
Optimization methods – Homework 2

Claudio Maggioni

April 10, 2021

1 Exercise 1

1.1 Implement the matrix A and the vector b, for the moment, without taking
into consideration the boundary conditions. As you can see, the matrix A is
not symmetric. Does an energy function of the problem exist? Consider N = 4
and show your answer, explaining why it can or cannot exist.

The implementation of a function that generates A w.r.t. the parameter N can be found in the
MATLAB script main.m under Section 1.1.

The matrix A and the vector b appear in the following form:

A =


1 0 0 0 . . . 0
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1

 b =


0
h2

h2

...
0


For N = 4, we can attempt to build a minimizer to the solve the system Ax = b. In order to
find an x such that Ax = b, we could define a minimizer φ(x) such that:

φ(x) = ‖b−Ax‖2

Here φ(x) = 0 would mean that x is an exact solution of the system Ax = b. We can then
attempt to write such minimizer for N = 4:

φ(x) = ‖b−Ax‖2 =

∣∣∣∣∣∣∣∣


0− x1
1
9 − x1 + 2x2 − x3
1
9 − x2 + 2x3 − x4

0− x4


∣∣∣∣∣∣∣∣
2

=

= x21 +

(
1

9
− x1 + 2x2 − x3

)2

+

(
1

9
− x2 + 2x3 − x4

)2

+ x24

∆φ(x) =


4x1 − 4x2 + 2x3 − 2

9
−4x1 + 10x2 − 8x3 + 2x4 + 2

9
2x1 − 8x2 + 10x3 +−4x4 + 2

9
2x2 − 4x3 + 4x4 − 2

9

 ∆2φ(x) =


4 −4 2 0
−4 10 −8 2
2 −8 10 −4
0 2 −4 4



1



As it can be seen from the Hessian calculation, the Hessian is positive definite forall xs. This
means, by the sufficient condition of minimizers, that we can find a minimizer by solving ∆φ(x) =
0 (i.e. finding stationary points in the hyperspace defined by φ(x). Solving that, we find:

x =


0
1
9
1
9
0


which is indeed the minimizer and solution of Ax = b. Therefore, φ(x) is a valid energy function.
Although the φ(x) given here is not strictly in a matrix vector product quadratic form, it is indeed
a valid energy function and for different values of N similar fashioned φ(x) could be derived.
Therefore, we can say that the problem has an energy function.

1.2 Once the new matrix has been derived, write the energy function related to
the new problem and the corresponding gradient and Hessian.

As by the definitions of A and b given in the assignment, we already enforce x1 = xn = 0, since
the first and the last term of the matrix-vector product Ax are x1 and xn respectively and the
system of equations represented by Ax = b would indeed include the equalities x1 = b1 = 0 and
xn = bn = 0. Therefore, we can simply alter the matrix A without any need to perform any
other transformation in the system.

We therefore define A as a copy of A where A2,1 = An−1,n = 0.

The objective function then becomes φ(x) = 1
2x

TAx−bTx. And since the objective is a standard
quadratic form, the gradient is Ax− b while the Hessian is A.

1.3 Write the Conjugate Gradient algorithm in the pdf and implement it Matlab
code in a function called CGSolve.

The Conjugate Gradient algorithm is the following:

Algorithm 1: Conjugate Gradient algorithm

Set r0 ← Ax0 − b, p0 ← r0, k ← 0;
while rk 6= 0 do

αk ←
rTk rk
pTk Apk

;

xk+1 ← xk + αkpk;
rk+1 ← rk + αkApk;

βk+1 ←
rTk+1rk+1

rTk rk
;

pk+1 ← −rk+1 + βk+1pk;
k ← k + 1;

end

The MATLAB solution of this task can be found in Section 1.3 of the script main.m under the
function CGSolve.

2



1.4 Solve the Poisson problem.

The solution of this task can be found in Section 1.4 of the script main.m. Due to space
constraints, the R1000 column vector for the solution of x is not shown here but can be easily
derived by running the script and checking the variable x after the script execution.

1.5 Plot the value of energy function and the norm of the gradient (here, use
semilogy) as functions of the iterations.

The code to generate the plots below can be found in Section 1.5 of the script main.m.

0 50 100 150 200 250 300 350 400 450 500

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

·10−5

(a) Objective function values w.r.t. iteration number

0 50 100 150 200 250 300 350 400 450 500

10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

(b) Norm of the gradient w.r.t. iteration number
(y-axis is log scaled)

Figure 1: Plots for Exercise 1.4.

1.6 Finally, explain why the Conjugate Gradient method is a Krylov subspace
method.

We can say that the Conjugate Gradient method is a Krylov subspace method since we can say
that both all residuals ri and all search directions pi are contained in the span of 0 to k repeated
applications of matrix transformer A onto the initial search direction p0. Broadly speaking, this
property is directly connected with the fact that the CG methods performs up to n steps exactly
for a n by n matrix, walking steps that are all A-orthogonal with each other (i.e. for all couples
of search steps pi, pj where i 6= j, 〈Api, pj〉 = 0). To sum up our claim, we can say CG is indeed
a Krylov subspace method because:

span{r0, r1, . . . , rn} = span{r0, Ar0, . . . , Akr0}

span{p0, p1, . . . , pn} = span{r0, Ar0, . . . , Akr0}

These statements have been already proven in class and the proof can be found in Theorem 5.3
of Nocedal’s book.

3



2 Exercise 2

Consider the linear system Ax = b, where the matrix A is constructed in three different ways:

• A1 = diag([1:10])

• A2 = diag(ones(1,10))

• A3 = diag([1, 1, 1, 3, 4, 5, 5, 5, 10, 10])

• A4 = diag([1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0])

2.1 How many distinct eigenvalues has each matrix?

Each matrix has a distinct number of eigenvalues equal to the number of distinct elements on
its diagonal. So, in order, each A has respectively 10, 1, 5, and 10 distinct eigenvalues.

2.2 Construct a right-hand side b =rand(10,1) and apply the Conjugate Gradient
method to solve the system for each A.

The solution of this task can be found in section 2.2 of the main.m MATLAB script. Below are
the chosen b vector (which is unchanged between executions due to fixing the random generator
seed in the script) and the solutions of x for each matrix respectively.

b =



0.814723686393179
0.905791937075619
0.126986816293506
0.913375856139019
0.632359246225410
0.0975404049994095
0.278498218867048
0.546881519204984
0.957506835434298
0.964888535199277


x1 =



0.814723686393179
0.452895968537810
0.0423289387645020
0.228343964034755
0.126471849245082
0.0162567341665680
0.0397854598381500
0.0683601899006230
0.106389648381589
0.0964888535199280


x2 =



0.814723686393179
0.905791937075619
0.126986816293506
0.913375856139019
0.632359246225410
0.0975404049994095
0.278498218867048
0.546881519204984
0.957506835434298
0.964888535199277



x3 =



0.814723686393179
0.905791937075619
0.126986816293506
0.304458618713007
0.158089811556352
0.0195080809998819
0.0556996437734097
0.109376303840997
0.0957506835434296
0.0964888535199280


x4 =



0.740657896716011
0.754826614267239
0.0976821653904972
0.652411326111541
0.421572830214428
0.0609627567866090
0.163822480881755
0.303823066390868
0.503950965995613
0.482444267601989



2.3 Compute the logarithm energy norm of the error for each matrix and plot it
with respect to the number of iteration.

The code to generate the plots below and to compute the logarithm energy norm of the error
can be found in section 2.3 of the main.m MATLAB script.

4



−1 0 1 2 3 4 5 6 7 8 9 10 11
−35

−30

−25

−20

−15

−10

−5

0

(a) First matrix

−1 0 1 2 3 4 5 6 7 8 9 10 11
−35

−30

−25

−20

−15

−10

−5

0

(b) Second matrix

−1 0 1 2 3 4 5 6 7 8 9 10 11
−35

−30

−25

−20

−15

−10

−5

0

(c) Third matrix

−1 0 1 2 3 4 5 6 7 8 9 10 11
−35

−30

−25

−20

−15

−10

−5

0

(d) Fourth matrix

Figure 2: Plots of logarithm energy norm of the error per iteration. Minus infinity logarithms
not shown in the plot.

2.4 Comment on the convergence of the method for the different matrices. What
can you say observing the number of iterations obtained and the number of
clusters of the eigenvalues of the related matrix?

The method converges quickly for each matrix. The fastest convergence surely happens for A2,
which is the identity matrix and therefore makes the Ax = b problem trivial.

For all the other matrices, we observe the energy norm of the error decreasing exponentially as
the iterations increase, eventually reaching 0 for the cases where the method converges exactly
(namely on matrices A1 and A3).

Other than for the fourth matrix, the number of iterations is exactly equal to the number of
distinct eigenvalues for the matrix. That exception on the fourth matrix is simply due to the
tolerance termination condition holding true for an earlier iteration, i.e. we terminate early since
we find an approximation of x with residual norm below 10−8.

5


