sticazzi
This commit is contained in:
parent
43f54092d6
commit
cd83872124
2 changed files with 5 additions and 4 deletions
|
@ -217,7 +217,7 @@ $$L(x, \lambda) = c^T x - \lambda^T (Ax - b) - s^T x$$
|
||||||
The KKT conditions are the following:
|
The KKT conditions are the following:
|
||||||
|
|
||||||
1. The partial derivative of the lagrangian w.r.t. $x$ is 0:
|
1. The partial derivative of the lagrangian w.r.t. $x$ is 0:
|
||||||
$$\nabla_x L(x, \lambda) = c - A^T \lambda - s = 0 \Leftrightarrow A^T \lambda
|
$$\nabla_x L(x, \lambda, s) = c - A^T \lambda - s = 0 \Leftrightarrow A^T \lambda
|
||||||
+ s = c$$
|
+ s = c$$
|
||||||
2. Equality constraints hold:
|
2. Equality constraints hold:
|
||||||
$$Ax - b = 0 \Leftrightarrow Ax = b$$
|
$$Ax - b = 0 \Leftrightarrow Ax = b$$
|
||||||
|
@ -233,7 +233,8 @@ The KKT conditions are the following:
|
||||||
|
|
||||||
We define the dual problem is the following way:
|
We define the dual problem is the following way:
|
||||||
|
|
||||||
$$\max b^T \lambda \;\; \text{ s.t. } \;\; A^T \lambda \leq c \;$$
|
$$\max b^T \lambda \;\; \text{ s.t. } \;\; c - A^T \lambda \geq 0
|
||||||
|
\Leftrightarrow A^T \lambda \leq c \;$$
|
||||||
|
|
||||||
We then introduce a slack variable $s$ to find the equality and inequality
|
We then introduce a slack variable $s$ to find the equality and inequality
|
||||||
constraints:
|
constraints:
|
||||||
|
@ -250,12 +251,12 @@ $$\min - b^T \lambda \;\; \text{ s.t. } \;\; A^T \lambda + s = c \; \text{ and
|
||||||
|
|
||||||
We then compute the Lagrangian of the dual problem:
|
We then compute the Lagrangian of the dual problem:
|
||||||
|
|
||||||
$$L(\lambda, x) = -b^T \lambda + x^T (A^T \lambda + s - c) - x^T s = - b^T
|
$$L(\lambda, x, s) = -b^T \lambda + x^T (A^T \lambda + s - c) - x^T s = - b^T
|
||||||
\lambda + x^T (A^T \lambda - c)$$
|
\lambda + x^T (A^T \lambda - c)$$
|
||||||
|
|
||||||
The KKT conditions are the following:
|
The KKT conditions are the following:
|
||||||
|
|
||||||
1. The partial derivative of the lagrangian w.r.t. $x$ is 0: $$\nabla_{\lambda}
|
1. The partial derivative of the lagrangian w.r.t.\ $\lambda$ is 0: $$\nabla_{\lambda}
|
||||||
L(\lambda, x) = - b^T + x^T A^T = 0 \Leftrightarrow Ax = b$$
|
L(\lambda, x) = - b^T + x^T A^T = 0 \Leftrightarrow Ax = b$$
|
||||||
2. Equality constraints hold: $$A^T \lambda + s = c$$
|
2. Equality constraints hold: $$A^T \lambda + s = c$$
|
||||||
3. Inequality constraints hold: $$c - A^T \lambda \geq 0 \Leftrightarrow s \geq
|
3. Inequality constraints hold: $$c - A^T \lambda \geq 0 \Leftrightarrow s \geq
|
||||||
|
|
Binary file not shown.
Reference in a new issue