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1 Exercise 1

1.1 Exercise 1.1

Please consult the MATLAB implementation in the files Newton.m, GD.m, and backtracking.m.
Please note that, for this and subsequent exercises, the gradient descent method without back-
tracking activated uses a fixed α = 1 despite the indications on the assignment sheet. This was
done in order to comply with the forum post on iCorsi found here: https://www.icorsi.ch/
mod/forum/discuss.php?d=81144.

Here is a plot of the Rosenbrock function in 3d, with our starting point in red ((0, 0)), and the
true minimizer in black ((1, 1)):

1.2 Exercise 1.2

Please consult the MATLAB implementation in the file main.m in section 1.2.
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1.3 Exercise 1.3

Please find the requested plots in figure 1. The code used to generate these plots can be found
in section 1.3 of main.m.

(a) Zoomed plot on x = (−1, 1) and y = (−1, 1)
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(b) Complete plot (the blue line is GD with α = 1)

Figure 1: Steps in the energy landscape for Newton and GD methods

1.4 Exercise 1.4

Please find the requested plots in figure 2. The code used to generate these plots can be found
in section 1.4 of main.m.

2 Exercise 1.5

The best performing method for this very set of input data is the Newton method without
backtracking, since it converges in only 2 iterations. The second best performing one is the
Newton method with backtracking, with convergence in 12 iterations. The gradient method
achieves convergence with backtracking slowly with 21102 iterations, while with a fixed α = 1
the method diverges in a dozen of iterations resulting in catastrophic numerical instability leading
to x_k = [NaN; NaN].

Analyzing the movement in the energy landscape (figure 1), the more “coordinated” method
in terms of direction of iterations steps appears to be the Netwton method with backtrack-
ing. Other than performing a higher number of iterations when compared with the classical
variant, the method maintains its iteration directions approximately at a 45 degree angle from
the x axis, roughly always pointing at the minimizer x∗. However, this movement strategy is
definitely inefficient compared with the 2-step convergence achieved by Newton without back-
tracking, which follows a conjugate gradient like path finding in each step a component of the
true minimizer. GD with backtracking instead follows an inefficient zig-zagging pattern with
iterates in the vicinity of the Netwon + backtracking iterates. Finally, GD without backtracking
quickly degenerates as it can be seen by the enlarged plot.
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From the initial plot in the Rosenbrock’s function, we can see why algorithms using backtracking
follow roughly the (0, 0) − (1, 1) diagonal: since this region is effectively a “valley” in the 3D
energy landscape, due to the nature of the backtracking methods and their strict adherence
of the Wolfe conditions these methods avoid wild “climbs” (unlike the Netwon method without
backtracking) and instead finding iterates with either sufficient decrease or a not to high increase.

When looking at gradient norms and objective function values (figure 2) over time, the degen-
eration of GD without backtracking and the inefficiency of GD with backtracking can clearly
be seen. Newton with backtracking offers fairly smooth gradient norm and objective value
curves with an exponential decreasing slope in both for the last 5-10 iterations. Netwon with-
out backtracking instead shoots at the first iteration at gradient ∇f(x1) ≈ 450 and objective
value f(x1) ≈ 100, but quickly has both values decrease to 0 for its second iteration achieving
convergence.

What has been observed in this assignment matches with the theory behind the methods. Since
the Newton method has quadratic convergence and uses quadratic information (i.e. using the
hessian in the step direction calculation) the number of iterations required to find the minimizer
when already close to it (as we are with x0 = [0; 0]) is significantly less than the ones required
for linear methods, like gradient descent. However, it must be said that for an objective with an
high number of dimensions a single iteration of a quadratic method is significantly more costly
than a single iteration of a linear method due to the quadratically growing number of cells in
the hessian matrix, which makes it harder and harder to compute as the number of dimensions
increase.

3 Exercise 2

3.1 Exercise 2.1

Please consult the MATLAB implementation in the file BGFS.m.

3.2 Exercise 2.2

Please consult the MATLAB implementation in the file main.m in section 2.2.

3.3 Exercise 2.3

Please find the requested plots in figure 3. The code used to generate these plots can be found
in section 2.3 of main.m.

3.4 Exercise 2.4

Please find the requested plots in figure 4. The code used to generate these plots can be found
in section 2.4 of main.m.

3.5 Exercise 2.5

The following table summarizes the number of iterations required by each method to achieve
convergence:
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Method Backtracking # of iterations
Newton No 2
Newton Yes 12
BGFS Yes 26

Gradient descent Yes 21102
Gradient descent No (α = 1) Diverges after 6

From the table above we can see that the BGFS method is in the same performance order of
magnitude as the Newton method, albeit its number of iterations required to converge are more
than double (26) of the ones of Newton with backtracking (12), and more than ten times of the
ones required by the Newton method without backtracking (2).

From the iterates plot and the gradient norm and objective function values plots (respectively
located in figure 3 and 4) we can see that BGFS behaves similarly to the Newton method with
backtracking, loosely following its curves. The only noteworthy difference lies in the energy
landscape plot, where BGFS occasionally “steps back” performing iterations in the opposite
direction of the minimizer. This behaviour can also be observed in the plots in figure 4, where
several bumps and spikes are present in the gradient norm plot and small plateaus can be found
in the objective function value plot.

Comparing these results with the theory behind BFGS, we can say the results that have been
obtained fall within what we expect from the theory. Since BFGS is a superlinear but not
quadratic method of convergence, its “speed” in terms of number of iterations falls within linear
methods (like GD) and quadratic methods (like Newton).
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(a) Gradient norms
(zoomed, y axis is linear for this plot)

(b) Objective function values
(zoomed, y axis is linear for this plot)

(c) Gradient norms (zoomed) (d) Objective function values (zoomed)

(e) Gradient norms (f) Objective function values

Figure 2: Gradient norms and objective function values (y-axes) w.r.t. iteration numbers (x-
axis) for Newton and GD methods (y-axis is log scaled, points at y = 0 not shown due
to log scale)
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Figure 3: Steps in the energy landscape for BGFS method
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(a) Gradient norms
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(b) Objective function values

Figure 4: Gradient norms and objective function values (y-axes) w.r.t. iteration numbers (x-
axis) for BFGS method (y-axis is log scaled, points at y = 0 not shown due to log
scale)
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