fanculo giuseppona

This commit is contained in:
Claudio Maggioni 2021-06-04 11:11:17 +02:00
parent d1182de9f8
commit bdb6e70934
3 changed files with 22 additions and 1027 deletions

View file

@ -13,7 +13,6 @@ header-includes:
- \usepackage{float} - \usepackage{float}
- \floatplacement{figure}{H} - \floatplacement{figure}{H}
- \hypersetup{colorlinks=true,linkcolor=blue} - \hypersetup{colorlinks=true,linkcolor=blue}
--- ---
\maketitle \maketitle
@ -93,40 +92,40 @@ $$
A x=b, A^{T} \lambda+s=c,(x, s)>0\right\} \end{array} A x=b, A^{T} \lambda+s=c,(x, s)>0\right\} \end{array}
$$ $$
A central path $\mathcal{C}$ is defined as an arc strictly composed of feasible The definition of the central path $\mathcal{C}$ is an arc, strictly composed of
points which is parametrized by a scalar $\tau>0$ where each point feasible points. The path is parametrized by a scalar $\tau>0$ where each point
$\left(x_{\tau}, \lambda_{\tau}, s_{\tau}\right) \in \mathcal{C}$ satisfies the in the path $\left(x_{\tau}, \lambda_{\tau}, s_{\tau}\right) \in \mathcal{C}$
following conditions: satisfies the following conditions:
$$ $$
\begin{array}{c} \begin{array}{c}
A^{T} \lambda+s=c \\ A^{T} \lambda+s=c \\
A x=b \\ A x=b \\
x_{i} s_{i}=\tau \quad i=1,2, \ldots, n \\ x_{i} s_{i}=\tau > 0 \quad i=1,2, \ldots, n \\
(x, s)>0 (x, s)>0
\end{array} \end{array}
$$ $$
We can observe how these conditions are very much similar to the KKT conditions These conditions are very similar to the KKT conditions, differning only
and, in fact, they only differ by the factor $\tau$ and by requiring the by the factor $\tau$ and by requiring the pairwise products to be strictly
pairwise products to be strictly greater than zero. With this, we can define the greater than zero. With this, we can define the central path as follows:
central path as follows:
$$ $$
\mathcal{C}=\left\{\left(x_{\tau}, \lambda_{\tau}, s_{\tau}\right) \mid \mathcal{C}=\left\{\left(x_{\tau}, \lambda_{\tau}, s_{\tau}\right) \mid
\tau>0\right\} \tau>0\right\}
$$ $$
Given these definitions, we can also observe that, as $\tau$ approaches zero, We can then observe that as $\tau$ approaches 0, the set of conditions defined
the conditions we have defined become a closer and closer approximation to the above get closer and closer to the true KKT conditions. Therefore, if the
original KKT conditions. Therefore, if the central path $\mathcal{C}$ converges central path C converges to anything then $\tau$ approaches zero, therefore
to anything as $\tau$ approaches zero, then we know that it will converge to a leading the path to the constrained minimizer while keeping $x$ and $s$
solution of the linear program. Meaning that the central path is leading us to a positive but at the same time minimizing their pairwise products to zero.
solution by maintaining $x$ and $s$ positive while reducing the pairwise
products to zero at the same time. Usually, the Newton method is used to take In practice, most central path implementation use Newton steps toward points on
steps following $\mathcal{C}$ rather than by following the set of feasible $\mathcal{C}$ for which $\tau > 0$, rather than pure Newton steps for $F$. This
points $\mathcal{F}$ because it allows for longer steps before violating the is usually possible since those newton steps are biased to stay in the
positivity constraint. hyperspace region where $x > 0$ and $s > 0$ even without enforcing these
constraints.
# Exercise 2 # Exercise 2
@ -139,22 +138,6 @@ below:
## Exercise 2.2 ## Exercise 2.2
<!--The Simplex method is used to solve linear programs which are defined as
follows:
$$\min c^Tx, \text{ subject to } Ax = b, x > 0$$
And when we have inequalities constraints such as:
$$\min c^Tx,\text{ subject to }Ax \leq b$$
We can introduce slack variable to convert the inequalities into equalities:
$$\min c^Tx,\text{ subject to }Ax + z = 0, z>0$$
Each iterate generated by the simplex method is a basic feasible point which
is a-->
According to Nocedal, a vector $x$ is a basic feasible point if it is in the According to Nocedal, a vector $x$ is a basic feasible point if it is in the
feasible region and if there exists a subset $\beta$ of the feasible region and if there exists a subset $\beta$ of the
index set $1, 2, \ldots, n$ such that: index set $1, 2, \ldots, n$ such that:
@ -172,35 +155,14 @@ proven property to manually solve the constrained minimization problem presented
in this section by aiding us with the graphical plot of the feasible region in in this section by aiding us with the graphical plot of the feasible region in
figure \ref{fig:a}. figure \ref{fig:a}.
<!--
And as already been
said, the basic feasible point is the basic feasible solution for the problem.
Regarding the section 13.3, which outline how the steps are done, we know that
most steps consist of a move from one vertex to an adjacent one for which the
basis $\beta$ differs exactly one component.The step is an edge along which the
objective function is reduced.
Then, one major issue at every simplex iteration
is to decide which index must be removed from the basis. As the book specify,
unless the step is a direction of unboundedness, a single index must be removed
by replacing it with another from outside $\beta$.
From a geometrical point of view,
a move, is along an edge of the feasible polytope that decreases $c^Tx$ and we
continue moving along that edge until we find a new vertex. One we find a vertex
we defined the new constraint $x_p > 0$ which is one of the component $x_p,p \in \beta$
decreased to zero. Afterwards we can remove the index $p$ from the basis $\beta$ and
replace it with $q$. A more detailed visualisation can be see in the following
Figure 1 taken from the book.-->
## Exercise 2.3 ## Exercise 2.3
Since the geometrical interpretation of the definition of basic feasible point Since the geometrical interpretation of the definition of basic feasible point
states that these point are non-other than the vertices of the feasible region, states that these point are non-other than the vertices of the feasible region,
we first look at the plot above and to these points (i.e. the vertices of the we first look at the plot above and to these points (i.e. the vertices of the
bright green non-trasparent region). Then, we look which constraint boundaries cross these bright green non-trasparent region). Then, we look which constraint boundaries
edges, and we formulate an algebraic expression to find these points. In cross these edges, and we formulate an algebraic expression to find these
clockwise order, we have: points. In clockwise order, we have:
- The lower-left point at the origin, given by the boundaries of the constraints - The lower-left point at the origin, given by the boundaries of the constraints
$x_1 \geq 0$ and $x_2 \geq 0$: $x_1 \geq 0$ and $x_2 \geq 0$:

View file

@ -1,967 +0,0 @@
function H = hatchfill(A,varargin)
% HATCHFILL2 Hatching and speckling of patch objects
% HATCHFILL2(A) fills the patch(es) with handle(s) A. A can be a vector
% of handles or a single handle. If A is a vector, then all objects of A
% should be part of the same group for predictable results. The hatch
% consists of black lines angled at 45 degrees at 40 hatching lines over
% the axis span with no color filling between the lines.
%
% A can be handles of patch or hggroup containing patch objects for
% Pre-R2014b release. For HG2 releases, 'bar' and 'contour' objects are
% also supported.
%
% Hatching line object is actively formatted. If A, axes, or figure size
% is modified, the hatching line object will be updated accordingly to
% maintain the specified style.
%
% HATCHFILL2(A,STYL) applies STYL pattern with default paramters. STYL
% options are:
% 'single' single lines (the default)
% 'cross' double-crossed hatch
% 'speckle' speckling inside the patch boundary
% 'outspeckle' speckling outside the boundary
% 'fill' no hatching
%
% HATCHFILL2(A,STYL,Option1Name,Option1Value,...) to customize the
% hatching pattern
%
% Name Description
% --------------------------------------------------------------------
% HatchStyle Hatching pattern (same effect as STYL argument)
% HatchAngle Angle of hatch lines in degrees (45)
% HatchDensity Number of hatch lines between axis limits
% HatchOffset Offset hatch lines in pixels (0)
% HatchColor Color of the hatch lines, 'auto' sets it to the
% EdgeColor of A
% HatchLineStyle Hatch line style
% HatchLineWidth Hatch line width
% SpeckleWidth Width of speckling region in pixels (7)
% SpeckleDensity Density of speckle points (1)
% SpeckleMarkerStyle Speckle marker style
% SpeckleFillColor Speckle fill color
% HatchVisible [{'auto'}|'on'|'off'] sets visibility of the hatch
% lines. If 'auto', Visibile option is synced to
% underlying patch object
% HatchSpacing (Deprecated) Spacing of hatch lines (5)
%
% In addition, name/value pairs of any properties of A can be specified
%
% H = HATCHFILL2(...) returns handles to the line objects comprising the
% hatch/speckle.
%
% Examples:
% Gray region with hatching:
% hh = hatchfill2(a,'cross','HatchAngle',45,'HatchSpacing',5,'FaceColor',[0.5 0.5 0.5]);
%
% Speckled region:
% hatchfill2(a,'speckle','HatchAngle',7,'HatchSpacing',1);
% Copyright 2015-2018 Takeshi Ikuma
% History:
% rev. 7 : (01-10-2018)
% * Added support for 3D faces
% * Removed HatchSpacing option
% * Added HatchDensity option
% * Hatching is no longer defined w.r.t. pixels. HatchDensity is defined
% as the number of hatch lines across an axis limit. As a result,
% HatchAngle no longer is the actual hatch angle though it should be
% close.
% * [known bug] Speckle hatching style is not working
% rev. 6 : (07-17-2016)
% * Fixed contours object hatching behavior, introduced in rev.5
% * Added ContourStyle option to enable fast drawing if contour is convex
% rev. 5 : (05-12-2016)
% * Fixed Contour with NaN data point disappearnace issue
% * Improved contours object support
% rev. 4 : (11-18-2015)
% * Worked around the issue with HG2 contours with Fill='off'.
% * Removed nagging warning "UseHG2 will be removed..." in R2015b
% rev. 3 : (10-29-2015)
% * Added support for HG2 AREA
% * Fixed for HatchColor 'auto' error when HG2 EdgeColor is 'flat'
% * Fixed listener creation error
% rev. 2 : (10-24-2015)
% * Added New option: HatchVisible, SpeckleDensity, SpeckleWidth
% (SpeckleDensity and SpeckleWidtha are separated from HatchSpacing and
% HatchAngle, respectively)
% rev. 1 : (10-20-2015)
% * Fixed HG2 contour data extraction bug (was using wrong hidden data)
% * Fixed HG2 contour color extraction bug
% * A few cosmetic changes here and there
% rev. - : (10-19-2015) original release
% * This work is based on Neil Tandon's hatchfill submission
% (http://www.mathworks.com/matlabcentral/fileexchange/30733)
% and borrowed code therein from R. Pawlowicz, K. Pankratov, and
% Iram Weinstein.
narginchk(1,inf);
[A,opts,props] = parse_input(A,varargin);
drawnow % make sure the base objects are already drawn
if verLessThan('matlab','8.4')
H = cell(1,numel(A));
else
H = repmat({matlab.graphics.GraphicsPlaceholder},1,numel(A));
end
for n = 1:numel(A)
H{n} = newhatch(A(n),opts,props);
% if legend of A(n) is shown, add hatching to it as well
% leg = handle(legend(ancestor(A,'axes')));
% hsrc = [leg.EntryContainer.Children.Object];
% hlc = leg.EntryContainer.Children(find(hsrc==A(n),1));
% if ~isempty(hlc)
% hlc = hlc.Children(1); % LegendIcon object
% get(hlc.Children(1))
% end
end
if nargout==0
clear H
else
H = [H{:}];
if numel(H)==numel(A)
H = reshape(H,size(A));
else
H = H(:);
end
end
end
function H = newhatch(A,opts,props)
% 0. retrieve pixel-data conversion parameters
% 1. retrieve face & vertex matrices from A
% 2. convert vertex matrix from data to pixels units
% 3. get xdata & ydata of hatching lines for each face
% 4. concatenate lines sandwitching nan's in between
% 5. convert xdata & ydata back to data units
% 6. plot the hatching line
% traverse if hggroup/hgtransform
if ishghandle(A,'hggroup')
if verLessThan('matlab','8.4')
H = cell(1,numel(A));
else
H = repmat({matlab.graphics.GraphicsPlaceholder},1,numel(A));
end
for n = 1:numel(A.Children)
try
H{n} = newhatch(A.Children(n),opts,props);
catch
end
end
H = [H{:}];
return;
end
% Modify the base object property if given
if ~isempty(props)
pvalold = sethgprops(A,props);
end
try
vislisena = strcmp(opts.HatchVisible,'auto');
if vislisena
vis = A.Visible;
else
vis = opts.HatchVisible;
end
redraw = strcmp(A.Visible,'off') && ~vislisena;
if redraw
A.Visible = 'on'; % momentarily make the patch visible
drawnow;
end
% get the base object's vertices & faces
[V,F,FillFcns] = gethgdata(A); % object does not have its patch data ready
if redraw
A.Visible = 'off'; % momentarily make the patch visible
end
if ~isempty(FillFcns)
FillFcns{1}();
drawnow;
[V,F] = gethgdata(A); % object does not have its patch data ready
FillFcns{2}();
drawnow;
end
% recompute hatch line data
[X,Y,Z] = computeHatchData(handle(ancestor(A,'axes')),V,F,opts);
% 6. plot the hatching line
commonprops = {'Parent',A.Parent,'DisplayName',A.DisplayName,'Visible',vis};
if ~strcmp(opts.HatchColor,'auto')
commonprops = [commonprops {'Color',opts.HatchColor,'MarkerFaceColor',opts.HatchColor}];
end
if isempty(regexp(opts.HatchStyle,'speckle$','once'))
H = line(X,Y,Z,commonprops{:},'LineStyle',opts.HatchLineStyle','LineWidth',opts.HatchLineWidth);
else
H = line(X,Y,Z,commonprops{:},'LineStyle','none','Marker',opts.SpeckleMarkerStyle,...
'MarkerSize',opts.SpeckleSize,'Parent',A.Parent,'DisplayName',A.DisplayName);
end
if strcmp(opts.HatchColor,'auto')
syncColor(H,A);
end
if isempty(H)
error('Unable to obtain hatching data from the specified object A.');
end
% 7. Move H so that it is place right above A in parent's uistack
p = handle(A.Parent);
Hcs = handle(p.Children);
[~,idx] = ismember(A,Hcs); % always idx(1)>idx(2) as H was just created
p.Children = p.Children([2:idx-1 1 idx:end]);
% if HG1, all done | no dynamic adjustment support
if verLessThan('matlab','8.4')
return;
end
% save the config data & set up the object listeners
setappdata(A,'HatchFill2Opts',opts); % hatching options
setappdata(A,'HatchFill2Obj',H); % hatching line object
setappdata(A,'HatchFill2LastData',{V,F}); % last patch data
setappdata(A,'HatchFill2LastVisible',A.Visible); % last sensitive properties
setappdata(A,'HatchFill2PostMarkedClean',{}); % run this function at the end of the MarkClean callback and set NoAction flag
setappdata(A,'HatchFill2NoAction',false); % no action during next MarkClean callback, callback only clears this flag
setappdata(H,'HatchFill2MatchVisible',vislisena);
setappdata(H,'HatchFill2MatchColor',strcmp(opts.HatchColor,'auto'));
setappdata(H,'HatchFill2Patch',A); % base object
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Create listeners for active formatting
addlistener(H,'ObjectBeingDestroyed',@hatchBeingDeleted);
lis = [
addlistener(A,'Reparent',@objReparent)
addlistener(A,'ObjectBeingDestroyed',@objBeingDeleted);
addlistener(A,'MarkedClean',@objMarkedClean)
addlistener(A,'LegendEntryDirty',@(h,evt)[])]; % <- study this later
syncprops = {'Clipping','HitTest','Interruptible','BusyAction','UIContextMenu'};
syncprops(~cellfun(@(p)isprop(A,p),syncprops)) = [];
for n = 1:numel(syncprops)
lis(n+2) = addlistener(A,syncprops{n},'PostSet',@syncProperty);
end
catch ME
% something went wrong, restore the base object properties
if ~isempty(props)
for pname = fieldnames(pvalold)'
name = pname{1};
val = pvalold.(name);
if iscell(val)
pvalold.(name){1}.(name) = pvalold.(name){2};
else
A.(name) = pvalold.(name);
end
end
end
ME.rethrow();
end
end
%%%%%%%%%% EVENT CALLBACK FUNCTIONS %%%%%%%%%%%%
% Base Object's listeners
% objReparent - also move the hatch object
% ObjectingBeingDestroyed - also destroy the hatch object
% MarkedClean - match color if HatchColor = 'auto'
% - check if vertex & face changed; if so redraw hatch
% - check if hatch redraw triggered the event due to object's
% face not shown; if so clear the flag
function objMarkedClean(hp,~)
% CALLBACK for base object's MarkedClean event
% check: visibility change, hatching area change, & color change
if getappdata(hp,'HatchFill2NoAction')
setappdata(A,'HatchFill2NoAction',false);
return;
end
% get the main patch object (loops if hggroup or HG2 objects)
H = getappdata(hp,'HatchFill2Obj');
rehatch = ~strcmp(hp.Visible,getappdata(hp,'HatchFill2LastVisible'));
if rehatch % if visibility changed
setappdata(hp,'HatchFill2LastVisible',hp.Visible);
if strcmp(hp.Visible,'off') % if made hidden, hide hatching as well
if getappdata(H,'HatchFill2MatchVisible')
H.Visible = 'off';
return; % nothing else to do
end
end
end
% get the patch data
[V,F,FillFcns] = gethgdata(hp);
if ~isempty(FillFcns) % patch does not exist, must momentarily generate it
FillFcns{1}();
setappdata(A,'HatchFill2PostMarkedClean',FillFcns{2});
return;
end
if ~rehatch % if visible already 'on', check for the change in object data
VFlast = getappdata(hp,'HatchFill2LastData');
rehatch = ~isequaln(F,VFlast{2}) || ~isequaln(V,VFlast{1});
end
% rehatch if patch data/visibility changed
if rehatch
% recompute hatch line data
[X,Y,Z] = computeHatchData(ancestor(H,'axes'),V,F,getappdata(hp,'HatchFill2Opts'));
% update the hatching line data
set(H,'XData',X,'YData',Y,'ZData',Z);
% save patch data
setappdata(hp,'HatchFill2LastData',{V,F});
end
% sync the color
syncColor(H,hp);
% run post callback if specified (expect it to trigger another MarkedClean
% event immediately)
fcn = getappdata(hp,'HatchFill2PostMarkedClean');
if ~isempty(fcn)
setappdata(hp,'HatchFill2PostMarkedClean',function_handle.empty);
setappdata(hp,'HatchFill2NoAction',true);
fcn();
return;
end
end
function syncProperty(~,evt)
% sync Visible property to the patch object
hp = handle(evt.AffectedObject); % patch object
hh = getappdata(hp,'HatchFill2Obj');
hh.(evt.Source.Name) = hp.(evt.Source.Name);
end
function objReparent(hp,evt)
%objReparent event listener callback
pnew = evt.NewValue;
if isempty(pnew)
return; % no change?
end
% move the hatch line object over as well
H = getappdata(hp,'HatchFill2Obj');
H.Parent = pnew;
% make sure to move the hatch line object right above the patch object
Hcs = handle(pnew.Children);
[~,idx] = ismember(hp,Hcs); % always idx(1)>idx(2) as H was just moved
pnew.Children = pnew.Children([2:idx-1 1 idx:end]);
end
function objBeingDeleted(hp,~)
%when base object is deleted
if isappdata(hp,'HatchFill2Obj')
H = getappdata(hp,'HatchFill2Obj');
try % in case H is already deleted
delete(H);
catch
end
end
end
function hatchBeingDeleted(hh,~)
%when hatch line object (hh) is deleted
if isappdata(hh,'HatchFill2Patch')
% remove listeners listening to the patch object
hp = getappdata(hh,'HatchFill2Patch');
if isappdata(hp,'HatchFill2Listeners')
delete(getappdata(hp,'HatchFill2Listeners'));
rmappdata(hp,'HatchFill2Listeners');
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function varargout = computeHatchData(ax,V,F,opts)
varargout = cell(1,nargout);
if isempty(V) % if patch shown
return;
end
N = size(F,1);
XYZc = cell(2,N);
for n = 1:N % for each face
% 2. get xdata & ydata of the vertices of the face in transformed bases
f = F(n,:); % get indices to the vertices of the face
f(isnan(f)) = [];
[v,T,islog] = transform_data(ax,V(f,:),[]); % transform the face
if isempty(v) % face is not hatchable
continue;
end
% 2. get xdata & ydata of hatching lines for each face
if any(strcmp(opts.HatchStyle,{'speckle','outsidespeckle'}))
xy = hatch_xy(v.',opts.HatchStyle,opts.SpeckleWidth,opts.SpeckleDensity,opts.HatchOffset);
else
xy = hatch_xy(v.',opts.HatchStyle,opts.HatchAngle,opts.HatchDensity,opts.HatchOffset);
end
% 3. revert the bases back to 3D Eucledian space
XYZc{1,n} = revert_data(xy',T,islog).';
end
% 4. concatenate hatch lines across faces sandwitching nan's in between
[XYZc{2,:}] = deal(nan(3,1));
XYZ = cat(2,XYZc{:});
% 5. convert xdata & ydata back to data units
[varargout{1:3}] = deal(XYZ(1,:),XYZ(2,:),XYZ(3,:));
end
function tf = issupported(hbase)
% check if all of the given base objects are supported
supported_objtypes = {'patch','hggroup','bar','contour','area','surface','histogram'};
if isempty(hbase)
tf = false;
else
tf = ishghandle(hbase,supported_objtypes{1});
for n = 2:numel(supported_objtypes)
tf(:) = tf | ishghandle(hbase,supported_objtypes{n});
end
tf = all(tf);
end
end
% synchronize hatching line color to the patch's edge color if HatchColor =
% 'auto'
function syncColor(H,A)
if ~getappdata(H,'HatchFill2MatchColor')
% do not sync
return;
end
if ishghandle(A,'patch') || ishghandle(A,'Bar') || ishghandle(A,'area') ...
|| ishghandle(A,'surface') || ishghandle(A,'Histogram') %HG2
pname = 'EdgeColor';
elseif ishghandle(A,'contour') % HG2
pname = 'LineColor';
end
color = A.(pname);
if strcmp(color,'flat')
try
color = double(A.Edge(1).ColorData(1:3)')/255;
catch
warning('Does not support CData based edge color.');
color = 'k';
end
end
H.Color = color;
H.MarkerFaceColor = color;
end
function [V,F,FillFcns] = gethgdata(A)
% Get vertices & face data from the object along with the critical
% properties to observe change in the hatching area
% initialize the output variable
F = [];
V = [];
FillFcns = {};
if ~isvalid(A) || strcmp(A.Visible,'off')
return;
end
if ishghandle(A,'patch')
V = A.Vertices;
F = A.Faces;
elseif ishghandle(A,'bar')
[V,F] = getQuadrilateralData(A.Face);
elseif ishghandle(A,'area')
[V,F] = getTriangleStripData(A.Face);
set(A,'FaceColor','none');
elseif ishghandle(A,'surface') % HG2
if strcmp(A.FaceColor,'none')
FillFcns = {@()set(A,'FaceColor','w'),@()set(A,'FaceColor','none')};
return;
end
[V,F] = getQuadrilateralData(A.Face);
elseif ishghandle(A,'contour') % HG2
% Retrieve data from hidden FacePrims property (a TriangleStrip object)
if strcmp(A.Fill,'off')
FillFcns = {@()set(A,'Fill','on'),@()set(A,'Fill','off')};
return;
end
[V,F] = getTriangleStripData(A.FacePrims);
elseif ishghandle(A,'histogram') %HG2: Quadrateral underlying data object
[V,F] = getQuadrilateralData(A.NodeChildren(4));
end
end
function [V,F] = getQuadrilateralData(A) % surface, bar, histogram,
if isempty(A)
warning('Cannot hatch the face: Graphics object''s face is not defined.');
V = [];
F = [];
return;
end
V = A.VertexData';
% If any of the axes is in log scale, V is normalized to wrt the axes
% limits,
V(:) = norm2data(V,A);
if ~isempty(A.VertexIndices) % vertices likely reused on multiple quadrilaterals
I = A.VertexIndices;
Nf = numel(I)/4; % has to be divisible by 4
else %every 4 consecutive vertices defines a quadrilateral
Nv = size(V,1);
Nf = Nv/4;
I = 1:Nv;
end
F = reshape(I,4,Nf)';
if ~isempty(A.StripData) % hack workaround
F(:) = F(:,[1 2 4 3]);
end
try
if ~any(all(V==V(1,:))) % not on any Euclidian plane
% convert quadrilateral to triangle strips
F = [F(:,1:3);F(:,[1 3 4])];
end
catch % if implicit array expansion is not supported (<R2016b)
if all(V(:,1)~=V(1,1)) || all(V(:,2)~=V(1,2)) || all(V(:,3)~=V(1,3)) % not on any Euclidian plane
% convert quadrilateral to triangle strips
F = [F(:,1:3) F(:,[1 3 4])];
end
end
end
function [V,F] = getTriangleStripData(A) % area & contour
if isempty(A)
warning('Cannot hatch the face: Graphics object''s face is not defined.');
V = [];
F = [];
return;
end
V = A.VertexData';
I = double(A.StripData);
% If any of the axes is in log scale, V is normalized to wrt the axes
% limits,
V(:) = norm2data(V,A);
N = numel(I)-1; % # of faces
m = diff(I);
M = max(m);
F = nan(N,M);
for n = 1:N
idx = I(n):(I(n+1)-1);
if mod(numel(idx),2) % odd
idx(:) = idx([1:2:end end-1:-2:2]);
else % even
idx(:) = idx([1:2:end-1 end:-2:2]);
end
F(n,1:numel(idx)) = idx;
end
end
% if graphical objects are given normalized to the axes
function V = norm2data(V,A)
ax = ancestor(A,'axes');
inlog = strcmp({ax.XScale ax.YScale ax.ZScale},'log');
if any(inlog)
lims = [ax.XLim(:) ax.YLim(:) ax.ZLim(:)];
dirs = strcmp({ax.XDir ax.YDir ax.ZDir},'normal');
for n = 1:3 % for each axis
if inlog(n)
lims(:,n) = log10(lims(:,n));
end
V(:,n) = V(:,n)*diff(lims(:,n));
if dirs(n)
V(:,n) = V(:,n) + lims(1,n);
else
V(:,n) = lims(2,n) - V(:,n);
end
if inlog(n)
V(:,n) = 10.^V(:,n);
end
end
end
end
function pvalold = sethgprops(A,props)
% grab the common property names of the base objects
pnames = fieldnames(props);
if ishghandle(A,'hggroup')
gpnames = fieldnames(set(A));
[tf,idx] = ismember(gpnames,pnames);
idx(~tf) = [];
for i = idx'
pvalold.(pnames{i}) = A.(pnames{i});
A.(pnames{i}) = props.(pnames{i});
end
props = rmfield(props,pnames(idx));
h = handle(A.Children);
for n = 1:numel(h)
pvalold1 = sethgprops(h(n),props);
ponames = fieldnames(pvalold1);
for k = 1:numel(ponames)
pvalold.(ponames{k}) = {h(n) pvalold1.(ponames{k})};
end
end
else
for n = 1:numel(pnames)
pvalold.(pnames{n}) = A.(pnames{n});
A.(pnames{n}) = props.(pnames{n});
end
end
end
function xydatai = hatch_xy(xydata,styl,angle,step,offset)
%
% M_HATCH Draws hatched or speckled interiors to a patch
%
% M_HATCH(LON,LAT,STYL,ANGLE,STEP,...line parameters);
%
% INPUTS:
% X,Y - vectors of points.
% STYL - style of fill
% ANGLE,STEP - parameters for style
%
% E.g.
%
% 'single',45,5 - single cross-hatch, 45 degrees, 5 points apart
% 'cross',40,6 - double cross-hatch at 40 and 90+40, 6 points apart
% 'speckle',7,1 - speckled (inside) boundary of width 7 points, density 1
% (density >0, .1 dense 1 OK, 5 sparse)
% 'outspeckle',7,1 - speckled (outside) boundary of width 7 points, density 1
% (density >0, .1 dense 1 OK, 5 sparse)
%
%
% H=M_HATCH(...) returns handles to hatches/speckles.
%
% [XI,YI,X,Y]=MHATCH(...) does not draw lines - instead it returns
% vectors XI,YI of the hatch/speckle info, and X,Y of the original
% outline modified so the first point==last point (if necessary).
%
% Note that inside and outside speckling are done quite differently
% and 'outside' speckling on large coastlines can be very slow.
%
% Hatch Algorithm originally by K. Pankratov, with a bit stolen from
% Iram Weinsteins 'fancification'. Speckle modifications by R. Pawlowicz.
%
% R Pawlowicz 15/Dec/2005
I = zeros(1,size(xydata,2));
% face vertices are not always closed
if any(xydata(:,1)~=xydata(:,end))
xydata(:,end+1) = xydata(:,1);
I(end+1) = I(1);
end
if any(strcmp(styl,{'speckle','outspeckle'}))
angle = angle*(1-I);
end
switch styl
case 'single'
xydatai = drawhatch(xydata,angle,1/step,0,offset);
case 'cross'
xydatai = [...
drawhatch(xydata,angle,1/step,0,offset) ...
drawhatch(xydata,angle+90,1/step,0,offset)];
case 'speckle'
xydatai = [...
drawhatch(xydata,45, 1/step,angle,offset) ...
drawhatch(xydata,45+90,1/step,angle,offset)];
case 'outspeckle'
xydatai = [...
drawhatch(xydata,45, 1/step,-angle,offset) ...
drawhatch(xydata,45+90,1/step,-angle,offset)];
inside = logical(inpolygon(xydatai(1,:),xydatai(2,:),x,y)); % logical needed for v6!
xydatai(:,inside) = [];
otherwise
xydatai = zeros(2,0);
end
end
%%%
function xydatai = drawhatch(xydata,angle,step,speckle,offset)
% xydata is given as 2xN matrix, x on the first row, y on the second
% Idea here appears to be to rotate everthing so lines will be
% horizontal, and scaled so we go in integer steps in 'y' with
% 'points' being the units in x.
% Center it for "good behavior".
% rotate first about (0,0)
ca = cosd(angle); sa = sind(angle);
u = [ca sa]*xydata; % Rotation
v = [-sa ca]*xydata;
% translate to the grid point nearest to the centroid
u0 = round(mean(u)/step)*step; v0 = round(mean(v)/step)*step;
x = (u-u0); y = (v-v0)/step+offset; % plus scaling and offsetting
% Compute the coordinates of the hatch line ...............
yi = ceil(y);
yd = [diff(yi) 0]; % when diff~=0 we are crossing an integer
fnd = find(yd); % indices of crossings
dm = max(abs(yd)); % max possible #of integers between points
% This is going to be pretty space-inefficient if the line segments
% going in have very different lengths. We have one column per line
% interval and one row per hatch line within that interval.
%
A = cumsum( repmat(sign(yd(fnd)),dm,1), 1);
% Here we interpolate points along all the line segments at the
% correct intervals.
fnd1 = find(abs(A)<=abs( repmat(yd(fnd),dm,1) ));
A = A+repmat(yi(fnd),dm,1)-(A>0);
xy = (x(fnd+1)-x(fnd))./(y(fnd+1)-y(fnd));
xi = repmat(x(fnd),dm,1)+(A-repmat(y(fnd),dm,1) ).*repmat(xy,dm,1);
yi = A(fnd1);
xi = xi(fnd1);
% Sorting points of the hatch line ........................
%%yi0 = min(yi); yi1 = max(yi);
% Sort them in raster order (i.e. by x, then by y)
% Add '2' to make sure we don't have problems going from a max(xi)
% to a min(xi) on the next line (yi incremented by one)
xi0 = min(xi); xi1 = max(xi);
ci = 2*yi*(xi1-xi0)+xi;
[~,num] = sort(ci);
xi = xi(num); yi = yi(num);
% if this happens an error has occurred somewhere (we have an odd
% # of points), and the "fix" is not correct, but for speckling anyway
% it really doesn't make a difference.
if rem(length(xi),2)==1
xi = [xi; xi(end)];
yi = [yi; yi(end)];
end
% Organize to pairs and separate by NaN's ................
li = length(xi);
xi = reshape(xi,2,li/2);
yi = reshape(yi,2,li/2);
% The speckly part - instead of taking the line we make a point some
% random distance in.
if length(speckle)>1 || speckle(1)~=0
if length(speckle)>1
% Now we get the speckle parameter for each line.
% First, carry over the speckle parameter for the segment
% yd=[0 speckle(1:end-1)];
yd = speckle(1:end);
A=repmat(yd(fnd),dm,1);
speckle=A(fnd1);
% Now give it the same preconditioning as for xi/yi
speckle=speckle(num);
if rem(length(speckle),2)==1
speckle = [speckle; speckle(end)];
end
speckle=reshape(speckle,2,li/2);
else
speckle=[speckle;speckle];
end
% Thin out the points in narrow parts.
% This keeps everything when abs(dxi)>2*speckle, and then makes
% it increasingly sparse for smaller intervals.
dxi=diff(xi);
nottoosmall=sum(speckle,1)~=0 & rand(1,li/2)<abs(dxi)./(max(sum(speckle,1),eps));
xi=xi(:,nottoosmall);
yi=yi(:,nottoosmall);
dxi=dxi(nottoosmall);
if size(speckle,2)>1, speckle=speckle(:,nottoosmall); end
% Now randomly scatter points (if there any left)
li=length(dxi);
if any(li)
xi(1,:)=xi(1,:)+sign(dxi).*(1-rand(1,li).^0.5).*min(speckle(1,:),abs(dxi) );
xi(2,:)=xi(2,:)-sign(dxi).*(1-rand(1,li).^0.5).*min(speckle(2,:),abs(dxi) );
% Remove the 'zero' speckles
if size(speckle,2)>1
xi=xi(speckle~=0);
yi=yi(speckle~=0);
end
end
else
xi = [xi; ones(1,li/2)*nan]; % Separate the line segments
yi = [yi; ones(1,li/2)*nan];
end
% Transform back to the original coordinate system
xydatai = [ca -sa;sa ca]*[xi(:)'+u0;(yi(:)'-offset)*step+v0];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [h,opts,props] = parse_input(h,argin)
% parse & validate input arguments
patchtypes = {'single','cross','speckle','outspeckle','fill','none'};
% get base object handle
if ~issupported(h)
error('Unsupported graphics handle type.');
end
h = handle(h);
% get common property names
pnames = getcommonprops(h);
% if style argument is given, convert it to HatchStyle option pair
stylearg = {};
if ~isempty(argin) && ischar(argin{1})
try
ptypes = validatestring(argin{1},patchtypes);
stylearg = {'HatchStyle' ptypes};
argin(1) = [];
catch
% STYL not given, continue on
end
end
% create inputParser for options
p = inputParser;
p.addParameter('HatchStyle','single');
p.addParameter('HatchAngle',45,@(v)validateattributes(v,{'numeric'},{'scalar','finite','real'}));
p.addParameter('HatchDensity',40,@(v)validateattributes(v,{'numeric'},{'scalar','positive','finite','real'}));
p.addParameter('HatchSpacing',[],@(v)validateattributes(v,{'numeric'},{'scalar','positive','finite','real'}));
p.addParameter('HatchOffset',0,@(v)validateattributes(v,{'numeric'},{'scalar','nonnegative','<',1,'real'}));
p.addParameter('HatchColor','auto',@validatecolor);
p.addParameter('HatchLineStyle','-');
p.addParameter('HatchLineWidth',0.5,@(v)validateattributes(v,{'numeric'},{'scalar','positive','finite','real'}));
p.addParameter('SpeckleWidth',7,@(v)validateattributes(v,{'numeric'},{'scalar','finite','real'}));
p.addParameter('SpeckleDensity',100,@(v)validateattributes(v,{'numeric'},{'scalar','positive','finite','real'}));
p.addParameter('SpeckleMarkerStyle','.');
p.addParameter('SpeckleSize',2,@(v)validateattributes(v,{'numeric'},{'scalar','positive','finite'}));
p.addParameter('SpeckleFillColor','auto',@validatecolor);
p.addParameter('HatchVisible','auto');
for n = 1:numel(pnames)
p.addParameter(pnames{n},[]);
end
p.parse(stylearg{:},argin{:});
rnames = fieldnames(p.Results);
isopt = ~cellfun(@isempty,regexp(rnames,'^(Hatch|Speckle)','once')) | strcmp(rnames,'ContourStyle');
props = struct([]);
for n = 1:numel(rnames)
if isopt(n)
opts.(rnames{n}) = p.Results.(rnames{n});
elseif ~isempty(p.Results.(rnames{n}))
props(1).(rnames{n}) = p.Results.(rnames{n});
end
end
opts.HatchStyle = validatestring(opts.HatchStyle,patchtypes);
if any(strcmp(opts.HatchStyle,{'speckle','outspeckle'}))
warning('hatchfill2:PartialSupport','Speckle/outspeckle HatchStyle may not work in the current release of hatchfill2')
end
if strcmpi(opts.HatchStyle,'none') % For backwards compatability:
opts.HatchStyle = 'fill';
end
opts.HatchLineStyle = validatestring(opts.HatchLineStyle,{'-','--',':','-.'},mfilename,'HatchLineStyle');
if ~isempty(opts.HatchSpacing)
warning('HatchSpacing option has been deprecated. Use ''HatchDensity'' option instead.');
end
opts = rmfield(opts,'HatchSpacing');
opts.SpeckleMarkerStyle = validatestring(opts.SpeckleMarkerStyle,{'+','o','*','.','x','square','diamond','v','^','>','<','pentagram','hexagram'},'hatchfill2','SpeckleMarkerStyle');
opts.HatchVisible = validatestring(opts.HatchVisible,{'auto','on','off'},mfilename,'HatchVisible');
end
function pnames = getcommonprops(h)
% grab the common property names of the base objects
V = set(h(1));
pnames = fieldnames(V);
if ishghandle(h(1),'hggroup')
pnames = union(pnames,getcommonprops(get(h(1),'Children')));
end
for n = 2:numel(h)
V = set(h(n));
pnames1 = fieldnames(V);
if ishghandle(h(n),'hggroup')
pnames1 = union(pnames1,getcommonprops(get(h(n),'Children')));
end
pnames = intersect(pnames,pnames1);
end
end
function validatecolor(val)
try
validateattributes(val,{'double','single'},{'numel',3,'>=',0,'<=',1});
catch
validatestring(val,{'auto','y','yellow','m','magenta','c','cyan','r','red',...
'g','green','b','blue','w','white','k','black'});
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% axes unit conversion functions
function [V,T,islog] = transform_data(ax,V,ref)
% convert vertices data to hatch-ready form
% - if axis is log-scaled, data is converted to their log10 values
% - if 3D (non-zero z), spatially transform data onto the xy-plane. If
% reference point is given, ref is mapped to the origin. Otherwise, ref
% is chosen to be the axes midpoint projected onto the patch plane. Along
% with the data, the axes corner coordinates are also projected onto the
% patch plane to obtain the projected axes limits.
% - transformed xy-data are then normalized by the projected axes spans.
noZ = size(V,2)==2;
xl = ax.XLim;
yl = ax.YLim;
zl = ax.ZLim;
% log to linear space
islog = strcmp({ax.XScale ax.YScale ax.ZScale},'log');
if islog(1)
V(:,1) = log10(V(:,1));
xl = log10(xl);
if ~isempty(ref)
ref(1) = log10(ref(1));
end
end
if islog(2)
V(:,2) = log10(V(:,2));
yl = log10(yl);
if ~isempty(ref)
ref(2) = log10(ref(2));
end
end
if islog(3) && ~noZ
V(:,3) = log10(V(:,3));
zl = log10(zl);
if ~isempty(ref)
ref(3) = log10(ref(3));
end
end
if noZ
V(:,3) = 0;
end
% if not given, pick the reference point to be the mid-point of the current
% axes
if isempty(ref)
ref = [mean(xl) mean(yl) mean(zl)];
end
% normalize the axes so that they span = 1;
Tscale = makehgtform('scale', [1/diff(xl) 1/diff(yl) 1/diff(zl)]);
V(:) = V*Tscale(1:3,1:3);
ref(:) = ref*Tscale(1:3,1:3);
% obtain unique vertices
Vq = double(unique(V,'rows')); % find unique points (sorted order)
Nq = size(Vq,1);
if Nq<3 || any(isinf(Vq(:))) || any(isnan(Vq(:))) % not hatchable
V = [];
T = [];
return;
end
try % erros if 2D object
zq = unique(Vq(:,3));
catch
V(:,3) = 0;
zq = 0;
end
T = eye(4);
if isscalar(zq) % patch is on a xy-plane
if zq~=0 % not on the xy-plane
T = makehgtform('translate',[0 0 -zq]);
end
else
% if patch is not on a same xy-plane
% use 3 points likely well separated
idx = round((0:2)/2*(Nq-1))+1;
% find unit normal vector of the patch plane
norm = cross(Vq(idx(1),:)-Vq(idx(3),:),Vq(idx(2),:)-Vq(idx(3),:)); % normal vector
norm(:) = norm/sqrt(sum(norm.^2));
% define the spatial rotation
theta = acos(norm(3));
if theta>pi/2, theta = theta-pi; end
u = [norm(2) -norm(1) 0];
Trot = makehgtform('axisrotate',u,theta);
% project the reference point onto the plane
P = norm.'*norm;
ref_proj = ref*(eye(3) - P) + Vq(1,:)*P;
if norm(3)
T = makehgtform('translate', -ref_proj); % user specified reference point or -d/norm(3) for z-crossing
end
% apply the rotation now
T(:) = Trot*T;
% find the axes limits on the transformed space
% [Xlims,Ylims,Zlims] = ndgrid(xl,yl,zl);
% Vlims = [Xlims(:) Ylims(:) Zlims(:)];
% Vlims_proj = [Vlims ones(8,1)]*T';
% lims_proj = [min(Vlims_proj(:,[1 2]),[],1);max(Vlims_proj(:,[1 2]),[],1)];
% xl = lims_proj(:,1)';
% yl = lims_proj(:,2)';
end
% perform the transformation
V(:,4) = 1;
V = V*T';
V(:,[3 4]) = [];
T(:) = T*Tscale;
end
function V = revert_data(V,T,islog)
N = size(V,1);
V = [V zeros(N,1) ones(N,1)]/T';
V(:,end) = [];
% log to linear space
if islog(1)
V(:,1) = 10.^(V(:,1));
end
if islog(2)
V(:,2) = 10.^(V(:,2));
end
if islog(3)
V(:,3) = 10.^(V(:,3));
end
end