
Midterm – Optimization Methods

Claudio Maggioni

Acknowledgements on group work
• Gianmarco De Vita suggested me the use of MATLAB’s equation solver for parts of dogleg.m’s

implementation.
• I have discussed my solutions for exercise 1.2 and exercise 3 with several people, namely:

– Gianmarco De Vita
– Tommaso Rodolfo Masera
– Andrea Brites Marto

• This song for the divine inspiration that made me write the proof for Exercise 1.2.

Exercise 1
Point 1
Question (a)

As already covered in the course, the gradient of a standard quadratic form at a point x0 is equal to:

∇f(x0) = Ax0 − b

Plugging in the definition of x0 and knowing that ∇f(xm) = Axm − b = 0 (according to the first necessary
condition for a minimizer), we obtain:

∇f(x0) = A(xm + v)− b = Axm +Av − b = b+ λv − b = λv

Question (b)

The steepest descent method takes exactly one iteration to reach the exact minimizer xm starting from the
point x0. This can be proven by first noticing that xm is a point standing in the line that first descent
direction would trace, which is equal to:

g(α) = −α · ∇f(x0) = −αλv

For α = 1
λ , and plugging in the definition of x0 = xm + v, we would reach a new iterate x1 equal to:

x1 = x0 − αλv = x0 − v = xm + v − v = xm

The only question that we need to answer now is why the SD algorithm would indeed choose α = 1
λ . To

answer this, we recall that the SD algorithm chooses α by solving a linear minimization option along the step
direction. Since we know xm is indeed the minimizer, f(xm) would be obviously strictly less that any other
f(x1 = x0 − αλv) with α 6= 1

λ .

Therefore, since x1 = xm, we have proven SD converges to the minimizer in one iteration.

1

https://www.youtube.com/watch?v=gOPqXG0f7rE

Point 2
The right answer is choice (a), since the energy norm of the error indeed always decreases monotonically.

The proof of this that I will provide is independent from the provided objective or the provided number of
iterations, and it works for all choices of A where A is symmetric and positive definite.

Therefore, first of all I will prove A is indeed SPD by computing its eigenvalues.

CP (A) = det

 2 −1 0
−1 2 −1
0 −1 2

− λI
 = det

2− λ −1 0
−1 2− λ −1
0 −1 2− λ

 = −λ3 + 6λ2 − 10λ+ 4

CP (A) = 0⇔ λ = 2 ∨ λ = 2±
√

2

Therefore we have 3 eigenvalues and they are all positive, so A is positive definite and it is clearly symmetric
as well.

Now we switch to the general proof for the monotonicity.

To prove that this is true, we first consider a way to express any iterate xk in function of the minimizer xs
and of the missing iterations:

xk = xs +
N∑
i=k

αiA
ip0

This formula makes use of the fact that step directions in CG are all A-orthogonal with each other, so the
k-th search direction pk is equal to Akp0, where p0 = −r0 and r0 is the first residual.

Given that definition of iterates, we’re able to express the error after iteration k ek in a similar fashion:

ek = xk − xs =
N∑
i=k

αiA
ip0

We then recall the definition of energy norm ‖ek‖A:

‖ek‖A =
√
〈Aek, ek〉

We then want to show that ‖ek‖A = ‖xk − xs‖A > ‖ek+1‖A, which in turn is equivalent to claim that:

〈Aek, ek〉 > 〈Aek+1, ek+1〉

Knowing that the dot product is linear w.r.t. either of its arguments, we pull out the sum term related to
the k-th step (i.e. the first term in the sum that makes up ek) from both sides of 〈Aek, ek〉, obtaining the
following:

〈Aek+1, ek+1〉+ 〈αkAk+1p0, ek〉+ 〈Aek+1, αkA
kp0〉 > 〈Aek+1, ek+1〉

which in turn is equivalent to claim that:

〈αkAk+1p0, ek〉+ 〈Aek+1, αkA
kp0〉 > 0

From this expression we can collect term αk thanks to linearity of the dot-product:

2

αk(〈Ak+1p0, ek〉+ 〈Aek+1, A
kp0〉) > 0

and we can further “ignore” the αk term since we know that all αis are positive by definition:

〈Ak+1p0, ek〉+ 〈Aek+1, A
kp0〉 > 0

Then, we convert the dot-products in their equivalent vector to vector product form, and we plug in the
definitions of ek and ek+1:

pT0 (Ak+1)T (
N∑
i=k

αiA
ip0) + pT0 (Ak)T (

N∑
i=k+1

αiA
ip0) > 0

We then pull out the sum to cover all terms thanks to associativity of vector products:

N∑
i=k

(pT0 (Ak+1)TAip0)αi +
N∑

i=k+1
(pT0 (Ak)TAip0)αi > 0

We then, as before, can “ignore” all αi terms since we know by definition that they are all strictly positive.
We then recalled that we assumed that A is symmetric, so AT = A. In the end we have to show that these
two inequalities are true:

pT0 A
k+1+ip0 > 0 ∀i ∈ [k,N]

pT0 A
k+ip0 > 0 ∀i ∈ [k + 1, N]

To show these inequalities are indeed true, we recall that A is symmetric and positive definite. We then
consider that if a matrix A is SPD, then Ai for any positive i is also SPD1. Therefore, both inequalities are
trivially true due to the definition of positive definite matrices.

Thanks to this we have indeed proven that the delta ‖ek‖A−‖ek+1‖A is indeed positive and thus as i increases
the energy norm of the error monotonically decreases.

Question 2
Point 1
(a) For which kind of minimization problems can the trust region method be used? What are
the assumptions on the objective function?

The trust region method is an algorithm that can be used for unconstrained minimization. The trust region
method uses parts of the gradient descent and Newton methods, and thus it accepts basically the same domain
of objectives that these two methods accept.

These constraints namely require the objective function f(x) to be twice differentiable in order to make
building a quadratic model around an arbitrary point possible. In addition, our assumptions w.r.t. the scope
of this course require that f(x) should be continuous up to the second derivatives. This is needed to allow the
Hessian to be symmetric (as by the Schwartz theorem) which is an assumption that simplifies significantly
proofs related to the method (like namely Exercise 3 in this assignment).

Finally, as all the other unconstrained minimization methods we covered in this course, the trust region
method is only able to find a local minimizer close to he chosen starting points, and by no means the computed
minimizer is guaranteed to be a global minimizer.

1source: Wikipedia - Definite Matrix → Properties → Multiplication

3

https://en.wikipedia.org/wiki/Definite_matrix#Multiplication

(b) Write down the quadratic model around a current iterate xk and explain the meaning of
each term.

m(p) = f + gT p+ 1
2p

TBp s.t. ‖p‖ ≤ ∆

Here’s an explaination of the meaning of each term:

• ∆ is the trust region radius, i.e. an upper bound on the step’s norm (length);
• f is the energy function value at the current iterate, i.e. f(xk);
• p is the trust region step, the solution of arg minpm(p) with ‖p‖ < ∆, i.e. the optimal step to take;
• g is the gradient at the current iterate xk, i.e. ∇f(xk);
• B is the hessian at the current iterate xk, i.e. ∇2f(xk).

(c) What is the role of the trust region radius?

The role of the trust region radius is to put an upper bound on the step length in order to avoid “overly
ambitious” steps, i.e. steps where the the step length is considerably long and the quadratic model of the
objective is low-quality (i.e. the performance measure ρk in the TR algorithm indicates significant energy
difference between the true objective and the quadratic model).

In layman’s terms, the trust region radius makes the method switch more gradient based or more quadratic
based steps w.r.t. the “confidence” (measured in terms of ρk) in the computed quadratic model.

(d) Explain Cauchy point, sufficient decrease and Dogleg method, and the connection between
them.

The Cauchy point and Dogleg method are algorithms to compute iteration steps that are in the bounds of
the trust region. They allow to provide an approximate solution to the minimization of the quadratic model
inside the TR radius.

The Cauchy point is a method providing sufficient decrease (as per the Wolfe conditions) by essentially
performing a gradient descent step with a particularly chosen step size limited by the TR radius. However,
since this method basically does not exploit the quadratic component of the objective model (the hessian is
only used as a term in the step length calculation), even if it provides sufficient decrease and consequentially
convergence it is rarely used as a standalone method to compute iteration steps.

The Cauchy point is therefore often integrated in another method called Dogleg, which uses the former
algorithm in conjunction with a purely Newton step to provided a steps obtained by a blend of linear and
quadratic information.

This blend is achieved by choosing the new iterate by searching along a path made out of two segments,
namely the gradient descent step with optimal step size and a segment pointing from the last point to the
pure netwon step. The peculiar angle between this two segments is the reason the method is nicknamed
“Dogleg”, since the final line resembles a dog’s leg.

In the Dogleg method, the Cauchy point is used in case the trust region is small enough not to allow the “turn”
on the second segment towards the Netwon step. Thanks to this property and the use of the performance
measure ρk to grow and shrink the TR radius, the Dogleg method performs well even with inaccurate quadratic
models. Therefore, it still satisfies sufficient decrease and the Wolfe conditions while delivering superlinear
convergence, compared to the purely linear convergence of Cauchy point steps.

(e) Write down the trust region ratio and explain its meaning.

ρk = f(xk)− f(xk + pk)
mk(0)−mk(pk)

The trust region ratio and performance measure ρk measures the quality of the quadratic model built around
the current iterate xk, by measuring the ratio between the energy difference between the old and the new
iterate according to the real energy function w.r.t. the quadratic model around xk.

4

The ratio is used to test the adequacy of the current trust region radius. For an inaccurate quadratic model,
the predicted energy decrease would be considerably higher than the effective one and thus the ratio would
be low. When the ratio is lower than a predetermined threshold (1

4 is the one chosen by Nocedal) the trust
region radius is divided by 4. Instead, a very accurate quadratic model would result in little difference with
the real energy function and thus the ratio would be close to 1. If the trust region radius is higher than a
certain predetermined threshold (3

4 is the one chosen by Nocedal), then the trust region radius is doubled in
order to allow for longer steps, since the model quality is good.

(f) Does the energy decrease monotonically when Trust Region method is employed? Justify
your answer.

When using the trust region method, the energy of the iterates decreases monotonically. This is true because
by construction the algorithm either makes the next iterate equal to the current one (i.e. when the performance
measure ρk is too poor to accept a step) or applies a linear, quadratic, or blended descending step to the
current iterate.

When a step is taken, the step by definition should be a solution (or a close approximation of such solution)
of the energy minimization problem inside the trust region itself. Therefore, the step cannot lead to a point
that has higher energy than the one from the current iterate.

Therefore, the energy either stays constant or decreases at every single iteration, and therefore the energy
decreases monotonically.

Point 2
The trust region algorithm is the following:

Algorithm 1: Trust region method
Given ∆̂ > 0,∆0 ∈ (0, ∆̂), and η ∈ [0, 1

4);
for k = 0, 1, 2, . . . do

Obtain pk by using Cauchy or Dogleg method;
ρk ← f(xk)−f(xk+pk)

mk(0)−mk(pk) ;
if ρk < 1

4 then
∆k+1 ← 1

4∆k;
else

if ρk > 3
4 and ‖ρk‖ = ∆k then

∆k+1 ← min(2∆k, ∆̂);
else

∆k+1 ← ∆k;
end

end
if ρk > η then

xk+1 ← xk + pk;
else

xk+1 ← xk;
end

end

The Cauchy point algorithm is the following:

5

Algorithm 2: Cauchy point
Input B (quadratic term), g (linear term), ∆k;
if gTBg ≥ 0 then

τ ← 1;
else

τ ← min(‖g‖3

∆k·gTBg
, 1);

end
pk ← −τ · ∆k

‖g‖2·g ;
return pk

Finally, the Dogleg method algorithm is the following:

Algorithm 3: Dogleg method
Input B (quadratic term), g (linear term), ∆k;
pN ← −B−1g;
if ‖pN‖ < ∆k then

pk ← pN ;
else

pu = − gT g
gTBg

g;
if ‖pu‖ > ∆k then

compute pk with Cauchy point algorithm;
else

solve for τ the equality ‖pu + τ ∗ (pN − pu)‖2 = ∆2
k;

pk ← pu + τ · (pN − pu);
end

end

Point 3
The trust region, dogleg and Cauchy point algorithms were implemented respectively in the files
trust_region.m, dogleg.m, and cauchy.m.

Point 4
Taylor expansion

We first compute the gradient and the hessian of the energy function:

∇f
([
x1
x2

])
=
[
df(x)
dx1
df(x)
dx2

]
=
[
48x3

1 − 16x1x2 + 2x1 − 2
2x2 − 8x2

1

]

∇2f

([
x1
x2

])
=

d2f(x)
dx2

1

d2f(x)
dx2x1

d2f(x)
dx1x2

d2f(x)
dx2

2

 =
[
144x2

1 − 16x2 + 2− 16 −16
−16 2

]

The Taylor expansion up the second order of the function is the following:

f(x0, w) = f(x0) + 〈∇f(x0), w〉+ 1
2 〈∇

2f(x0)w,w〉

6

Minimization

The code used to minimize the function can be found in the MATLAB script main.m under section 2.4. The
resulting minimizer (found in 10 iterations) is:

xm =
[
1
4

]
Energy landscape

The following figure shows a surf plot of the objective function overlayed with the iterates used to reach the
minimizer:

Figure 1: Energy landscape of the function overlayed with iterates and steps (the white dot is x0 while the
black dot is xm)

The code used to generate such plot can be found in the MATLAB script main.m under section 2.4c.

Point 5
Minimization

The code used to minimize the function can be found in the MATLAB script main.m under section 2.5. The
resulting minimizer (found in 25 iterations) is:

7

xm =
[
1
5

]
Energy landscape

The following figure shows a surf plot of the objective function overlayed with the iterates used to reach the
minimizer:

Figure 2: Energy landscape of the Rosenbrock function overlayed with iterates and steps (the white dot is x0
while the black dot is xm)

The code used to generate such plot can be found in the MATLAB script main.m under section 2.5b.

Gradient norms

The following figure shows the logarithm of the norm of the gradient w.r.t. iterations:

8

Figure 3: Gradient norms (y-axis, log-scale) w.r.t. iteration number (x-axis)

The code used to generate such plot can be found in the MATLAB script main.m under section 2.5c.

Comparing the behaviour shown above with the figures obtained in the previous assignment for the Newton
method with backtracking and the gradient descent with backtracking, we notice that the trust-region method
really behaves like a compromise between the two methods. First of all, we notice that TR converges in 25
iterations, almost double of the number of iterations of regular NM + backtracking. The actual behaviour of
the curve is somewhat similar to the Netwon gradient norms curve w.r.t. to the presence of spikes, which
however are less evident in the Trust region curve (probably due to Trust region method alternating quadratic
steps with linear or almost linear steps while iterating). Finally, we notice that TR is the only method to
have neighbouring iterations having the exact same norm: this is probably due to some proposed iterations
steps not being validated by the acceptance criteria, which makes the method mot move for some iterations.

Exercise 3
We first show that the lemma holds for τ ∈ [0, 1]. Since

‖p̃(τ)‖ = ‖τpU‖ = τ‖pU‖ for τ ∈ [0, 1]

9

Then the norm of the step p̃ clearly increases as τ increases. For the second criterion, we compute the
quadratic model for a generic τ ∈ [0, 1]:

m(p̃(τ)) = f + gT ∗ p̃(τ) + 1
2 p̃(τ)TBp̃(τ) = f + gT τpU + 1

2τ(pU)TBτpU

We then recall the definition of pU :

pU = − gT g

gTBg
g :

and plug it into the expression:

= f + gT τ · − gT g

gTBg
g + 1

2τ · −
(
gT g

gTBg
g

)T
·Bτ · − gT g

gTBg
g

= f − τ · ‖g‖
4

gTBg
+ 1

2τ
2 ·
(
‖g‖2

gTBg

)
gT ·B gT g

gTBg
g

= f − τ · ‖g‖
4

gTBg
+ 1

2τ
2 · ‖g‖

4

(gTBg)2 · g
TBg

= f − τ · ‖g‖
4

gTBg
+ 1

2τ
2 · ‖g‖

4

gTBg

= f +
(

1
2τ

2 − τ
)
· ‖g‖

4

gTBg

= f +
(

1
2τ

2 − τ
)
z where z = ‖g‖4

gTBg

We then compute the derivative of the model:

dm(p̃(τ))
dτ

= zτ − z = z(τ − 1)

We know z is positive since gTBg > 0, since we assume B is positive definite. Then, since τ ∈ [0, 1], the
derivative is always ≤ 0 and therefore we have proven that the quadratic model of the Dogleg step decreases
as τ increases.

Now we show that the two claims on gradients hold also for τ ∈ [1, 2]. We define a function h(α) (where
α = τ − 1) with same gradient “sign” as ‖p̃(τ)‖ and we show that this function increases:

h(α) = 1
2‖p̃(1 + α)‖2 = 1

2‖p
U + α(pB − pU)‖2 = 1

2‖p
U‖2 + 1

2α
2‖pB − pU‖2 + α(pU)T (pB − pU)

We now take the derivative of h(α) and we show it is always positive, i.e. that h(α) has always positive
gradient and thus that it is increasing w.r.t. α:

h′(α) = α‖pB − pU‖2 + (pU)T (pB − pU) ≥ (pU)T (pB − pU) = gT g

gTBg
gT
(
− gT g

gTBg
g +B−1g

)
=

= ‖g‖2 g
TB−1g

gTBg

(
1− ‖g‖2

(gTBg)(gTB−1g)

)
Since we know B is symmetric and positive definite, then B−1 is as well. Therefore, we know that the term
outside of the parenthesis is always positive or 0. Therefore, we now only need to show that:

10

‖g‖2

(gTBg)(gTB−1g) ≤ 1⇔ ‖g‖2 ≤ (gTBg)(gTB−1g)

since both factors in the denominator are positive for what we shown before.

We now define a inner product space ∀a, b ∈ RN , 〈a, b〉B = aTBb. We now prove that this is indeed a linear
product space by proving all properties of such space:

• Linearity w.r.t. the first argument:

α〈x, y〉B + β〈z, y〉B = α · xTBy + β · zTBy = (αx+ βz)TBy = 〈(αx+ βz), y〉B ;

• Symmetry:

〈x, y〉B = xTBy = (xTBy)T = yTBTx, and since B is symmetric, yTBTx = yTBx = 〈y, x〉B ;

• Positive definiteness:

〈x, x〉B = xTBx > 0 is true since B is positive definite for all x 6= 0.

Since 〈x, y〉B is indeed a linear product space, then:

〈g,B−1g〉B ≤ 〈g, g〉B〈B
−1g,B−1g〉B

holds according to the Cauchy-Schwartz inequality. Now, if we expand each inner product we obtain:

gTBB−1g ≤ (gTBg)(gT (B−1)TBB−1g)

Which, since B is symmetric, in turn is equivalent to writing:

gT g ≤ (gTBg)(gTB−1g)

which is what we needed to show to prove that the first gradient constraint holds for τ ∈ [1, 2].

For the second constraint, we adopt a similar strategy as for before and we define a new function ĥ(α) =
m(p̃(1 + α)), thus plugging the Dogleg step in the quadratic model:

ĥ(α) = m(p̃(1 + α)) = f + gT (pU + α(pB − pU)) + 1
2(pU + α(pB − pU))TB(pU + α(pB − pU)) =

= f+gT pU+αgT (pB−pU)+1
2(pU)TBpU+1

2α(pU)TB(pB−pU)+1
2α(pB−pU)TBpU+1

2α
2(pB−pU)TB(pB−pU)

We now derive ĥ(α):

ĥ′(α) = gT (pB − pU) + 1
2(pU)TB(pB − pU) + 1

2(pB − pU)TBpU + α(pB − pU)TB(pB − pU) =

= (pB − pU)T g + 1
2((pU)TB(pB − pU))T + 1

2(pB − pU)TBpU + α(pB − pU)TB(pB − pU) =

= (pB − pU)T g + 1
2(pB − pU)BT (pU)T + 1

2(pB − pU)TBpU + α(pB − pU)TB(pB − pU) =

= (pB − pU)T (g + 1
2 · 2 ·Bp

U) + α(pB − pU)TB(pB − pU) ≤

≤ (pB − pU)T (g +BpU +B(pB − pU)) =

= (pB − pU)T (g +BpB) =

11

= (pB − pU)T (g +B · (−1) ·B−1g) =

= (pB − pU)T (g − g) = 0

and we therefore obtain ĥ(α) ≤ 0, thus finding that the m(p̃) is indeed a decreasing function of τ or α = τ − 1
also for τ ∈ [1, 2], thus completing the proof for the lemma.

12

	Acknowledgements on group work
	Exercise 1
	Point 1
	Question (a)
	Question (b)

	Point 2

	Question 2
	Point 1
	(a) For which kind of minimization problems can the trust region method be used? What are the assumptions on the objective function?
	(b) Write down the quadratic model around a current iterate xk and explain the meaning of each term.
	(c) What is the role of the trust region radius?
	(d) Explain Cauchy point, sufficient decrease and Dogleg method, and the connection between them.
	(e) Write down the trust region ratio and explain its meaning.
	(f) Does the energy decrease monotonically when Trust Region method is employed? Justify your answer.

	Point 2
	Point 3
	Point 4
	Taylor expansion
	Minimization
	Energy landscape

	Point 5
	Minimization
	Energy landscape
	Gradient norms

	Exercise 3

