
*.eledsec[1-9]R
*.eledsec[1-9][0-9]
*.eledsec[1-9][0-9]R
*.eledsec[1-9][0-9][0-9]
*.eledsec[1-9][0-9][0-9]R
# glossaries
*.acn
*.acr
*.glg
*.glo
*.gls
# gnuplottex
*-gnuplottex-*
# hyperref
*.brf
# knitr
*-concordance.tex
*.tikz
*-tikzDictionary
# listings
*.lol
# makeidx
*.idx
*.ilg
*.ind
*.ist
# minitoc
*.maf
*.mtc
*.mtc[0-9]
*.mtc[1-9][0-9]
# minted
_minted*
*.pyg
# morewrites
*.mw
# mylatexformat
*.fmt
# nomencl
*.nlo
# sagetex
*.sagetex.sage
*.sagetex.py
*.sagetex.scmd
# sympy
*.sout
*.sympy
sympy-plots-for-*.tex/
# TikZ & PGF
*.dpth
*.md5
*.auxlock
# todonotes
*.tdo
# xindy
*.xdy
# WinEdt
*.bak
*.sav
# Mac stupid tmp files
.DS_Store
!*.pdf
*.zip
**/*-figure*.pdf
*~

43
hw1/ex3.m Normal file
View file

@ -0,0 +1,43 @@
%% Exercise 3.1
% f(x1, x2) = x1^2 + u * x2^2;
% [x1 x2] [1 0] [x1] + [0][x1]
% [0 u] [x2] + [0][x2]
% A = [1 0; 0 u]; b = [0; 0]
%% Exercise 3.2
for u = 1:10
A = [1 0; 0 u];
xs = -10:1:10;
ys = xs;
Z = zeros(size(xs, 2), size(ys, 2));
for i = 1:size(xs, 2)
for j = 1:size(ys, 2)
vec = [xs(i); ys(j)];
Z(i, j) = vec' * A * vec;
end
end
if u <= 5
fig = u;
con = 5 + u;
else
fig = 10 + u - 5;
con = 15 + u - 5;
end
subplot(4, 5, fig);
h = surf(xs, ys, Z);
set(h,'LineStyle','none');
title(sprintf("Surf for u=%d", u));
subplot(4, 5, con);
contour(xs, ys, Z, 20);
title(sprintf("Contour for u=%d", u));
end

BIN
hw1/main.pdf Normal file

Binary file not shown.

70
hw1/main.tex Normal file
View file

@ -0,0 +1,70 @@
\documentclass{scrartcl}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\setlength{\parindent}{0cm}
\setlength{\parskip}{0.5\baselineskip}
\title{Optimisation methods -- Homework 1}
\author{Claudio Maggioni}
\begin{document}
\maketitle
\section{Exercise 1}
\subsection{Gradient and Hessian}
The gradient and the Hessian for $f$ are the following:
\[\nabla f = \begin{bmatrix}2x_1 + x_2 \cdot \cos(x_1) \\ 9x^2_2 + \sin(x_1)\end{bmatrix} \]
\[H_f = \begin{bmatrix}2 - x_2 \cdot \sin(x_1) & \cos(x_1)\\\cos(x_1) & 18x_2\end{bmatrix} \]
\subsection{Taylor expansion}
\[f(h) = 0 + \langle\begin{bmatrix}0 + 0 \\ 0 + 0\end{bmatrix},\begin{bmatrix}h_1\\h_2\end{bmatrix}\rangle + \frac12 \langle\begin{bmatrix}2 - 0 & 1\\1 & 0\end{bmatrix} \begin{bmatrix}h_1 \\ h_2\end{bmatrix}, \begin{bmatrix}h_1 \\ h_2\end{bmatrix}\rangle + O(\|h\|^3)\]
\[f(h) = \frac12 \langle\begin{bmatrix}2h_1 + h_2 \\ h_1\end{bmatrix}, \begin{bmatrix}h_1 \\ h_2\end{bmatrix}\rangle + O(\|h\|^3)\]
\[f(h) = \frac12 \left(2h^2_1 + 2 h_1h_2\right) + O(\|h\|^3)\]
\[f(h) = h^2_1 + h_1h_2 + O(\|h\|^3)\]
\section{Exercise 2}
\subsection{Gradient and Hessian}
For $A$ symmetric, we have:
\[\frac{d}{dx}\langle b, x\rangle = \langle b,\cdot \rangle = b\]
\[\frac{d}{dx}\langle Ax, x\rangle = 2\langle Ax,\cdot \rangle = 2Ax\]
Then:
\[\nabla J = Ax - b\]
\[H_J = \frac{d}{dx} \nabla J = A\]
\subsection{First order necessary condition}
It is a necessary condition for a minimizer $x^*$ of $J$ that:
\[\nabla J (x^*) = 0 \Leftrightarrow Ax^* = b\]
\subsection{Second order necessary condition}
It is a necessary condition for a minimizer $x^*$ of $J$ that:
\[\nabla^2 J(x^*) \geq 0 \Leftrightarrow A \text{ is positive semi-definite}\]
\subsection{Sufficient conditions}
It is a sufficient condition for $x^*$ to be a minimizer of $J$ that the first necessary condition is true and that:
\[\nabla^2 J(x^*) > 0 \Leftrightarrow A \text{ is positive definite}\]
\subsection{Does $\min_{x \in R^n} J(x)$ have a unique solution?}
Not in general. If for example we consider A and b to be only zeros, then $J(x) = 0$ for all $x \in \!R^n$ and thus $J$ would have an infinite number of minimizers.
However, for if $A$ would be guaranteed to have full rank, the minimizer would be unique because the first order necessary condition would hold only for one value $x^*$. This is because the linear system $Ax^* = b$ would have one and only one solution (due to $A$ being full rank).
\end{document}