# Midterm - Optimization Methods 

Claudio Maggioni

## Exercise 1

## Point 1

## Question (a)

As already covered in the course, the gradient of a standard quadratic form at a point $\$ \mathrm{x} \_0 \$$ is equal to:

$$
\nabla f\left(x_{0}\right)=A x_{0}-b
$$

Plugging in the definition of $x_{0}$ and knowing that $\nabla f\left(x_{m}\right)=A x_{m}-b=0$ (according to the first necessary condition for a minimizer), we obtain:

$$
\nabla f\left(x_{0}\right)=A\left(x_{m}+v\right)-b=A x_{m}+A v-b=b+\lambda v-b=\lambda v
$$

## Question (b)

The steepest descent method takes exactly one iteration to reach the exact minimizer $x_{m}$ starting from the point $x_{0}$. This can be proven by first noticing that $x_{m}$ is a point standing in the line that first descent direction would trace, which is equal to:

$$
g(\alpha)=-\alpha \cdot \nabla f\left(x_{0}\right)=-\alpha \lambda v
$$

For $\alpha=\frac{1}{\lambda}$, and plugging in the definition of $x_{0}=x_{m}+v$, we would reach a new iterate $x_{1}$ equal to:

$$
x_{1}=x_{0}-\alpha \lambda v=x_{0}-v=x_{m}+v-v=x_{m}
$$

The only question that we need to answer now is why the SD algorithm would indeed choose $\alpha=\frac{1}{\lambda}$. To answer this, we recall that the SD algorithm chooses $\alpha$ by solving a linear minimization option along the step direction. Since we know $x_{m}$ is indeed the minimizer, $f\left(x_{m}\right)$ would be obviously strictly less that any other $f\left(x_{1}=x_{0}-\alpha \lambda v\right)$ with $\alpha \neq \frac{1}{\lambda}$.
Therefore, since $x_{1}=x_{m}$, we have proven SD converges to the minimizer in one iteration.

## Point 2

The right answer is choice (a), since the energy norm of the error indeed always decreases monotonically.
To prove that this is true, we first consider a way to express any iterate $x_{k}$ in function of the minimizer $x_{s}$ and of the missing iterations:

$$
x_{k}=x_{s}+\sum_{i=k}^{N} \alpha_{i} A^{i} p_{0}
$$

This formula makes use of the fact that step directions in CG are all A-orthogonal with each other, so the k-th search direction $p_{k}$ is equal to $A^{k} p_{0}$, where $p_{0}=-r_{0}$ and $r_{0}$ is the first residual.
Given that definition of iterates, we're able to express the error after iteration $k e_{k}$ in a similar fashion:

$$
e_{k}=x_{k}-x_{s}=\sum_{i=k}^{N} \alpha_{i} A^{i} p_{0}
$$

We then recall the definition of energy norm $\left\|e_{k}\right\|_{A}$ :

$$
\left\|e_{k}\right\|_{A}=\sqrt{\left\langle A e_{k}, e_{k}\right\rangle}
$$

We then want to show that $\left\|e_{k}\right\|_{A}=\left\|x_{k}-x_{s}\right\|_{A}>\left\|e_{k+1}\right\|_{A}$, which in turn is equivalent to claim that:

$$
\left\langle A e_{k}, e_{k}\right\rangle>\left\langle A e_{k+1}, e_{k+1}\right\rangle
$$

Knowing that the dot product is linear w.r.t. either of its arguments, we pull out the sum term related to the k-th step (i.e. the first term in the sum that makes up $e_{k}$ ) from both sides of $\left\langle A e_{k}, e_{k}\right\rangle$, obtaining the following:

$$
\left\langle A e_{k+1}, e_{k+1}\right\rangle+\left\langle\alpha_{k} A^{k+1} p_{0}, e_{k}\right\rangle+\left\langle A e_{k+1}, \alpha_{k} A^{k} p_{0}\right\rangle>\left\langle A e_{k+1}, e_{k+1}\right\rangle
$$

which in turn is equivalent to claim that:

$$
\left\langle\alpha_{k} A^{k+1} p_{0}, e_{k}\right\rangle+\left\langle A e_{k+1}, \alpha_{k} A^{k} p_{0}\right\rangle>0
$$

From this expression we can collect term $\alpha_{k}$ thanks to linearity of the dot-product:

$$
\alpha_{k}\left(\left\langle A^{k+1} p_{0}, e_{k}\right\rangle+\left\langle A e_{k+1}, A^{k} p_{0}\right\rangle\right)>0
$$

and we can further "ignore" the $\alpha_{k}$ term since we know that all $\alpha_{i}$ s are positive by definition:

$$
\left\langle A^{k+1} p_{0}, e_{k}\right\rangle+\left\langle A e_{k+1}, A^{k} p_{0}\right\rangle>0
$$

Then, we convert the dot-products in their equivalent vector to vector product form, and we plug in the definitions of $e_{k}$ and $e_{k+1}$ :

$$
p_{0}^{T}\left(A^{k+1}\right)^{T}\left(\sum_{i=k}^{N} \alpha_{i} A^{i} p_{0}\right)+p_{0}^{T}\left(A^{k}\right)^{T}\left(\sum_{i=k+1}^{N} \alpha_{i} A^{i} p_{0}\right)>0
$$

We then pull out the sum to cover all terms thanks to associativity of vector products:

$$
\sum_{i=k}^{N}\left(p_{0}^{T}\left(A^{k+1}\right)^{T} A^{i} p_{0}\right) \alpha_{i}+\sum_{i=k+1}^{N}\left(p_{0}^{T}\left(A^{k}\right)^{T} A^{i} p_{0}\right) \alpha_{i}>0
$$

We then, as before, can "ignore" all $\alpha_{i}$ terms since we know by definition that they are all strictly positive. We then recalled that we assumed that A is symmetric, so $A^{T}=A$. In the end we have to show that these two inequalities are true:

$$
\begin{gathered}
p_{0}^{T} A^{k+1+i} p_{0}>0 \forall i \in[k, N] \\
p_{0}^{T} A^{k+i} p_{0}>0 \forall i \in[k+1, N]
\end{gathered}
$$

To show these inequalities are indeed true, we recall that A is symmetric and positive definite. We then consider that if a matrix A is SPD , then $A^{i}$ for any positive $i$ is also $\mathrm{SPD}^{1}$. Therefore, both inequalities are trivially true due to the definition of positive definite matrices.

Thanks to this we have indeed proven that the delta $\left\|e_{k}\right\|_{A}-\left\|e_{k+1}\right\|_{A}$ is indeed positive and thus as $i$ increases the energy norm of the error monotonically decreases.

[^0]
[^0]:    ${ }^{1}$ source: Wikipedia - Definite Matrix $\rightarrow$ Properties $\rightarrow$ Multiplication

