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1 Exercise 1

1.1 Gradient and Hessian

The gradient and the Hessian for f are the following:

∇f =

[
2x1 + x2 · cos(x1)
9x22 + sin(x1)

]

Hf =

[
2− x2 · sin(x1) cos(x1)

cos(x1) 18x2

]

1.2 Taylor expansion

f(h) = 0 + 〈
[
0 + 0
0 + 0

]
,

[
h1
h2

]
〉+ 1

2
〈
[
2− 0 1
1 0

] [
h1
h2

]
,

[
h1
h2

]
〉+O(‖h‖3)

f(h) =
1

2
〈
[
2h1 + h2

h1

]
,

[
h1
h2

]
〉+O(‖h‖3)

f(h) =
1

2

(
2h21 + 2h1h2

)
+O(‖h‖3)

f(h) = h21 + h1h2 +O(‖h‖3)

2 Exercise 2

2.1 Gradient and Hessian

For A symmetric, we have:

d

dx
〈b, x〉 = 〈b, ·〉 = b

d

dx
〈Ax, x〉 = 2〈Ax, ·〉 = 2Ax

Then:
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∇J = Ax− b

HJ =
d

dx
∇J = A

2.2 First order necessary condition

It is a necessary condition for a minimizer x∗ of J that:

∇J(x∗) = 0 ⇔ Ax∗ = b

2.3 Second order necessary condition

It is a necessary condition for a minimizer x∗ of J that the first order necessary condition holds
and:

∇2J(x∗) ≥ 0 ⇔ A is positive semi-definite

2.4 Sufficient conditions

It is a sufficient condition for x∗ to be a minimizer of J that the first necessary condition is true
and that:

∇2J(x∗) > 0 ⇔ A is positive definite

2.5 Does minx∈Rn J(x) have a unique solution?

Not in general. If for example we consider A and b to be only zeros, then J(x) = 0 for all x ∈Rn

and thus J would have an infinite number of minimizers.

However, if A is guaranteed to be s.p.d, the minimizer would be unique because the first order
necessary condition would hold only for one value x∗. This is because the linear system Ax∗ = b
would have one and only one solution (due to A being full rank and that solution being the
minimizer since the hessian would be always convex).

3 Exercise 3

3.1 Quadratic form

f(x, y) can be written in quadratic form in the following way:

f(v) = vT
[
1 0
0 µ

]
v +

[
0
0

]T
v

where:
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v =

[
x
y

]

3.2 Matlab plotting with surf and contour plots

The graphs generated by MATLAB are shown below:
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Figure 1: Surf plots for different values of µ

Isolines (found in Figure ??) get stretched along the y axis as µ increases. For µ 6= 1, points
well far away from the axes are a problem since picking search directions and steps using the
gradient method iterations will zig-zag to the minimizer reaching it slowly.

From the surf plots (Figure ??), we can see that the behaviour of isolines is justified by a
”stretching” of sorts of the function that causes the y axis to be steeper as µ increases.

3.3 Finding the optimal step length α

Considering p, our search direction, as the negative of the gradient (as dictated by the gradient
method), we can rewrite the problem of finding an optimal step size α as the problem of mini-
mizing the objective function along the line where p belongs. This can be written as minimizing
a function l(α), where:
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Figure 2: Contour plots and iteration steps. Red has x0 =
[
10 0

]T , yellow has x0 =
[
10 10

]T ,
and blue has x0 =

[
0 10

]T

l(α) = 〈A(x+ αp), x+ αp〉

To minimize we compute the gradient of l(α) and fix it to zero to find a stationary point, finding
a value for α in function of A, x and p.

l′(α) = 2 · 〈A(x+ αp), p〉 = 2 · (〈Ax, p〉+ α〈Ap, p〉)

l′(α) = 0 ⇔ α = −〈Ax, p〉
〈Ap, p〉

Since A is s.p.d. by definition the hessian of function l(α) will always be positive, the stationary
point found above is a minimizer of l(α) and thus the definition of α given above gives the
optimal search step for the gradient method.

3.4 Matlab code for the gradient method and convergence results

The main MATLAB file to run to execute the gradient method is ex3.m. Convergence results
and number of iterations are shown below, where the verbatim program output is written:
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1 1.21.41.61.8 2
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Figure 3: Iterations over values of the objective function. Red has x0 =
[
10 0

]T , yellow has
x0 =

[
10 10

]T , and blue has x0 =
[
0 10

]T
.

u= 1 x0=[ 0,10] it= 2 x=[0,0]
u= 1 x0=[10, 0] it= 2 x=[0,0]
u= 1 x0=[10,10] it= 2 x=[0,0]
u= 2 x0=[ 0,10] it= 2 x=[0,0]
u= 2 x0=[10, 0] it= 2 x=[0,0]
u= 2 x0=[10,10] it=18 x=[4.028537e-09,-1.007134e-09]
u= 3 x0=[ 0,10] it= 2 x=[0,0]
u= 3 x0=[10, 0] it= 2 x=[0,0]
u= 3 x0=[10,10] it=22 x=[1.281583e-09,-1.423981e-10]
u= 4 x0=[ 0,10] it= 2 x=[0,0]
u= 4 x0=[10, 0] it= 2 x=[0,0]
u= 4 x0=[10,10] it=22 x=[2.053616e-09,-1.283510e-10]
u= 5 x0=[ 0,10] it= 2 x=[0,0]
u= 5 x0=[10, 0] it= 2 x=[0,0]
u= 5 x0=[10,10] it=22 x=[1.397370e-09,-5.589479e-11]
u= 6 x0=[ 0,10] it= 2 x=[0,0]
u= 6 x0=[10, 0] it= 2 x=[0,0]
u= 6 x0=[10,10] it=22 x=[7.313877e-10,-2.031632e-11]
u= 7 x0=[ 0,10] it= 2 x=[0,0]
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Figure 4: Iterations over base 10 logarithm of gradient norms. Note that for µ = 1 the search
immediately converges to the exact minimizer no matter the value of x0, so no gradient
norm other than the very first one is recorded. Again, Red has x0 =

[
10 0

]T , yellow
has x0 =

[
10 10

]T , and blue has x0 =
[
0 10

]T
.

u= 7 x0=[10, 0] it= 2 x=[0,0]
u= 7 x0=[10,10] it=20 x=[3.868636e-09,-7.895176e-11]
u= 8 x0=[ 0,10] it= 2 x=[0,0]
u= 8 x0=[10, 0] it= 2 x=[0,0]
u= 8 x0=[10,10] it=20 x=[2.002149e-09,-3.128358e-11]
u= 9 x0=[ 0,10] it= 2 x=[0,0]
u= 9 x0=[10, 0] it= 2 x=[0,0]
u= 9 x0=[10,10] it=20 x=[1.052322e-09,-1.299163e-11]
u=10 x0=[ 0,10] it= 2 x=[0,0]
u=10 x0=[10, 0] it= 2 x=[0,0]
u=10 x0=[10,10] it=20 x=[5.671954e-10,-5.671954e-12]

3.5 Comments on the various plots

The objective function plots and the gradient norm plots can be found respectively in figures
?? and ??.
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What has been said before about the convergence of the gradient method is additionally showed
in the last two sets of plots. From the objective function plot we can see that iterations starting
from

[
10 10

]T (depicted in yellow) take the highest number of iterations to reach the minimizer
(or an acceptable approximation of it). The zig-zag behaviour described before can be also
observed in the contour plots, showing the iteration steps taken for each µ and starting from
each x0.

Finally, in the gradient norm plots a phenomena that creates increasingly flatter plateaus as µ
increases can be observed.
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