Optimisation methods - Homework 1

Claudio Maggioni

March 21, 2021

1 Exercise 1

1.1 Gradient and Hessian

The gradient and the Hessian for f are the following:

$$
\begin{gathered}
\nabla f=\left[\begin{array}{c}
2 x_{1}+x_{2} \cdot \cos \left(x_{1}\right) \\
9 x_{2}^{2}+\sin \left(x_{1}\right)
\end{array}\right] \\
H_{f}=\left[\begin{array}{cc}
2-x_{2} \cdot \sin \left(x_{1}\right) & \cos \left(x_{1}\right) \\
\cos \left(x_{1}\right) & 18 x_{2}
\end{array}\right]
\end{gathered}
$$

1.2 Taylor expansion

$$
\begin{gathered}
f(h)=0+\left\langle\left[\begin{array}{l}
0+0 \\
0+0
\end{array}\right],\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]\right\rangle+\frac{1}{2}\left\langle\left[\begin{array}{cc}
2-0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right],\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]\right\rangle+O\left(\|h\|^{3}\right) \\
f(h)=\frac{1}{2}\left\langle\left[\begin{array}{c}
2 h_{1}+h_{2} \\
h_{1}
\end{array}\right],\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]\right\rangle+O\left(\|h\|^{3}\right) \\
f(h)=\frac{1}{2}\left(2 h_{1}^{2}+2 h_{1} h_{2}\right)+O\left(\|h\|^{3}\right) \\
f(h)=h_{1}^{2}+h_{1} h_{2}+O\left(\|h\|^{3}\right)
\end{gathered}
$$

2 Exercise 2

2.1 Gradient and Hessian

For A symmetric, we have:

$$
\begin{gathered}
\frac{d}{d x}\langle b, x\rangle=\langle b, \cdot\rangle=b \\
\frac{d}{d x}\langle A x, x\rangle=2\langle A x, \cdot\rangle=2 A x
\end{gathered}
$$

Then:

$$
\begin{gathered}
\nabla J=A x-b \\
H_{J}=\frac{d}{d x} \nabla J=A
\end{gathered}
$$

2.2 First order necessary condition

It is a necessary condition for a minimizer x^{*} of J that:

$$
\nabla J\left(x^{*}\right)=0 \Leftrightarrow A x^{*}=b
$$

2.3 Second order necessary condition

It is a necessary condition for a minimizer x^{*} of J that:

$$
\nabla^{2} J\left(x^{*}\right) \geq 0 \Leftrightarrow A \text { is positive semi-definite }
$$

2.4 Sufficient conditions

It is a sufficient condition for x^{*} to be a minimizer of J that the first necessary condition is true and that:

$$
\nabla^{2} J\left(x^{*}\right)>0 \Leftrightarrow A \text { is positive definite }
$$

2.5 Does $\min _{x \in R^{n}} J(x)$ have a unique solution?

Not in general. If for example we consider A and b to be only zeros, then $J(x)=0$ for all $x \in R^{n}$ and thus J would have an infinite number of minimizers.

However, for if A would be guaranteed to have full rank, the minimizer would be unique because the first order necessary condition would hold only for one value x^{*}. This is because the linear system $A x^{*}=b$ would have one and only one solution (due to A being full rank).

3 Exercise 3

3.1 Quadratic form

$f(x, y)$ can be written in quadratic form in the following way:

$$
f(v)=\frac{1}{2}\left\langle\left[\begin{array}{cc}
2 & 0 \\
0 & 2 \mu
\end{array}\right] v, v\right\rangle+\left\langle\left[\begin{array}{l}
0 \\
0
\end{array}\right], x\right\rangle
$$

where:

$$
v=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

3.2 Matlab implementation with surf and contour

The graphs generated by MATLAB are shown below:

Isolines get stretched along the y axis as μ increases. For a large μ, points well far away from the axes could be a problem since picking search directions and steps using a naive gradient based method iterations will zig-zag to the minimizer reaching it slowly.

