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1 Exercise 1

1.1 Gradient and Hessian

The gradient and the Hessian for f are the following:
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1.2 Taylor expansion
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2 Exercise 2

2.1 Gradient and Hessian

For A symmetric, we have:
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Then:
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2.2 First order necessary condition

It is a necessary condition for a minimizer «* of J that:
VJ(z*)=0& Ax* =b

2.3 Second order necessary condition

It is a necessary condition for a minimizer «* of J that:
V2J(z*) > 0 < A is positive semi-definite

2.4 Sufficient conditions

It is a sufficient condition for z* to be a minimizer of J that the first necessary condition
is true and that:

V2J(z*) > 0 < A is positive definite

2.5 Does min,cg- J(x) have a unique solution?

Not in general. If for example we consider A and b to be only zeros, then J(z) = 0 for
all z € R" and thus J would have an infinite number of minimizers.

However, for if A would be guaranteed to have full rank, the minimizer would be unique
because the first order necessary condition would hold only for one value x*. This is
because the linear system Az* = b would have one and only one solution (due to A being
full rank).



