
Homework 5 – Optimization Methods

Claudio Maggioni

Excecise 1
Exercise 1.1
The Simplex method

The simplex method solves constrained minimization problems with a linear cost function and linearly-defined
equality and inequality constraints. The main approach used by the simplex method is to consider only basic
feasible points along the feasible region polytope and to iteratively navigate between them hopping through
neighbours and trying to find the point that minimizes the cost function.

Although the Simplex method is relatively efficient for most in-practice applications, it has exponential
complexity, since it has been proven that a carefully crafted n-dimensional problem can have up to 2n polytope
vertices, thus making the method inefficient for complex problems.

Interior-point method

The interior point method aims to have a better worst-case complexity than the simplex method but still
retain an in-practice acceptable performance. Instead of performing many inexpensive iterations walking along
the polytope boundary, the interior point takes Newton-like steps travelling along “interior” points in the
feasible region (hence the name of the method), thus reaching the constrained minimizer in fewer iterations.
Additionally, the interior-point method is easier to be implemented in a parallelized fashion.

Penalty method

The penalty method allows for a linear constrained minimization problem with equality constraints to be
converted in an unconstrained minimization problem, and to allow the use of conventional unconstrained
minimization algorithms to solve the problem. Namely, the penalty method builds a new uncostrained
objective function with is the summation of:

• The original objective function;
• An additional term for each constraint, which is positive when the current point x violates that constraint

and zero otherwise.

With some fine tuning of the coefficients for these new “penalty” terms, it is possible to build an equivalend
unconstrained minimization problem whose minimizer is also constrained minimizer for the original problem.

Exercise 1.2
Exercise 1.3

Exercise 2
Exercise 2.1
The resulting MATLAB plot of each constraint and of the feasible region is shown below:
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Figure 1: Plot of feasible region and constraints

Exercise 2.2
According to Nocedal, a vector x is a basic feasible point if it is in the feasible region and if there exists a
subset β of the index set 1, 2, . . . , n such that:

• β contains exactly m indices, where m is the number of rows of A;
• For any i /∈ β, xi = 0, meaning the bound xi ≥ 0 can be inactive only if i ∈ β;
• The m x m matrix B defined by B = [Ai]i∈β (where Ai is the i-th column of A) is non-singular, i.e. all

columns corresponding to the indices in β are linearly independent from each other.

The geometric interpretation of basic feasible points is that all of them are vertices of the polytope that
bounds the feasible region. We will use this proven property to manually solve the constrained minimization
problem presented in this section by aiding us with the graphical plot of the feasible region in figure 1.

Exercise 2.3
Since the geometrical interpretation of the definition of basic feasible point states that these point are non-other
than the vertices of the feasible region, we first look at the plot above and to these points (i.e. the vertices of
the bright green non-trasparent region). Then, we look which constraint boundaries cross these edges, and we
formulate an algebraic expression to find these points. In clockwise order, we have:

2



• The lower-left point at the origin, given by the boundaries of the constraints x1 ≥ 0 and x2 ≥ 0:

x∗1 =
[
0
0

]
• The top-left point, at the intersection of constraint boundaries x1 ≥ 0 and −3x1 + 2x2 ≤ 3:

x1 = 0 2x2 = 3⇔ x2 = 3
2 x∗2 = 1

2 ·
[
0
3

]
• The top-center-left point at the intersection of constraint boundaries −3x1 + 2x2 ≤ 3 and 2x1 + 3x2 ≤ 6:

−3x1 + 2x2 + 3x1 + 9
2x2 = 13

2 x2 = 3 + 9 = 12⇔ x2 = 12 · 2
13 = 24

13

−3x1 + 2 · 24
13 = 3⇔ x1 = 39− 48

13 · 1
−3 = 3

13 x∗3 = 1
13 ·

[
3
24

]
• The top-center-right point at the intersection of constraint boundaries 2x1 + 3x2 ≤ 6 and 2x1 + x2 ≤ 4:

2x1 + 3x2 − 2x1 − x2 = 2x2 = 6− 4 = 2⇔ x2 = 1 2x1 + 1 = 4⇔ x1 = 3
2 x∗4 = 1

2 ·
[
3
2

]
• The right point at the intersection of 2x1 + x2 ≤ 4 and x2 ≥ 0:

x2 = 0 2x1 + 0 = 4⇔ x1 = 2 x∗5 =
[
2
0

]
Therefore, x∗1 to x∗5 are all of the basic feasible points for this constrained minimization problem.

We then compute the objective function value for each basic feasible point found, The smallest objective value
will correspond with the constrained minimizer problem solution.

x∗1 =
[
0
0

]
f(x∗1) = 4 · 0 + 3 · 0 = 0

x∗2 = 1
2 ·
[
0
3

]
f(x∗2) = 4 · 0 + 3 · 3

2 = 9
2

x∗3 = 1
13 ·

[
3
24

]
f(x∗3) = 4 · 3

13 + 3 · 24
13 = 84

13

x∗4 = 1
2 ·
[
3
2

]
f(x∗4) = 4 · 3

2 + 3 · 1 = 9

x∗5 =
[
2
0

]
f(x∗5) = 4 · 2 + 1 · 0 = 8

Therefore, x∗ = x∗1 =
[
0 0

]T is the global constrained minimizer.

Exercise 3
Exercise 3.1
Yes, the problem can be solved with Uzzawa’s method since the problem can be reformulated as a saddle
point system. The KKT conditions of the problem can be reformulated as a matrix-vector to vector equality
in the following way:

[
G −AT
A 0

] [
x∗

λ∗

]
=
[
−c
b

]
.
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If we then express the minimizer x∗ in terms of x, an approximation of it, and p, a search step (i.e. x∗ = x+p),
we obtain the following system.

[
G AT

A 0

] [
−p
λ∗

]
=
[
g
h

]
This is the system the Uzzawa method will solve. Therefore, we need to check if the matrix:

K =
[
G AT

A 0

]
=


6 2 1 1 0
2 5 2 0 1
1 2 4 1 1
1 0 1 0 0
0 1 1 0 0

 recalling the computed values of A and G from the previous assignment

Has non-zero positive and negative eigenvalues. We compute the eigenvalues of this matrix with MATLAB,
and we find:


−0.4818
−0.2685
2.6378
4.3462
8.7663


Therefore, the system is indeed a saddle point system and it can be solved with Uzzawa’s method.

Exercise 3.2
The MATLAB code used to find the solution can be found under section 3.2 of the main.m script. The
solution is:

x =

 0.7692
−2.2308
2.2308

 λ =
[
−10.3846

2.1538

]
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