% This file was created by matlab2tikz. % \begin{tikzpicture} \begin{axis}[% width=0.737in, height=1.524in, at={(0.774in,2.609in)}, scale only axis, xmin=-10, xmax=10, tick align=outside, ymin=-10, ymax=10, zmin=0, zmax=200, view={-37.5}{30}, axis background/.style={fill=white}, title style={font=\bfseries}, title={u=1}, axis x line*=bottom, axis y line*=left, axis z line*=left, xmajorgrids, ymajorgrids, zmajorgrids ] \addplot3[% surf, shader=flat, z buffer=sort, colormap={mymap}{[1pt] rgb(0pt)=(0.2422,0.1504,0.6603); rgb(1pt)=(0.2444,0.1534,0.6728); rgb(2pt)=(0.2464,0.1569,0.6847); rgb(3pt)=(0.2484,0.1607,0.6961); rgb(4pt)=(0.2503,0.1648,0.7071); rgb(5pt)=(0.2522,0.1689,0.7179); rgb(6pt)=(0.254,0.1732,0.7286); rgb(7pt)=(0.2558,0.1773,0.7393); rgb(8pt)=(0.2576,0.1814,0.7501); rgb(9pt)=(0.2594,0.1854,0.761); rgb(11pt)=(0.2628,0.1932,0.7828); rgb(12pt)=(0.2645,0.1972,0.7937); rgb(13pt)=(0.2661,0.2011,0.8043); rgb(14pt)=(0.2676,0.2052,0.8148); rgb(15pt)=(0.2691,0.2094,0.8249); rgb(16pt)=(0.2704,0.2138,0.8346); rgb(17pt)=(0.2717,0.2184,0.8439); rgb(18pt)=(0.2729,0.2231,0.8528); rgb(19pt)=(0.274,0.228,0.8612); rgb(20pt)=(0.2749,0.233,0.8692); rgb(21pt)=(0.2758,0.2382,0.8767); rgb(22pt)=(0.2766,0.2435,0.884); rgb(23pt)=(0.2774,0.2489,0.8908); rgb(24pt)=(0.2781,0.2543,0.8973); rgb(25pt)=(0.2788,0.2598,0.9035); rgb(26pt)=(0.2794,0.2653,0.9094); rgb(27pt)=(0.2798,0.2708,0.915); rgb(28pt)=(0.2802,0.2764,0.9204); rgb(29pt)=(0.2806,0.2819,0.9255); rgb(30pt)=(0.2809,0.2875,0.9305); rgb(31pt)=(0.2811,0.293,0.9352); rgb(32pt)=(0.2813,0.2985,0.9397); rgb(33pt)=(0.2814,0.304,0.9441); rgb(34pt)=(0.2814,0.3095,0.9483); rgb(35pt)=(0.2813,0.315,0.9524); rgb(36pt)=(0.2811,0.3204,0.9563); rgb(37pt)=(0.2809,0.3259,0.96); rgb(38pt)=(0.2807,0.3313,0.9636); rgb(39pt)=(0.2803,0.3367,0.967); rgb(40pt)=(0.2798,0.3421,0.9702); rgb(41pt)=(0.2791,0.3475,0.9733); rgb(42pt)=(0.2784,0.3529,0.9763); rgb(43pt)=(0.2776,0.3583,0.9791); rgb(44pt)=(0.2766,0.3638,0.9817); rgb(45pt)=(0.2754,0.3693,0.984); rgb(46pt)=(0.2741,0.3748,0.9862); rgb(47pt)=(0.2726,0.3804,0.9881); rgb(48pt)=(0.271,0.386,0.9898); rgb(49pt)=(0.2691,0.3916,0.9912); rgb(50pt)=(0.267,0.3973,0.9924); rgb(51pt)=(0.2647,0.403,0.9935); rgb(52pt)=(0.2621,0.4088,0.9946); rgb(53pt)=(0.2591,0.4145,0.9955); rgb(54pt)=(0.2556,0.4203,0.9965); rgb(55pt)=(0.2517,0.4261,0.9974); rgb(56pt)=(0.2473,0.4319,0.9983); rgb(57pt)=(0.2424,0.4378,0.9991); rgb(58pt)=(0.2369,0.4437,0.9996); rgb(59pt)=(0.2311,0.4497,0.9995); rgb(60pt)=(0.225,0.4559,0.9985); rgb(61pt)=(0.2189,0.462,0.9968); rgb(62pt)=(0.2128,0.4682,0.9948); rgb(63pt)=(0.2066,0.4743,0.9926); rgb(64pt)=(0.2006,0.4803,0.9906); rgb(65pt)=(0.195,0.4861,0.9887); rgb(66pt)=(0.1903,0.4919,0.9867); rgb(67pt)=(0.1869,0.4975,0.9844); rgb(68pt)=(0.1847,0.503,0.9819); rgb(69pt)=(0.1831,0.5084,0.9793); rgb(70pt)=(0.1818,0.5138,0.9766); rgb(71pt)=(0.1806,0.5191,0.9738); rgb(72pt)=(0.1795,0.5244,0.9709); rgb(73pt)=(0.1785,0.5296,0.9677); rgb(74pt)=(0.1778,0.5349,0.9641); rgb(75pt)=(0.1773,0.5401,0.9602); rgb(76pt)=(0.1768,0.5452,0.956); rgb(77pt)=(0.1764,0.5504,0.9516); rgb(78pt)=(0.1755,0.5554,0.9473); rgb(79pt)=(0.174,0.5605,0.9432); rgb(80pt)=(0.1716,0.5655,0.9393); rgb(81pt)=(0.1686,0.5705,0.9357); rgb(82pt)=(0.1649,0.5755,0.9323); rgb(83pt)=(0.161,0.5805,0.9289); rgb(84pt)=(0.1573,0.5854,0.9254); rgb(85pt)=(0.154,0.5902,0.9218); rgb(86pt)=(0.1513,0.595,0.9182); rgb(87pt)=(0.1492,0.5997,0.9147); rgb(88pt)=(0.1475,0.6043,0.9113); rgb(89pt)=(0.1461,0.6089,0.908); rgb(90pt)=(0.1446,0.6135,0.905); rgb(91pt)=(0.1429,0.618,0.9022); rgb(92pt)=(0.1408,0.6226,0.8998); rgb(93pt)=(0.1383,0.6272,0.8975); rgb(94pt)=(0.1354,0.6317,0.8953); rgb(95pt)=(0.1321,0.6363,0.8932); rgb(96pt)=(0.1288,0.6408,0.891); rgb(97pt)=(0.1253,0.6453,0.8887); rgb(98pt)=(0.1219,0.6497,0.8862); rgb(99pt)=(0.1185,0.6541,0.8834); rgb(100pt)=(0.1152,0.6584,0.8804); rgb(101pt)=(0.1119,0.6627,0.877); rgb(102pt)=(0.1085,0.6669,0.8734); rgb(103pt)=(0.1048,0.671,0.8695); rgb(104pt)=(0.1009,0.675,0.8653); rgb(105pt)=(0.0964,0.6789,0.8609); rgb(106pt)=(0.0914,0.6828,0.8562); rgb(107pt)=(0.0855,0.6865,0.8513); rgb(108pt)=(0.0789,0.6902,0.8462); rgb(109pt)=(0.0713,0.6938,0.8409); rgb(110pt)=(0.0628,0.6972,0.8355); rgb(111pt)=(0.0535,0.7006,0.8299); rgb(112pt)=(0.0433,0.7039,0.8242); rgb(113pt)=(0.0328,0.7071,0.8183); rgb(114pt)=(0.0234,0.7103,0.8124); rgb(115pt)=(0.0155,0.7133,0.8064); rgb(116pt)=(0.0091,0.7163,0.8003); rgb(117pt)=(0.0046,0.7192,0.7941); rgb(118pt)=(0.0019,0.722,0.7878); rgb(119pt)=(0.0009,0.7248,0.7815); rgb(120pt)=(0.0018,0.7275,0.7752); rgb(121pt)=(0.0046,0.7301,0.7688); rgb(122pt)=(0.0094,0.7327,0.7623); rgb(123pt)=(0.0162,0.7352,0.7558); rgb(124pt)=(0.0253,0.7376,0.7492); rgb(125pt)=(0.0369,0.74,0.7426); rgb(126pt)=(0.0504,0.7423,0.7359); rgb(127pt)=(0.0638,0.7446,0.7292); rgb(128pt)=(0.077,0.7468,0.7224); rgb(129pt)=(0.0899,0.7489,0.7156); rgb(130pt)=(0.1023,0.751,0.7088); rgb(131pt)=(0.1141,0.7531,0.7019); rgb(132pt)=(0.1252,0.7552,0.695); rgb(133pt)=(0.1354,0.7572,0.6881); rgb(134pt)=(0.1448,0.7593,0.6812); rgb(135pt)=(0.1532,0.7614,0.6741); rgb(136pt)=(0.1609,0.7635,0.6671); rgb(137pt)=(0.1678,0.7656,0.6599); rgb(138pt)=(0.1741,0.7678,0.6527); rgb(139pt)=(0.1799,0.7699,0.6454); rgb(140pt)=(0.1853,0.7721,0.6379); rgb(141pt)=(0.1905,0.7743,0.6303); rgb(142pt)=(0.1954,0.7765,0.6225); rgb(143pt)=(0.2003,0.7787,0.6146); rgb(144pt)=(0.2061,0.7808,0.6065); rgb(145pt)=(0.2118,0.7828,0.5983); rgb(146pt)=(0.2178,0.7849,0.5899); rgb(147pt)=(0.2244,0.7869,0.5813); rgb(148pt)=(0.2318,0.7887,0.5725); rgb(149pt)=(0.2401,0.7905,0.5636); rgb(150pt)=(0.2491,0.7922,0.5546); rgb(151pt)=(0.2589,0.7937,0.5454); rgb(152pt)=(0.2695,0.7951,0.536); rgb(153pt)=(0.2809,0.7964,0.5266); rgb(154pt)=(0.2929,0.7975,0.517); rgb(155pt)=(0.3052,0.7985,0.5074); rgb(156pt)=(0.3176,0.7994,0.4975); rgb(157pt)=(0.3301,0.8002,0.4876); rgb(158pt)=(0.3424,0.8009,0.4774); rgb(159pt)=(0.3548,0.8016,0.4669); rgb(160pt)=(0.3671,0.8021,0.4563); rgb(161pt)=(0.3795,0.8026,0.4454); rgb(162pt)=(0.3921,0.8029,0.4344); rgb(163pt)=(0.405,0.8031,0.4233); rgb(164pt)=(0.4184,0.803,0.4122); rgb(165pt)=(0.4322,0.8028,0.4013); rgb(166pt)=(0.4463,0.8024,0.3904); rgb(167pt)=(0.4608,0.8018,0.3797); rgb(168pt)=(0.4753,0.8011,0.3691); rgb(169pt)=(0.4899,0.8002,0.3586); rgb(170pt)=(0.5044,0.7993,0.348); rgb(171pt)=(0.5187,0.7982,0.3374); rgb(172pt)=(0.5329,0.797,0.3267); rgb(173pt)=(0.547,0.7957,0.3159); rgb(175pt)=(0.5748,0.7929,0.2941); rgb(176pt)=(0.5886,0.7913,0.2833); rgb(177pt)=(0.6024,0.7896,0.2726); rgb(178pt)=(0.6161,0.7878,0.2622); rgb(179pt)=(0.6297,0.7859,0.2521); rgb(180pt)=(0.6433,0.7839,0.2423); rgb(181pt)=(0.6567,0.7818,0.2329); rgb(182pt)=(0.6701,0.7796,0.2239); rgb(183pt)=(0.6833,0.7773,0.2155); rgb(184pt)=(0.6963,0.775,0.2075); rgb(185pt)=(0.7091,0.7727,0.1998); rgb(186pt)=(0.7218,0.7703,0.1924); rgb(187pt)=(0.7344,0.7679,0.1852); rgb(188pt)=(0.7468,0.7654,0.1782); rgb(189pt)=(0.759,0.7629,0.1717); rgb(190pt)=(0.771,0.7604,0.1658); rgb(191pt)=(0.7829,0.7579,0.1608); rgb(192pt)=(0.7945,0.7554,0.157); rgb(193pt)=(0.806,0.7529,0.1546); rgb(194pt)=(0.8172,0.7505,0.1535); rgb(195pt)=(0.8281,0.7481,0.1536); rgb(196pt)=(0.8389,0.7457,0.1546); rgb(197pt)=(0.8495,0.7435,0.1564); rgb(198pt)=(0.86,0.7413,0.1587); rgb(199pt)=(0.8703,0.7392,0.1615); rgb(200pt)=(0.8804,0.7372,0.165); rgb(201pt)=(0.8903,0.7353,0.1695); rgb(202pt)=(0.9,0.7336,0.1749); rgb(203pt)=(0.9093,0.7321,0.1815); rgb(204pt)=(0.9184,0.7308,0.189); rgb(205pt)=(0.9272,0.7298,0.1973); rgb(206pt)=(0.9357,0.729,0.2061); rgb(207pt)=(0.944,0.7285,0.2151); rgb(208pt)=(0.9523,0.7284,0.2237); rgb(209pt)=(0.9606,0.7285,0.2312); rgb(210pt)=(0.9689,0.7292,0.2373); rgb(211pt)=(0.977,0.7304,0.2418); rgb(212pt)=(0.9842,0.733,0.2446); rgb(213pt)=(0.99,0.7365,0.2429); rgb(214pt)=(0.9946,0.7407,0.2394); rgb(215pt)=(0.9966,0.7458,0.2351); rgb(216pt)=(0.9971,0.7513,0.2309); rgb(217pt)=(0.9972,0.7569,0.2267); rgb(218pt)=(0.9971,0.7626,0.2224); rgb(219pt)=(0.9969,0.7683,0.2181); rgb(220pt)=(0.9966,0.774,0.2138); rgb(221pt)=(0.9962,0.7798,0.2095); rgb(222pt)=(0.9957,0.7856,0.2053); rgb(223pt)=(0.9949,0.7915,0.2012); rgb(224pt)=(0.9938,0.7974,0.1974); rgb(225pt)=(0.9923,0.8034,0.1939); rgb(226pt)=(0.9906,0.8095,0.1906); rgb(227pt)=(0.9885,0.8156,0.1875); rgb(228pt)=(0.9861,0.8218,0.1846); rgb(229pt)=(0.9835,0.828,0.1817); rgb(230pt)=(0.9807,0.8342,0.1787); rgb(231pt)=(0.9778,0.8404,0.1757); rgb(232pt)=(0.9748,0.8467,0.1726); rgb(233pt)=(0.972,0.8529,0.1695); rgb(234pt)=(0.9694,0.8591,0.1665); rgb(235pt)=(0.9671,0.8654,0.1636); rgb(236pt)=(0.9651,0.8716,0.1608); rgb(237pt)=(0.9634,0.8778,0.1582); rgb(238pt)=(0.9619,0.884,0.1557); rgb(239pt)=(0.9608,0.8902,0.1532); rgb(240pt)=(0.9601,0.8963,0.1507); rgb(241pt)=(0.9596,0.9023,0.148); rgb(242pt)=(0.9595,0.9084,0.145); rgb(243pt)=(0.9597,0.9143,0.1418); rgb(244pt)=(0.9601,0.9203,0.1382); rgb(245pt)=(0.9608,0.9262,0.1344); rgb(246pt)=(0.9618,0.932,0.1304); rgb(247pt)=(0.9629,0.9379,0.1261); rgb(248pt)=(0.9642,0.9437,0.1216); rgb(249pt)=(0.9657,0.9494,0.1168); rgb(250pt)=(0.9674,0.9552,0.1116); rgb(251pt)=(0.9692,0.9609,0.1061); rgb(252pt)=(0.9711,0.9667,0.1001); rgb(253pt)=(0.973,0.9724,0.0938); rgb(254pt)=(0.9749,0.9782,0.0872); rgb(255pt)=(0.9769,0.9839,0.0805)}, mesh/rows=21] table[row sep=crcr, point meta=\thisrow{c}] {% % x y z c\\ -10 -10 200 200\\ -10 -9 181 181\\ -10 -8 164 164\\ -10 -7 149 149\\ -10 -6 136 136\\ -10 -5 125 125\\ -10 -4 116 116\\ -10 -3 109 109\\ -10 -2 104 104\\ -10 -1 101 101\\ -10 0 100 100\\ -10 1 101 101\\ -10 2 104 104\\ -10 3 109 109\\ -10 4 116 116\\ -10 5 125 125\\ -10 6 136 136\\ -10 7 149 149\\ -10 8 164 164\\ -10 9 181 181\\ -10 10 200 200\\ -9 -10 181 181\\ -9 -9 162 162\\ -9 -8 145 145\\ -9 -7 130 130\\ -9 -6 117 117\\ -9 -5 106 106\\ -9 -4 97 97\\ -9 -3 90 90\\ -9 -2 85 85\\ -9 -1 82 82\\ -9 0 81 81\\ -9 1 82 82\\ -9 2 85 85\\ -9 3 90 90\\ -9 4 97 97\\ -9 5 106 106\\ -9 6 117 117\\ -9 7 130 130\\ -9 8 145 145\\ -9 9 162 162\\ -9 10 181 181\\ -8 -10 164 164\\ -8 -9 145 145\\ -8 -8 128 128\\ -8 -7 113 113\\ -8 -6 100 100\\ -8 -5 89 89\\ -8 -4 80 80\\ -8 -3 73 73\\ -8 -2 68 68\\ -8 -1 65 65\\ -8 0 64 64\\ -8 1 65 65\\ -8 2 68 68\\ -8 3 73 73\\ -8 4 80 80\\ -8 5 89 89\\ -8 6 100 100\\ -8 7 113 113\\ -8 8 128 128\\ -8 9 145 145\\ -8 10 164 164\\ -7 -10 149 149\\ -7 -9 130 130\\ -7 -8 113 113\\ -7 -7 98 98\\ -7 -6 85 85\\ -7 -5 74 74\\ -7 -4 65 65\\ -7 -3 58 58\\ -7 -2 53 53\\ -7 -1 50 50\\ -7 0 49 49\\ -7 1 50 50\\ -7 2 53 53\\ -7 3 58 58\\ -7 4 65 65\\ -7 5 74 74\\ -7 6 85 85\\ -7 7 98 98\\ -7 8 113 113\\ -7 9 130 130\\ -7 10 149 149\\ -6 -10 136 136\\ -6 -9 117 117\\ -6 -8 100 100\\ -6 -7 85 85\\ -6 -6 72 72\\ -6 -5 61 61\\ -6 -4 52 52\\ -6 -3 45 45\\ -6 -2 40 40\\ -6 -1 37 37\\ -6 0 36 36\\ -6 1 37 37\\ -6 2 40 40\\ -6 3 45 45\\ -6 4 52 52\\ -6 5 61 61\\ -6 6 72 72\\ -6 7 85 85\\ -6 8 100 100\\ -6 9 117 117\\ -6 10 136 136\\ -5 -10 125 125\\ -5 -9 106 106\\ -5 -8 89 89\\ -5 -7 74 74\\ -5 -6 61 61\\ -5 -5 50 50\\ -5 -4 41 41\\ -5 -3 34 34\\ -5 -2 29 29\\ -5 -1 26 26\\ -5 0 25 25\\ -5 1 26 26\\ -5 2 29 29\\ -5 3 34 34\\ -5 4 41 41\\ -5 5 50 50\\ -5 6 61 61\\ -5 7 74 74\\ -5 8 89 89\\ -5 9 106 106\\ -5 10 125 125\\ -4 -10 116 116\\ -4 -9 97 97\\ -4 -8 80 80\\ -4 -7 65 65\\ -4 -6 52 52\\ -4 -5 41 41\\ -4 -4 32 32\\ -4 -3 25 25\\ -4 -2 20 20\\ -4 -1 17 17\\ -4 0 16 16\\ -4 1 17 17\\ -4 2 20 20\\ -4 3 25 25\\ -4 4 32 32\\ -4 5 41 41\\ -4 6 52 52\\ -4 7 65 65\\ -4 8 80 80\\ -4 9 97 97\\ -4 10 116 116\\ -3 -10 109 109\\ -3 -9 90 90\\ -3 -8 73 73\\ -3 -7 58 58\\ -3 -6 45 45\\ -3 -5 34 34\\ -3 -4 25 25\\ -3 -3 18 18\\ -3 -2 13 13\\ -3 -1 10 10\\ -3 0 9 9\\ -3 1 10 10\\ -3 2 13 13\\ -3 3 18 18\\ -3 4 25 25\\ -3 5 34 34\\ -3 6 45 45\\ -3 7 58 58\\ -3 8 73 73\\ -3 9 90 90\\ -3 10 109 109\\ -2 -10 104 104\\ -2 -9 85 85\\ -2 -8 68 68\\ -2 -7 53 53\\ -2 -6 40 40\\ -2 -5 29 29\\ -2 -4 20 20\\ -2 -3 13 13\\ -2 -2 8 8\\ -2 -1 5 5\\ -2 0 4 4\\ -2 1 5 5\\ -2 2 8 8\\ -2 3 13 13\\ -2 4 20 20\\ -2 5 29 29\\ -2 6 40 40\\ -2 7 53 53\\ -2 8 68 68\\ -2 9 85 85\\ -2 10 104 104\\ -1 -10 101 101\\ -1 -9 82 82\\ -1 -8 65 65\\ -1 -7 50 50\\ -1 -6 37 37\\ -1 -5 26 26\\ -1 -4 17 17\\ -1 -3 10 10\\ -1 -2 5 5\\ -1 -1 2 2\\ -1 0 1 1\\ -1 1 2 2\\ -1 2 5 5\\ -1 3 10 10\\ -1 4 17 17\\ -1 5 26 26\\ -1 6 37 37\\ -1 7 50 50\\ -1 8 65 65\\ -1 9 82 82\\ -1 10 101 101\\ 0 -10 100 100\\ 0 -9 81 81\\ 0 -8 64 64\\ 0 -7 49 49\\ 0 -6 36 36\\ 0 -5 25 25\\ 0 -4 16 16\\ 0 -3 9 9\\ 0 -2 4 4\\ 0 -1 1 1\\ 0 0 0 0\\ 0 1 1 1\\ 0 2 4 4\\ 0 3 9 9\\ 0 4 16 16\\ 0 5 25 25\\ 0 6 36 36\\ 0 7 49 49\\ 0 8 64 64\\ 0 9 81 81\\ 0 10 100 100\\ 1 -10 101 101\\ 1 -9 82 82\\ 1 -8 65 65\\ 1 -7 50 50\\ 1 -6 37 37\\ 1 -5 26 26\\ 1 -4 17 17\\ 1 -3 10 10\\ 1 -2 5 5\\ 1 -1 2 2\\ 1 0 1 1\\ 1 1 2 2\\ 1 2 5 5\\ 1 3 10 10\\ 1 4 17 17\\ 1 5 26 26\\ 1 6 37 37\\ 1 7 50 50\\ 1 8 65 65\\ 1 9 82 82\\ 1 10 101 101\\ 2 -10 104 104\\ 2 -9 85 85\\ 2 -8 68 68\\ 2 -7 53 53\\ 2 -6 40 40\\ 2 -5 29 29\\ 2 -4 20 20\\ 2 -3 13 13\\ 2 -2 8 8\\ 2 -1 5 5\\ 2 0 4 4\\ 2 1 5 5\\ 2 2 8 8\\ 2 3 13 13\\ 2 4 20 20\\ 2 5 29 29\\ 2 6 40 40\\ 2 7 53 53\\ 2 8 68 68\\ 2 9 85 85\\ 2 10 104 104\\ 3 -10 109 109\\ 3 -9 90 90\\ 3 -8 73 73\\ 3 -7 58 58\\ 3 -6 45 45\\ 3 -5 34 34\\ 3 -4 25 25\\ 3 -3 18 18\\ 3 -2 13 13\\ 3 -1 10 10\\ 3 0 9 9\\ 3 1 10 10\\ 3 2 13 13\\ 3 3 18 18\\ 3 4 25 25\\ 3 5 34 34\\ 3 6 45 45\\ 3 7 58 58\\ 3 8 73 73\\ 3 9 90 90\\ 3 10 109 109\\ 4 -10 116 116\\ 4 -9 97 97\\ 4 -8 80 80\\ 4 -7 65 65\\ 4 -6 52 52\\ 4 -5 41 41\\ 4 -4 32 32\\ 4 -3 25 25\\ 4 -2 20 20\\ 4 -1 17 17\\ 4 0 16 16\\ 4 1 17 17\\ 4 2 20 20\\ 4 3 25 25\\ 4 4 32 32\\ 4 5 41 41\\ 4 6 52 52\\ 4 7 65 65\\ 4 8 80 80\\ 4 9 97 97\\ 4 10 116 116\\ 5 -10 125 125\\ 5 -9 106 106\\ 5 -8 89 89\\ 5 -7 74 74\\ 5 -6 61 61\\ 5 -5 50 50\\ 5 -4 41 41\\ 5 -3 34 34\\ 5 -2 29 29\\ 5 -1 26 26\\ 5 0 25 25\\ 5 1 26 26\\ 5 2 29 29\\ 5 3 34 34\\ 5 4 41 41\\ 5 5 50 50\\ 5 6 61 61\\ 5 7 74 74\\ 5 8 89 89\\ 5 9 106 106\\ 5 10 125 125\\ 6 -10 136 136\\ 6 -9 117 117\\ 6 -8 100 100\\ 6 -7 85 85\\ 6 -6 72 72\\ 6 -5 61 61\\ 6 -4 52 52\\ 6 -3 45 45\\ 6 -2 40 40\\ 6 -1 37 37\\ 6 0 36 36\\ 6 1 37 37\\ 6 2 40 40\\ 6 3 45 45\\ 6 4 52 52\\ 6 5 61 61\\ 6 6 72 72\\ 6 7 85 85\\ 6 8 100 100\\ 6 9 117 117\\ 6 10 136 136\\ 7 -10 149 149\\ 7 -9 130 130\\ 7 -8 113 113\\ 7 -7 98 98\\ 7 -6 85 85\\ 7 -5 74 74\\ 7 -4 65 65\\ 7 -3 58 58\\ 7 -2 53 53\\ 7 -1 50 50\\ 7 0 49 49\\ 7 1 50 50\\ 7 2 53 53\\ 7 3 58 58\\ 7 4 65 65\\ 7 5 74 74\\ 7 6 85 85\\ 7 7 98 98\\ 7 8 113 113\\ 7 9 130 130\\ 7 10 149 149\\ 8 -10 164 164\\ 8 -9 145 145\\ 8 -8 128 128\\ 8 -7 113 113\\ 8 -6 100 100\\ 8 -5 89 89\\ 8 -4 80 80\\ 8 -3 73 73\\ 8 -2 68 68\\ 8 -1 65 65\\ 8 0 64 64\\ 8 1 65 65\\ 8 2 68 68\\ 8 3 73 73\\ 8 4 80 80\\ 8 5 89 89\\ 8 6 100 100\\ 8 7 113 113\\ 8 8 128 128\\ 8 9 145 145\\ 8 10 164 164\\ 9 -10 181 181\\ 9 -9 162 162\\ 9 -8 145 145\\ 9 -7 130 130\\ 9 -6 117 117\\ 9 -5 106 106\\ 9 -4 97 97\\ 9 -3 90 90\\ 9 -2 85 85\\ 9 -1 82 82\\ 9 0 81 81\\ 9 1 82 82\\ 9 2 85 85\\ 9 3 90 90\\ 9 4 97 97\\ 9 5 106 106\\ 9 6 117 117\\ 9 7 130 130\\ 9 8 145 145\\ 9 9 162 162\\ 9 10 181 181\\ 10 -10 200 200\\ 10 -9 181 181\\ 10 -8 164 164\\ 10 -7 149 149\\ 10 -6 136 136\\ 10 -5 125 125\\ 10 -4 116 116\\ 10 -3 109 109\\ 10 -2 104 104\\ 10 -1 101 101\\ 10 0 100 100\\ 10 1 101 101\\ 10 2 104 104\\ 10 3 109 109\\ 10 4 116 116\\ 10 5 125 125\\ 10 6 136 136\\ 10 7 149 149\\ 10 8 164 164\\ 10 9 181 181\\ 10 10 200 200\\ }; \end{axis} \begin{axis}[% width=0.737in, height=1.524in, at={(1.744in,2.609in)}, scale only axis, xmin=-10, xmax=10, tick align=outside, ymin=-10, ymax=10, zmin=0, zmax=300, view={-37.5}{30}, axis background/.style={fill=white}, title style={font=\bfseries}, title={u=2}, axis x line*=bottom, axis y line*=left, axis z line*=left, xmajorgrids, ymajorgrids, zmajorgrids ] \addplot3[% surf, shader=flat, z buffer=sort, colormap={mymap}{[1pt] rgb(0pt)=(0.2422,0.1504,0.6603); rgb(1pt)=(0.2444,0.1534,0.6728); rgb(2pt)=(0.2464,0.1569,0.6847); rgb(3pt)=(0.2484,0.1607,0.6961); rgb(4pt)=(0.2503,0.1648,0.7071); rgb(5pt)=(0.2522,0.1689,0.7179); rgb(6pt)=(0.254,0.1732,0.7286); rgb(7pt)=(0.2558,0.1773,0.7393); rgb(8pt)=(0.2576,0.1814,0.7501); rgb(9pt)=(0.2594,0.1854,0.761); rgb(11pt)=(0.2628,0.1932,0.7828); rgb(12pt)=(0.2645,0.1972,0.7937); rgb(13pt)=(0.2661,0.2011,0.8043); rgb(14pt)=(0.2676,0.2052,0.8148); rgb(15pt)=(0.2691,0.2094,0.8249); rgb(16pt)=(0.2704,0.2138,0.8346); rgb(17pt)=(0.2717,0.2184,0.8439); rgb(18pt)=(0.2729,0.2231,0.8528); rgb(19pt)=(0.274,0.228,0.8612); rgb(20pt)=(0.2749,0.233,0.8692); rgb(21pt)=(0.2758,0.2382,0.8767); rgb(22pt)=(0.2766,0.2435,0.884); rgb(23pt)=(0.2774,0.2489,0.8908); rgb(24pt)=(0.2781,0.2543,0.8973); rgb(25pt)=(0.2788,0.2598,0.9035); rgb(26pt)=(0.2794,0.2653,0.9094); rgb(27pt)=(0.2798,0.2708,0.915); rgb(28pt)=(0.2802,0.2764,0.9204); rgb(29pt)=(0.2806,0.2819,0.9255); rgb(30pt)=(0.2809,0.2875,0.9305); rgb(31pt)=(0.2811,0.293,0.9352); rgb(32pt)=(0.2813,0.2985,0.9397); rgb(33pt)=(0.2814,0.304,0.9441); rgb(34pt)=(0.2814,0.3095,0.9483); rgb(35pt)=(0.2813,0.315,0.9524); rgb(36pt)=(0.2811,0.3204,0.9563); rgb(37pt)=(0.2809,0.3259,0.96); rgb(38pt)=(0.2807,0.3313,0.9636); rgb(39pt)=(0.2803,0.3367,0.967); rgb(40pt)=(0.2798,0.3421,0.9702); rgb(41pt)=(0.2791,0.3475,0.9733); rgb(42pt)=(0.2784,0.3529,0.9763); rgb(43pt)=(0.2776,0.3583,0.9791); rgb(44pt)=(0.2766,0.3638,0.9817); rgb(45pt)=(0.2754,0.3693,0.984); rgb(46pt)=(0.2741,0.3748,0.9862); rgb(47pt)=(0.2726,0.3804,0.9881); rgb(48pt)=(0.271,0.386,0.9898); rgb(49pt)=(0.2691,0.3916,0.9912); rgb(50pt)=(0.267,0.3973,0.9924); rgb(51pt)=(0.2647,0.403,0.9935); rgb(52pt)=(0.2621,0.4088,0.9946); rgb(53pt)=(0.2591,0.4145,0.9955); rgb(54pt)=(0.2556,0.4203,0.9965); rgb(55pt)=(0.2517,0.4261,0.9974); rgb(56pt)=(0.2473,0.4319,0.9983); rgb(57pt)=(0.2424,0.4378,0.9991); rgb(58pt)=(0.2369,0.4437,0.9996); rgb(59pt)=(0.2311,0.4497,0.9995); rgb(60pt)=(0.225,0.4559,0.9985); rgb(61pt)=(0.2189,0.462,0.9968); rgb(62pt)=(0.2128,0.4682,0.9948); rgb(63pt)=(0.2066,0.4743,0.9926); rgb(64pt)=(0.2006,0.4803,0.9906); rgb(65pt)=(0.195,0.4861,0.9887); rgb(66pt)=(0.1903,0.4919,0.9867); rgb(67pt)=(0.1869,0.4975,0.9844); rgb(68pt)=(0.1847,0.503,0.9819); rgb(69pt)=(0.1831,0.5084,0.9793); rgb(70pt)=(0.1818,0.5138,0.9766); rgb(71pt)=(0.1806,0.5191,0.9738); rgb(72pt)=(0.1795,0.5244,0.9709); rgb(73pt)=(0.1785,0.5296,0.9677); rgb(74pt)=(0.1778,0.5349,0.9641); rgb(75pt)=(0.1773,0.5401,0.9602); rgb(76pt)=(0.1768,0.5452,0.956); rgb(77pt)=(0.1764,0.5504,0.9516); rgb(78pt)=(0.1755,0.5554,0.9473); rgb(79pt)=(0.174,0.5605,0.9432); rgb(80pt)=(0.1716,0.5655,0.9393); rgb(81pt)=(0.1686,0.5705,0.9357); rgb(82pt)=(0.1649,0.5755,0.9323); rgb(83pt)=(0.161,0.5805,0.9289); rgb(84pt)=(0.1573,0.5854,0.9254); rgb(85pt)=(0.154,0.5902,0.9218); rgb(86pt)=(0.1513,0.595,0.9182); rgb(87pt)=(0.1492,0.5997,0.9147); rgb(88pt)=(0.1475,0.6043,0.9113); rgb(89pt)=(0.1461,0.6089,0.908); rgb(90pt)=(0.1446,0.6135,0.905); rgb(91pt)=(0.1429,0.618,0.9022); rgb(92pt)=(0.1408,0.6226,0.8998); rgb(93pt)=(0.1383,0.6272,0.8975); rgb(94pt)=(0.1354,0.6317,0.8953); rgb(95pt)=(0.1321,0.6363,0.8932); rgb(96pt)=(0.1288,0.6408,0.891); rgb(97pt)=(0.1253,0.6453,0.8887); rgb(98pt)=(0.1219,0.6497,0.8862); rgb(99pt)=(0.1185,0.6541,0.8834); rgb(100pt)=(0.1152,0.6584,0.8804); rgb(101pt)=(0.1119,0.6627,0.877); rgb(102pt)=(0.1085,0.6669,0.8734); rgb(103pt)=(0.1048,0.671,0.8695); rgb(104pt)=(0.1009,0.675,0.8653); rgb(105pt)=(0.0964,0.6789,0.8609); rgb(106pt)=(0.0914,0.6828,0.8562); rgb(107pt)=(0.0855,0.6865,0.8513); rgb(108pt)=(0.0789,0.6902,0.8462); rgb(109pt)=(0.0713,0.6938,0.8409); rgb(110pt)=(0.0628,0.6972,0.8355); rgb(111pt)=(0.0535,0.7006,0.8299); rgb(112pt)=(0.0433,0.7039,0.8242); rgb(113pt)=(0.0328,0.7071,0.8183); rgb(114pt)=(0.0234,0.7103,0.8124); rgb(115pt)=(0.0155,0.7133,0.8064); rgb(116pt)=(0.0091,0.7163,0.8003); rgb(117pt)=(0.0046,0.7192,0.7941); rgb(118pt)=(0.0019,0.722,0.7878); rgb(119pt)=(0.0009,0.7248,0.7815); rgb(120pt)=(0.0018,0.7275,0.7752); rgb(121pt)=(0.0046,0.7301,0.7688); rgb(122pt)=(0.0094,0.7327,0.7623); rgb(123pt)=(0.0162,0.7352,0.7558); rgb(124pt)=(0.0253,0.7376,0.7492); rgb(125pt)=(0.0369,0.74,0.7426); rgb(126pt)=(0.0504,0.7423,0.7359); rgb(127pt)=(0.0638,0.7446,0.7292); rgb(128pt)=(0.077,0.7468,0.7224); rgb(129pt)=(0.0899,0.7489,0.7156); rgb(130pt)=(0.1023,0.751,0.7088); rgb(131pt)=(0.1141,0.7531,0.7019); rgb(132pt)=(0.1252,0.7552,0.695); rgb(133pt)=(0.1354,0.7572,0.6881); rgb(134pt)=(0.1448,0.7593,0.6812); rgb(135pt)=(0.1532,0.7614,0.6741); rgb(136pt)=(0.1609,0.7635,0.6671); rgb(137pt)=(0.1678,0.7656,0.6599); rgb(138pt)=(0.1741,0.7678,0.6527); rgb(139pt)=(0.1799,0.7699,0.6454); rgb(140pt)=(0.1853,0.7721,0.6379); rgb(141pt)=(0.1905,0.7743,0.6303); rgb(142pt)=(0.1954,0.7765,0.6225); rgb(143pt)=(0.2003,0.7787,0.6146); rgb(144pt)=(0.2061,0.7808,0.6065); rgb(145pt)=(0.2118,0.7828,0.5983); rgb(146pt)=(0.2178,0.7849,0.5899); rgb(147pt)=(0.2244,0.7869,0.5813); rgb(148pt)=(0.2318,0.7887,0.5725); rgb(149pt)=(0.2401,0.7905,0.5636); rgb(150pt)=(0.2491,0.7922,0.5546); rgb(151pt)=(0.2589,0.7937,0.5454); rgb(152pt)=(0.2695,0.7951,0.536); rgb(153pt)=(0.2809,0.7964,0.5266); rgb(154pt)=(0.2929,0.7975,0.517); rgb(155pt)=(0.3052,0.7985,0.5074); rgb(156pt)=(0.3176,0.7994,0.4975); rgb(157pt)=(0.3301,0.8002,0.4876); rgb(158pt)=(0.3424,0.8009,0.4774); rgb(159pt)=(0.3548,0.8016,0.4669); rgb(160pt)=(0.3671,0.8021,0.4563); rgb(161pt)=(0.3795,0.8026,0.4454); rgb(162pt)=(0.3921,0.8029,0.4344); rgb(163pt)=(0.405,0.8031,0.4233); rgb(164pt)=(0.4184,0.803,0.4122); rgb(165pt)=(0.4322,0.8028,0.4013); rgb(166pt)=(0.4463,0.8024,0.3904); rgb(167pt)=(0.4608,0.8018,0.3797); rgb(168pt)=(0.4753,0.8011,0.3691); rgb(169pt)=(0.4899,0.8002,0.3586); rgb(170pt)=(0.5044,0.7993,0.348); rgb(171pt)=(0.5187,0.7982,0.3374); rgb(172pt)=(0.5329,0.797,0.3267); rgb(173pt)=(0.547,0.7957,0.3159); rgb(175pt)=(0.5748,0.7929,0.2941); rgb(176pt)=(0.5886,0.7913,0.2833); rgb(177pt)=(0.6024,0.7896,0.2726); rgb(178pt)=(0.6161,0.7878,0.2622); rgb(179pt)=(0.6297,0.7859,0.2521); rgb(180pt)=(0.6433,0.7839,0.2423); rgb(181pt)=(0.6567,0.7818,0.2329); rgb(182pt)=(0.6701,0.7796,0.2239); rgb(183pt)=(0.6833,0.7773,0.2155); rgb(184pt)=(0.6963,0.775,0.2075); rgb(185pt)=(0.7091,0.7727,0.1998); rgb(186pt)=(0.7218,0.7703,0.1924); rgb(187pt)=(0.7344,0.7679,0.1852); rgb(188pt)=(0.7468,0.7654,0.1782); rgb(189pt)=(0.759,0.7629,0.1717); rgb(190pt)=(0.771,0.7604,0.1658); rgb(191pt)=(0.7829,0.7579,0.1608); rgb(192pt)=(0.7945,0.7554,0.157); rgb(193pt)=(0.806,0.7529,0.1546); rgb(194pt)=(0.8172,0.7505,0.1535); rgb(195pt)=(0.8281,0.7481,0.1536); rgb(196pt)=(0.8389,0.7457,0.1546); rgb(197pt)=(0.8495,0.7435,0.1564); rgb(198pt)=(0.86,0.7413,0.1587); rgb(199pt)=(0.8703,0.7392,0.1615); rgb(200pt)=(0.8804,0.7372,0.165); rgb(201pt)=(0.8903,0.7353,0.1695); rgb(202pt)=(0.9,0.7336,0.1749); rgb(203pt)=(0.9093,0.7321,0.1815); rgb(204pt)=(0.9184,0.7308,0.189); rgb(205pt)=(0.9272,0.7298,0.1973); rgb(206pt)=(0.9357,0.729,0.2061); rgb(207pt)=(0.944,0.7285,0.2151); rgb(208pt)=(0.9523,0.7284,0.2237); rgb(209pt)=(0.9606,0.7285,0.2312); rgb(210pt)=(0.9689,0.7292,0.2373); rgb(211pt)=(0.977,0.7304,0.2418); rgb(212pt)=(0.9842,0.733,0.2446); rgb(213pt)=(0.99,0.7365,0.2429); rgb(214pt)=(0.9946,0.7407,0.2394); rgb(215pt)=(0.9966,0.7458,0.2351); rgb(216pt)=(0.9971,0.7513,0.2309); rgb(217pt)=(0.9972,0.7569,0.2267); rgb(218pt)=(0.9971,0.7626,0.2224); rgb(219pt)=(0.9969,0.7683,0.2181); rgb(220pt)=(0.9966,0.774,0.2138); rgb(221pt)=(0.9962,0.7798,0.2095); rgb(222pt)=(0.9957,0.7856,0.2053); rgb(223pt)=(0.9949,0.7915,0.2012); rgb(224pt)=(0.9938,0.7974,0.1974); rgb(225pt)=(0.9923,0.8034,0.1939); rgb(226pt)=(0.9906,0.8095,0.1906); rgb(227pt)=(0.9885,0.8156,0.1875); rgb(228pt)=(0.9861,0.8218,0.1846); rgb(229pt)=(0.9835,0.828,0.1817); rgb(230pt)=(0.9807,0.8342,0.1787); rgb(231pt)=(0.9778,0.8404,0.1757); rgb(232pt)=(0.9748,0.8467,0.1726); rgb(233pt)=(0.972,0.8529,0.1695); rgb(234pt)=(0.9694,0.8591,0.1665); rgb(235pt)=(0.9671,0.8654,0.1636); rgb(236pt)=(0.9651,0.8716,0.1608); rgb(237pt)=(0.9634,0.8778,0.1582); rgb(238pt)=(0.9619,0.884,0.1557); rgb(239pt)=(0.9608,0.8902,0.1532); rgb(240pt)=(0.9601,0.8963,0.1507); rgb(241pt)=(0.9596,0.9023,0.148); rgb(242pt)=(0.9595,0.9084,0.145); rgb(243pt)=(0.9597,0.9143,0.1418); rgb(244pt)=(0.9601,0.9203,0.1382); rgb(245pt)=(0.9608,0.9262,0.1344); rgb(246pt)=(0.9618,0.932,0.1304); rgb(247pt)=(0.9629,0.9379,0.1261); rgb(248pt)=(0.9642,0.9437,0.1216); rgb(249pt)=(0.9657,0.9494,0.1168); rgb(250pt)=(0.9674,0.9552,0.1116); rgb(251pt)=(0.9692,0.9609,0.1061); rgb(252pt)=(0.9711,0.9667,0.1001); rgb(253pt)=(0.973,0.9724,0.0938); rgb(254pt)=(0.9749,0.9782,0.0872); rgb(255pt)=(0.9769,0.9839,0.0805)}, mesh/rows=21] table[row sep=crcr, point meta=\thisrow{c}] {% % x y z c\\ -10 -10 300 300\\ -10 -9 281 281\\ -10 -8 264 264\\ -10 -7 249 249\\ -10 -6 236 236\\ -10 -5 225 225\\ -10 -4 216 216\\ -10 -3 209 209\\ -10 -2 204 204\\ -10 -1 201 201\\ -10 0 200 200\\ -10 1 201 201\\ -10 2 204 204\\ -10 3 209 209\\ -10 4 216 216\\ -10 5 225 225\\ -10 6 236 236\\ -10 7 249 249\\ -10 8 264 264\\ -10 9 281 281\\ -10 10 300 300\\ -9 -10 262 262\\ -9 -9 243 243\\ -9 -8 226 226\\ -9 -7 211 211\\ -9 -6 198 198\\ -9 -5 187 187\\ -9 -4 178 178\\ -9 -3 171 171\\ -9 -2 166 166\\ -9 -1 163 163\\ -9 0 162 162\\ -9 1 163 163\\ -9 2 166 166\\ -9 3 171 171\\ -9 4 178 178\\ -9 5 187 187\\ -9 6 198 198\\ -9 7 211 211\\ -9 8 226 226\\ -9 9 243 243\\ -9 10 262 262\\ -8 -10 228 228\\ -8 -9 209 209\\ -8 -8 192 192\\ -8 -7 177 177\\ -8 -6 164 164\\ -8 -5 153 153\\ -8 -4 144 144\\ -8 -3 137 137\\ -8 -2 132 132\\ -8 -1 129 129\\ -8 0 128 128\\ -8 1 129 129\\ -8 2 132 132\\ -8 3 137 137\\ -8 4 144 144\\ -8 5 153 153\\ -8 6 164 164\\ -8 7 177 177\\ -8 8 192 192\\ -8 9 209 209\\ -8 10 228 228\\ -7 -10 198 198\\ -7 -9 179 179\\ -7 -8 162 162\\ -7 -7 147 147\\ -7 -6 134 134\\ -7 -5 123 123\\ -7 -4 114 114\\ -7 -3 107 107\\ -7 -2 102 102\\ -7 -1 99 99\\ -7 0 98 98\\ -7 1 99 99\\ -7 2 102 102\\ -7 3 107 107\\ -7 4 114 114\\ -7 5 123 123\\ -7 6 134 134\\ -7 7 147 147\\ -7 8 162 162\\ -7 9 179 179\\ -7 10 198 198\\ -6 -10 172 172\\ -6 -9 153 153\\ -6 -8 136 136\\ -6 -7 121 121\\ -6 -6 108 108\\ -6 -5 97 97\\ -6 -4 88 88\\ -6 -3 81 81\\ -6 -2 76 76\\ -6 -1 73 73\\ -6 0 72 72\\ -6 1 73 73\\ -6 2 76 76\\ -6 3 81 81\\ -6 4 88 88\\ -6 5 97 97\\ -6 6 108 108\\ -6 7 121 121\\ -6 8 136 136\\ -6 9 153 153\\ -6 10 172 172\\ -5 -10 150 150\\ -5 -9 131 131\\ -5 -8 114 114\\ -5 -7 99 99\\ -5 -6 86 86\\ -5 -5 75 75\\ -5 -4 66 66\\ -5 -3 59 59\\ -5 -2 54 54\\ -5 -1 51 51\\ -5 0 50 50\\ -5 1 51 51\\ -5 2 54 54\\ -5 3 59 59\\ -5 4 66 66\\ -5 5 75 75\\ -5 6 86 86\\ -5 7 99 99\\ -5 8 114 114\\ -5 9 131 131\\ -5 10 150 150\\ -4 -10 132 132\\ -4 -9 113 113\\ -4 -8 96 96\\ -4 -7 81 81\\ -4 -6 68 68\\ -4 -5 57 57\\ -4 -4 48 48\\ -4 -3 41 41\\ -4 -2 36 36\\ -4 -1 33 33\\ -4 0 32 32\\ -4 1 33 33\\ -4 2 36 36\\ -4 3 41 41\\ -4 4 48 48\\ -4 5 57 57\\ -4 6 68 68\\ -4 7 81 81\\ -4 8 96 96\\ -4 9 113 113\\ -4 10 132 132\\ -3 -10 118 118\\ -3 -9 99 99\\ -3 -8 82 82\\ -3 -7 67 67\\ -3 -6 54 54\\ -3 -5 43 43\\ -3 -4 34 34\\ -3 -3 27 27\\ -3 -2 22 22\\ -3 -1 19 19\\ -3 0 18 18\\ -3 1 19 19\\ -3 2 22 22\\ -3 3 27 27\\ -3 4 34 34\\ -3 5 43 43\\ -3 6 54 54\\ -3 7 67 67\\ -3 8 82 82\\ -3 9 99 99\\ -3 10 118 118\\ -2 -10 108 108\\ -2 -9 89 89\\ -2 -8 72 72\\ -2 -7 57 57\\ -2 -6 44 44\\ -2 -5 33 33\\ -2 -4 24 24\\ -2 -3 17 17\\ -2 -2 12 12\\ -2 -1 9 9\\ -2 0 8 8\\ -2 1 9 9\\ -2 2 12 12\\ -2 3 17 17\\ -2 4 24 24\\ -2 5 33 33\\ -2 6 44 44\\ -2 7 57 57\\ -2 8 72 72\\ -2 9 89 89\\ -2 10 108 108\\ -1 -10 102 102\\ -1 -9 83 83\\ -1 -8 66 66\\ -1 -7 51 51\\ -1 -6 38 38\\ -1 -5 27 27\\ -1 -4 18 18\\ -1 -3 11 11\\ -1 -2 6 6\\ -1 -1 3 3\\ -1 0 2 2\\ -1 1 3 3\\ -1 2 6 6\\ -1 3 11 11\\ -1 4 18 18\\ -1 5 27 27\\ -1 6 38 38\\ -1 7 51 51\\ -1 8 66 66\\ -1 9 83 83\\ -1 10 102 102\\ 0 -10 100 100\\ 0 -9 81 81\\ 0 -8 64 64\\ 0 -7 49 49\\ 0 -6 36 36\\ 0 -5 25 25\\ 0 -4 16 16\\ 0 -3 9 9\\ 0 -2 4 4\\ 0 -1 1 1\\ 0 0 0 0\\ 0 1 1 1\\ 0 2 4 4\\ 0 3 9 9\\ 0 4 16 16\\ 0 5 25 25\\ 0 6 36 36\\ 0 7 49 49\\ 0 8 64 64\\ 0 9 81 81\\ 0 10 100 100\\ 1 -10 102 102\\ 1 -9 83 83\\ 1 -8 66 66\\ 1 -7 51 51\\ 1 -6 38 38\\ 1 -5 27 27\\ 1 -4 18 18\\ 1 -3 11 11\\ 1 -2 6 6\\ 1 -1 3 3\\ 1 0 2 2\\ 1 1 3 3\\ 1 2 6 6\\ 1 3 11 11\\ 1 4 18 18\\ 1 5 27 27\\ 1 6 38 38\\ 1 7 51 51\\ 1 8 66 66\\ 1 9 83 83\\ 1 10 102 102\\ 2 -10 108 108\\ 2 -9 89 89\\ 2 -8 72 72\\ 2 -7 57 57\\ 2 -6 44 44\\ 2 -5 33 33\\ 2 -4 24 24\\ 2 -3 17 17\\ 2 -2 12 12\\ 2 -1 9 9\\ 2 0 8 8\\ 2 1 9 9\\ 2 2 12 12\\ 2 3 17 17\\ 2 4 24 24\\ 2 5 33 33\\ 2 6 44 44\\ 2 7 57 57\\ 2 8 72 72\\ 2 9 89 89\\ 2 10 108 108\\ 3 -10 118 118\\ 3 -9 99 99\\ 3 -8 82 82\\ 3 -7 67 67\\ 3 -6 54 54\\ 3 -5 43 43\\ 3 -4 34 34\\ 3 -3 27 27\\ 3 -2 22 22\\ 3 -1 19 19\\ 3 0 18 18\\ 3 1 19 19\\ 3 2 22 22\\ 3 3 27 27\\ 3 4 34 34\\ 3 5 43 43\\ 3 6 54 54\\ 3 7 67 67\\ 3 8 82 82\\ 3 9 99 99\\ 3 10 118 118\\ 4 -10 132 132\\ 4 -9 113 113\\ 4 -8 96 96\\ 4 -7 81 81\\ 4 -6 68 68\\ 4 -5 57 57\\ 4 -4 48 48\\ 4 -3 41 41\\ 4 -2 36 36\\ 4 -1 33 33\\ 4 0 32 32\\ 4 1 33 33\\ 4 2 36 36\\ 4 3 41 41\\ 4 4 48 48\\ 4 5 57 57\\ 4 6 68 68\\ 4 7 81 81\\ 4 8 96 96\\ 4 9 113 113\\ 4 10 132 132\\ 5 -10 150 150\\ 5 -9 131 131\\ 5 -8 114 114\\ 5 -7 99 99\\ 5 -6 86 86\\ 5 -5 75 75\\ 5 -4 66 66\\ 5 -3 59 59\\ 5 -2 54 54\\ 5 -1 51 51\\ 5 0 50 50\\ 5 1 51 51\\ 5 2 54 54\\ 5 3 59 59\\ 5 4 66 66\\ 5 5 75 75\\ 5 6 86 86\\ 5 7 99 99\\ 5 8 114 114\\ 5 9 131 131\\ 5 10 150 150\\ 6 -10 172 172\\ 6 -9 153 153\\ 6 -8 136 136\\ 6 -7 121 121\\ 6 -6 108 108\\ 6 -5 97 97\\ 6 -4 88 88\\ 6 -3 81 81\\ 6 -2 76 76\\ 6 -1 73 73\\ 6 0 72 72\\ 6 1 73 73\\ 6 2 76 76\\ 6 3 81 81\\ 6 4 88 88\\ 6 5 97 97\\ 6 6 108 108\\ 6 7 121 121\\ 6 8 136 136\\ 6 9 153 153\\ 6 10 172 172\\ 7 -10 198 198\\ 7 -9 179 179\\ 7 -8 162 162\\ 7 -7 147 147\\ 7 -6 134 134\\ 7 -5 123 123\\ 7 -4 114 114\\ 7 -3 107 107\\ 7 -2 102 102\\ 7 -1 99 99\\ 7 0 98 98\\ 7 1 99 99\\ 7 2 102 102\\ 7 3 107 107\\ 7 4 114 114\\ 7 5 123 123\\ 7 6 134 134\\ 7 7 147 147\\ 7 8 162 162\\ 7 9 179 179\\ 7 10 198 198\\ 8 -10 228 228\\ 8 -9 209 209\\ 8 -8 192 192\\ 8 -7 177 177\\ 8 -6 164 164\\ 8 -5 153 153\\ 8 -4 144 144\\ 8 -3 137 137\\ 8 -2 132 132\\ 8 -1 129 129\\ 8 0 128 128\\ 8 1 129 129\\ 8 2 132 132\\ 8 3 137 137\\ 8 4 144 144\\ 8 5 153 153\\ 8 6 164 164\\ 8 7 177 177\\ 8 8 192 192\\ 8 9 209 209\\ 8 10 228 228\\ 9 -10 262 262\\ 9 -9 243 243\\ 9 -8 226 226\\ 9 -7 211 211\\ 9 -6 198 198\\ 9 -5 187 187\\ 9 -4 178 178\\ 9 -3 171 171\\ 9 -2 166 166\\ 9 -1 163 163\\ 9 0 162 162\\ 9 1 163 163\\ 9 2 166 166\\ 9 3 171 171\\ 9 4 178 178\\ 9 5 187 187\\ 9 6 198 198\\ 9 7 211 211\\ 9 8 226 226\\ 9 9 243 243\\ 9 10 262 262\\ 10 -10 300 300\\ 10 -9 281 281\\ 10 -8 264 264\\ 10 -7 249 249\\ 10 -6 236 236\\ 10 -5 225 225\\ 10 -4 216 216\\ 10 -3 209 209\\ 10 -2 204 204\\ 10 -1 201 201\\ 10 0 200 200\\ 10 1 201 201\\ 10 2 204 204\\ 10 3 209 209\\ 10 4 216 216\\ 10 5 225 225\\ 10 6 236 236\\ 10 7 249 249\\ 10 8 264 264\\ 10 9 281 281\\ 10 10 300 300\\ }; \end{axis} \begin{axis}[% width=0.737in, height=1.524in, at={(2.714in,2.609in)}, scale only axis, xmin=-10, xmax=10, tick align=outside, ymin=-10, ymax=10, zmin=0, zmax=400, view={-37.5}{30}, axis background/.style={fill=white}, title style={font=\bfseries}, title={u=3}, axis x line*=bottom, axis y line*=left, axis z line*=left, xmajorgrids, ymajorgrids, zmajorgrids ] \addplot3[% surf, shader=flat, z buffer=sort, colormap={mymap}{[1pt] rgb(0pt)=(0.2422,0.1504,0.6603); rgb(1pt)=(0.2444,0.1534,0.6728); rgb(2pt)=(0.2464,0.1569,0.6847); rgb(3pt)=(0.2484,0.1607,0.6961); rgb(4pt)=(0.2503,0.1648,0.7071); rgb(5pt)=(0.2522,0.1689,0.7179); rgb(6pt)=(0.254,0.1732,0.7286); rgb(7pt)=(0.2558,0.1773,0.7393); rgb(8pt)=(0.2576,0.1814,0.7501); rgb(9pt)=(0.2594,0.1854,0.761); rgb(11pt)=(0.2628,0.1932,0.7828); rgb(12pt)=(0.2645,0.1972,0.7937); rgb(13pt)=(0.2661,0.2011,0.8043); rgb(14pt)=(0.2676,0.2052,0.8148); rgb(15pt)=(0.2691,0.2094,0.8249); rgb(16pt)=(0.2704,0.2138,0.8346); rgb(17pt)=(0.2717,0.2184,0.8439); rgb(18pt)=(0.2729,0.2231,0.8528); rgb(19pt)=(0.274,0.228,0.8612); rgb(20pt)=(0.2749,0.233,0.8692); rgb(21pt)=(0.2758,0.2382,0.8767); rgb(22pt)=(0.2766,0.2435,0.884); rgb(23pt)=(0.2774,0.2489,0.8908); rgb(24pt)=(0.2781,0.2543,0.8973); rgb(25pt)=(0.2788,0.2598,0.9035); rgb(26pt)=(0.2794,0.2653,0.9094); rgb(27pt)=(0.2798,0.2708,0.915); rgb(28pt)=(0.2802,0.2764,0.9204); rgb(29pt)=(0.2806,0.2819,0.9255); rgb(30pt)=(0.2809,0.2875,0.9305); rgb(31pt)=(0.2811,0.293,0.9352); rgb(32pt)=(0.2813,0.2985,0.9397); rgb(33pt)=(0.2814,0.304,0.9441); rgb(34pt)=(0.2814,0.3095,0.9483); rgb(35pt)=(0.2813,0.315,0.9524); rgb(36pt)=(0.2811,0.3204,0.9563); rgb(37pt)=(0.2809,0.3259,0.96); rgb(38pt)=(0.2807,0.3313,0.9636); rgb(39pt)=(0.2803,0.3367,0.967); rgb(40pt)=(0.2798,0.3421,0.9702); rgb(41pt)=(0.2791,0.3475,0.9733); rgb(42pt)=(0.2784,0.3529,0.9763); rgb(43pt)=(0.2776,0.3583,0.9791); rgb(44pt)=(0.2766,0.3638,0.9817); rgb(45pt)=(0.2754,0.3693,0.984); rgb(46pt)=(0.2741,0.3748,0.9862); rgb(47pt)=(0.2726,0.3804,0.9881); rgb(48pt)=(0.271,0.386,0.9898); rgb(49pt)=(0.2691,0.3916,0.9912); rgb(50pt)=(0.267,0.3973,0.9924); rgb(51pt)=(0.2647,0.403,0.9935); rgb(52pt)=(0.2621,0.4088,0.9946); rgb(53pt)=(0.2591,0.4145,0.9955); rgb(54pt)=(0.2556,0.4203,0.9965); rgb(55pt)=(0.2517,0.4261,0.9974); rgb(56pt)=(0.2473,0.4319,0.9983); rgb(57pt)=(0.2424,0.4378,0.9991); rgb(58pt)=(0.2369,0.4437,0.9996); rgb(59pt)=(0.2311,0.4497,0.9995); rgb(60pt)=(0.225,0.4559,0.9985); rgb(61pt)=(0.2189,0.462,0.9968); rgb(62pt)=(0.2128,0.4682,0.9948); rgb(63pt)=(0.2066,0.4743,0.9926); rgb(64pt)=(0.2006,0.4803,0.9906); rgb(65pt)=(0.195,0.4861,0.9887); rgb(66pt)=(0.1903,0.4919,0.9867); rgb(67pt)=(0.1869,0.4975,0.9844); rgb(68pt)=(0.1847,0.503,0.9819); rgb(69pt)=(0.1831,0.5084,0.9793); rgb(70pt)=(0.1818,0.5138,0.9766); rgb(71pt)=(0.1806,0.5191,0.9738); rgb(72pt)=(0.1795,0.5244,0.9709); rgb(73pt)=(0.1785,0.5296,0.9677); rgb(74pt)=(0.1778,0.5349,0.9641); rgb(75pt)=(0.1773,0.5401,0.9602); rgb(76pt)=(0.1768,0.5452,0.956); rgb(77pt)=(0.1764,0.5504,0.9516); rgb(78pt)=(0.1755,0.5554,0.9473); rgb(79pt)=(0.174,0.5605,0.9432); rgb(80pt)=(0.1716,0.5655,0.9393); rgb(81pt)=(0.1686,0.5705,0.9357); rgb(82pt)=(0.1649,0.5755,0.9323); rgb(83pt)=(0.161,0.5805,0.9289); rgb(84pt)=(0.1573,0.5854,0.9254); rgb(85pt)=(0.154,0.5902,0.9218); rgb(86pt)=(0.1513,0.595,0.9182); rgb(87pt)=(0.1492,0.5997,0.9147); rgb(88pt)=(0.1475,0.6043,0.9113); rgb(89pt)=(0.1461,0.6089,0.908); rgb(90pt)=(0.1446,0.6135,0.905); rgb(91pt)=(0.1429,0.618,0.9022); rgb(92pt)=(0.1408,0.6226,0.8998); rgb(93pt)=(0.1383,0.6272,0.8975); rgb(94pt)=(0.1354,0.6317,0.8953); rgb(95pt)=(0.1321,0.6363,0.8932); rgb(96pt)=(0.1288,0.6408,0.891); rgb(97pt)=(0.1253,0.6453,0.8887); rgb(98pt)=(0.1219,0.6497,0.8862); rgb(99pt)=(0.1185,0.6541,0.8834); rgb(100pt)=(0.1152,0.6584,0.8804); rgb(101pt)=(0.1119,0.6627,0.877); rgb(102pt)=(0.1085,0.6669,0.8734); rgb(103pt)=(0.1048,0.671,0.8695); rgb(104pt)=(0.1009,0.675,0.8653); rgb(105pt)=(0.0964,0.6789,0.8609); rgb(106pt)=(0.0914,0.6828,0.8562); rgb(107pt)=(0.0855,0.6865,0.8513); rgb(108pt)=(0.0789,0.6902,0.8462); rgb(109pt)=(0.0713,0.6938,0.8409); rgb(110pt)=(0.0628,0.6972,0.8355); rgb(111pt)=(0.0535,0.7006,0.8299); rgb(112pt)=(0.0433,0.7039,0.8242); rgb(113pt)=(0.0328,0.7071,0.8183); rgb(114pt)=(0.0234,0.7103,0.8124); rgb(115pt)=(0.0155,0.7133,0.8064); rgb(116pt)=(0.0091,0.7163,0.8003); rgb(117pt)=(0.0046,0.7192,0.7941); rgb(118pt)=(0.0019,0.722,0.7878); rgb(119pt)=(0.0009,0.7248,0.7815); rgb(120pt)=(0.0018,0.7275,0.7752); rgb(121pt)=(0.0046,0.7301,0.7688); rgb(122pt)=(0.0094,0.7327,0.7623); rgb(123pt)=(0.0162,0.7352,0.7558); rgb(124pt)=(0.0253,0.7376,0.7492); rgb(125pt)=(0.0369,0.74,0.7426); rgb(126pt)=(0.0504,0.7423,0.7359); rgb(127pt)=(0.0638,0.7446,0.7292); rgb(128pt)=(0.077,0.7468,0.7224); rgb(129pt)=(0.0899,0.7489,0.7156); rgb(130pt)=(0.1023,0.751,0.7088); rgb(131pt)=(0.1141,0.7531,0.7019); rgb(132pt)=(0.1252,0.7552,0.695); rgb(133pt)=(0.1354,0.7572,0.6881); rgb(134pt)=(0.1448,0.7593,0.6812); rgb(135pt)=(0.1532,0.7614,0.6741); rgb(136pt)=(0.1609,0.7635,0.6671); rgb(137pt)=(0.1678,0.7656,0.6599); rgb(138pt)=(0.1741,0.7678,0.6527); rgb(139pt)=(0.1799,0.7699,0.6454); rgb(140pt)=(0.1853,0.7721,0.6379); rgb(141pt)=(0.1905,0.7743,0.6303); rgb(142pt)=(0.1954,0.7765,0.6225); rgb(143pt)=(0.2003,0.7787,0.6146); rgb(144pt)=(0.2061,0.7808,0.6065); rgb(145pt)=(0.2118,0.7828,0.5983); rgb(146pt)=(0.2178,0.7849,0.5899); rgb(147pt)=(0.2244,0.7869,0.5813); rgb(148pt)=(0.2318,0.7887,0.5725); rgb(149pt)=(0.2401,0.7905,0.5636); rgb(150pt)=(0.2491,0.7922,0.5546); rgb(151pt)=(0.2589,0.7937,0.5454); rgb(152pt)=(0.2695,0.7951,0.536); rgb(153pt)=(0.2809,0.7964,0.5266); rgb(154pt)=(0.2929,0.7975,0.517); rgb(155pt)=(0.3052,0.7985,0.5074); rgb(156pt)=(0.3176,0.7994,0.4975); rgb(157pt)=(0.3301,0.8002,0.4876); rgb(158pt)=(0.3424,0.8009,0.4774); rgb(159pt)=(0.3548,0.8016,0.4669); rgb(160pt)=(0.3671,0.8021,0.4563); rgb(161pt)=(0.3795,0.8026,0.4454); rgb(162pt)=(0.3921,0.8029,0.4344); rgb(163pt)=(0.405,0.8031,0.4233); rgb(164pt)=(0.4184,0.803,0.4122); rgb(165pt)=(0.4322,0.8028,0.4013); rgb(166pt)=(0.4463,0.8024,0.3904); rgb(167pt)=(0.4608,0.8018,0.3797); rgb(168pt)=(0.4753,0.8011,0.3691); rgb(169pt)=(0.4899,0.8002,0.3586); rgb(170pt)=(0.5044,0.7993,0.348); rgb(171pt)=(0.5187,0.7982,0.3374); rgb(172pt)=(0.5329,0.797,0.3267); rgb(173pt)=(0.547,0.7957,0.3159); rgb(175pt)=(0.5748,0.7929,0.2941); rgb(176pt)=(0.5886,0.7913,0.2833); rgb(177pt)=(0.6024,0.7896,0.2726); rgb(178pt)=(0.6161,0.7878,0.2622); rgb(179pt)=(0.6297,0.7859,0.2521); rgb(180pt)=(0.6433,0.7839,0.2423); rgb(181pt)=(0.6567,0.7818,0.2329); rgb(182pt)=(0.6701,0.7796,0.2239); rgb(183pt)=(0.6833,0.7773,0.2155); rgb(184pt)=(0.6963,0.775,0.2075); rgb(185pt)=(0.7091,0.7727,0.1998); rgb(186pt)=(0.7218,0.7703,0.1924); rgb(187pt)=(0.7344,0.7679,0.1852); rgb(188pt)=(0.7468,0.7654,0.1782); rgb(189pt)=(0.759,0.7629,0.1717); rgb(190pt)=(0.771,0.7604,0.1658); rgb(191pt)=(0.7829,0.7579,0.1608); rgb(192pt)=(0.7945,0.7554,0.157); rgb(193pt)=(0.806,0.7529,0.1546); rgb(194pt)=(0.8172,0.7505,0.1535); rgb(195pt)=(0.8281,0.7481,0.1536); rgb(196pt)=(0.8389,0.7457,0.1546); rgb(197pt)=(0.8495,0.7435,0.1564); rgb(198pt)=(0.86,0.7413,0.1587); rgb(199pt)=(0.8703,0.7392,0.1615); rgb(200pt)=(0.8804,0.7372,0.165); rgb(201pt)=(0.8903,0.7353,0.1695); rgb(202pt)=(0.9,0.7336,0.1749); rgb(203pt)=(0.9093,0.7321,0.1815); rgb(204pt)=(0.9184,0.7308,0.189); rgb(205pt)=(0.9272,0.7298,0.1973); rgb(206pt)=(0.9357,0.729,0.2061); rgb(207pt)=(0.944,0.7285,0.2151); rgb(208pt)=(0.9523,0.7284,0.2237); rgb(209pt)=(0.9606,0.7285,0.2312); rgb(210pt)=(0.9689,0.7292,0.2373); rgb(211pt)=(0.977,0.7304,0.2418); rgb(212pt)=(0.9842,0.733,0.2446); rgb(213pt)=(0.99,0.7365,0.2429); rgb(214pt)=(0.9946,0.7407,0.2394); rgb(215pt)=(0.9966,0.7458,0.2351); rgb(216pt)=(0.9971,0.7513,0.2309); rgb(217pt)=(0.9972,0.7569,0.2267); rgb(218pt)=(0.9971,0.7626,0.2224); rgb(219pt)=(0.9969,0.7683,0.2181); rgb(220pt)=(0.9966,0.774,0.2138); rgb(221pt)=(0.9962,0.7798,0.2095); rgb(222pt)=(0.9957,0.7856,0.2053); rgb(223pt)=(0.9949,0.7915,0.2012); rgb(224pt)=(0.9938,0.7974,0.1974); rgb(225pt)=(0.9923,0.8034,0.1939); rgb(226pt)=(0.9906,0.8095,0.1906); rgb(227pt)=(0.9885,0.8156,0.1875); rgb(228pt)=(0.9861,0.8218,0.1846); rgb(229pt)=(0.9835,0.828,0.1817); rgb(230pt)=(0.9807,0.8342,0.1787); rgb(231pt)=(0.9778,0.8404,0.1757); rgb(232pt)=(0.9748,0.8467,0.1726); rgb(233pt)=(0.972,0.8529,0.1695); rgb(234pt)=(0.9694,0.8591,0.1665); rgb(235pt)=(0.9671,0.8654,0.1636); rgb(236pt)=(0.9651,0.8716,0.1608); rgb(237pt)=(0.9634,0.8778,0.1582); rgb(238pt)=(0.9619,0.884,0.1557); rgb(239pt)=(0.9608,0.8902,0.1532); rgb(240pt)=(0.9601,0.8963,0.1507); rgb(241pt)=(0.9596,0.9023,0.148); rgb(242pt)=(0.9595,0.9084,0.145); rgb(243pt)=(0.9597,0.9143,0.1418); rgb(244pt)=(0.9601,0.9203,0.1382); rgb(245pt)=(0.9608,0.9262,0.1344); rgb(246pt)=(0.9618,0.932,0.1304); rgb(247pt)=(0.9629,0.9379,0.1261); rgb(248pt)=(0.9642,0.9437,0.1216); rgb(249pt)=(0.9657,0.9494,0.1168); rgb(250pt)=(0.9674,0.9552,0.1116); rgb(251pt)=(0.9692,0.9609,0.1061); rgb(252pt)=(0.9711,0.9667,0.1001); rgb(253pt)=(0.973,0.9724,0.0938); rgb(254pt)=(0.9749,0.9782,0.0872); rgb(255pt)=(0.9769,0.9839,0.0805)}, mesh/rows=21] table[row sep=crcr, point meta=\thisrow{c}] {% % x y z c\\ -10 -10 400 400\\ -10 -9 381 381\\ -10 -8 364 364\\ -10 -7 349 349\\ -10 -6 336 336\\ -10 -5 325 325\\ -10 -4 316 316\\ -10 -3 309 309\\ -10 -2 304 304\\ -10 -1 301 301\\ -10 0 300 300\\ -10 1 301 301\\ -10 2 304 304\\ -10 3 309 309\\ -10 4 316 316\\ -10 5 325 325\\ -10 6 336 336\\ -10 7 349 349\\ -10 8 364 364\\ -10 9 381 381\\ -10 10 400 400\\ -9 -10 343 343\\ -9 -9 324 324\\ -9 -8 307 307\\ -9 -7 292 292\\ -9 -6 279 279\\ -9 -5 268 268\\ -9 -4 259 259\\ -9 -3 252 252\\ -9 -2 247 247\\ -9 -1 244 244\\ -9 0 243 243\\ -9 1 244 244\\ -9 2 247 247\\ -9 3 252 252\\ -9 4 259 259\\ -9 5 268 268\\ -9 6 279 279\\ -9 7 292 292\\ -9 8 307 307\\ -9 9 324 324\\ -9 10 343 343\\ -8 -10 292 292\\ -8 -9 273 273\\ -8 -8 256 256\\ -8 -7 241 241\\ -8 -6 228 228\\ -8 -5 217 217\\ -8 -4 208 208\\ -8 -3 201 201\\ -8 -2 196 196\\ -8 -1 193 193\\ -8 0 192 192\\ -8 1 193 193\\ -8 2 196 196\\ -8 3 201 201\\ -8 4 208 208\\ -8 5 217 217\\ -8 6 228 228\\ -8 7 241 241\\ -8 8 256 256\\ -8 9 273 273\\ -8 10 292 292\\ -7 -10 247 247\\ -7 -9 228 228\\ -7 -8 211 211\\ -7 -7 196 196\\ -7 -6 183 183\\ -7 -5 172 172\\ -7 -4 163 163\\ -7 -3 156 156\\ -7 -2 151 151\\ -7 -1 148 148\\ -7 0 147 147\\ -7 1 148 148\\ -7 2 151 151\\ -7 3 156 156\\ -7 4 163 163\\ -7 5 172 172\\ -7 6 183 183\\ -7 7 196 196\\ -7 8 211 211\\ -7 9 228 228\\ -7 10 247 247\\ -6 -10 208 208\\ -6 -9 189 189\\ -6 -8 172 172\\ -6 -7 157 157\\ -6 -6 144 144\\ -6 -5 133 133\\ -6 -4 124 124\\ -6 -3 117 117\\ -6 -2 112 112\\ -6 -1 109 109\\ -6 0 108 108\\ -6 1 109 109\\ -6 2 112 112\\ -6 3 117 117\\ -6 4 124 124\\ -6 5 133 133\\ -6 6 144 144\\ -6 7 157 157\\ -6 8 172 172\\ -6 9 189 189\\ -6 10 208 208\\ -5 -10 175 175\\ -5 -9 156 156\\ -5 -8 139 139\\ -5 -7 124 124\\ -5 -6 111 111\\ -5 -5 100 100\\ -5 -4 91 91\\ -5 -3 84 84\\ -5 -2 79 79\\ -5 -1 76 76\\ -5 0 75 75\\ -5 1 76 76\\ -5 2 79 79\\ -5 3 84 84\\ -5 4 91 91\\ -5 5 100 100\\ -5 6 111 111\\ -5 7 124 124\\ -5 8 139 139\\ -5 9 156 156\\ -5 10 175 175\\ -4 -10 148 148\\ -4 -9 129 129\\ -4 -8 112 112\\ -4 -7 97 97\\ -4 -6 84 84\\ -4 -5 73 73\\ -4 -4 64 64\\ -4 -3 57 57\\ -4 -2 52 52\\ -4 -1 49 49\\ -4 0 48 48\\ -4 1 49 49\\ -4 2 52 52\\ -4 3 57 57\\ -4 4 64 64\\ -4 5 73 73\\ -4 6 84 84\\ -4 7 97 97\\ -4 8 112 112\\ -4 9 129 129\\ -4 10 148 148\\ -3 -10 127 127\\ -3 -9 108 108\\ -3 -8 91 91\\ -3 -7 76 76\\ -3 -6 63 63\\ -3 -5 52 52\\ -3 -4 43 43\\ -3 -3 36 36\\ -3 -2 31 31\\ -3 -1 28 28\\ -3 0 27 27\\ -3 1 28 28\\ -3 2 31 31\\ -3 3 36 36\\ -3 4 43 43\\ -3 5 52 52\\ -3 6 63 63\\ -3 7 76 76\\ -3 8 91 91\\ -3 9 108 108\\ -3 10 127 127\\ -2 -10 112 112\\ -2 -9 93 93\\ -2 -8 76 76\\ -2 -7 61 61\\ -2 -6 48 48\\ -2 -5 37 37\\ -2 -4 28 28\\ -2 -3 21 21\\ -2 -2 16 16\\ -2 -1 13 13\\ -2 0 12 12\\ -2 1 13 13\\ -2 2 16 16\\ -2 3 21 21\\ -2 4 28 28\\ -2 5 37 37\\ -2 6 48 48\\ -2 7 61 61\\ -2 8 76 76\\ -2 9 93 93\\ -2 10 112 112\\ -1 -10 103 103\\ -1 -9 84 84\\ -1 -8 67 67\\ -1 -7 52 52\\ -1 -6 39 39\\ -1 -5 28 28\\ -1 -4 19 19\\ -1 -3 12 12\\ -1 -2 7 7\\ -1 -1 4 4\\ -1 0 3 3\\ -1 1 4 4\\ -1 2 7 7\\ -1 3 12 12\\ -1 4 19 19\\ -1 5 28 28\\ -1 6 39 39\\ -1 7 52 52\\ -1 8 67 67\\ -1 9 84 84\\ -1 10 103 103\\ 0 -10 100 100\\ 0 -9 81 81\\ 0 -8 64 64\\ 0 -7 49 49\\ 0 -6 36 36\\ 0 -5 25 25\\ 0 -4 16 16\\ 0 -3 9 9\\ 0 -2 4 4\\ 0 -1 1 1\\ 0 0 0 0\\ 0 1 1 1\\ 0 2 4 4\\ 0 3 9 9\\ 0 4 16 16\\ 0 5 25 25\\ 0 6 36 36\\ 0 7 49 49\\ 0 8 64 64\\ 0 9 81 81\\ 0 10 100 100\\ 1 -10 103 103\\ 1 -9 84 84\\ 1 -8 67 67\\ 1 -7 52 52\\ 1 -6 39 39\\ 1 -5 28 28\\ 1 -4 19 19\\ 1 -3 12 12\\ 1 -2 7 7\\ 1 -1 4 4\\ 1 0 3 3\\ 1 1 4 4\\ 1 2 7 7\\ 1 3 12 12\\ 1 4 19 19\\ 1 5 28 28\\ 1 6 39 39\\ 1 7 52 52\\ 1 8 67 67\\ 1 9 84 84\\ 1 10 103 103\\ 2 -10 112 112\\ 2 -9 93 93\\ 2 -8 76 76\\ 2 -7 61 61\\ 2 -6 48 48\\ 2 -5 37 37\\ 2 -4 28 28\\ 2 -3 21 21\\ 2 -2 16 16\\ 2 -1 13 13\\ 2 0 12 12\\ 2 1 13 13\\ 2 2 16 16\\ 2 3 21 21\\ 2 4 28 28\\ 2 5 37 37\\ 2 6 48 48\\ 2 7 61 61\\ 2 8 76 76\\ 2 9 93 93\\ 2 10 112 112\\ 3 -10 127 127\\ 3 -9 108 108\\ 3 -8 91 91\\ 3 -7 76 76\\ 3 -6 63 63\\ 3 -5 52 52\\ 3 -4 43 43\\ 3 -3 36 36\\ 3 -2 31 31\\ 3 -1 28 28\\ 3 0 27 27\\ 3 1 28 28\\ 3 2 31 31\\ 3 3 36 36\\ 3 4 43 43\\ 3 5 52 52\\ 3 6 63 63\\ 3 7 76 76\\ 3 8 91 91\\ 3 9 108 108\\ 3 10 127 127\\ 4 -10 148 148\\ 4 -9 129 129\\ 4 -8 112 112\\ 4 -7 97 97\\ 4 -6 84 84\\ 4 -5 73 73\\ 4 -4 64 64\\ 4 -3 57 57\\ 4 -2 52 52\\ 4 -1 49 49\\ 4 0 48 48\\ 4 1 49 49\\ 4 2 52 52\\ 4 3 57 57\\ 4 4 64 64\\ 4 5 73 73\\ 4 6 84 84\\ 4 7 97 97\\ 4 8 112 112\\ 4 9 129 129\\ 4 10 148 148\\ 5 -10 175 175\\ 5 -9 156 156\\ 5 -8 139 139\\ 5 -7 124 124\\ 5 -6 111 111\\ 5 -5 100 100\\ 5 -4 91 91\\ 5 -3 84 84\\ 5 -2 79 79\\ 5 -1 76 76\\ 5 0 75 75\\ 5 1 76 76\\ 5 2 79 79\\ 5 3 84 84\\ 5 4 91 91\\ 5 5 100 100\\ 5 6 111 111\\ 5 7 124 124\\ 5 8 139 139\\ 5 9 156 156\\ 5 10 175 175\\ 6 -10 208 208\\ 6 -9 189 189\\ 6 -8 172 172\\ 6 -7 157 157\\ 6 -6 144 144\\ 6 -5 133 133\\ 6 -4 124 124\\ 6 -3 117 117\\ 6 -2 112 112\\ 6 -1 109 109\\ 6 0 108 108\\ 6 1 109 109\\ 6 2 112 112\\ 6 3 117 117\\ 6 4 124 124\\ 6 5 133 133\\ 6 6 144 144\\ 6 7 157 157\\ 6 8 172 172\\ 6 9 189 189\\ 6 10 208 208\\ 7 -10 247 247\\ 7 -9 228 228\\ 7 -8 211 211\\ 7 -7 196 196\\ 7 -6 183 183\\ 7 -5 172 172\\ 7 -4 163 163\\ 7 -3 156 156\\ 7 -2 151 151\\ 7 -1 148 148\\ 7 0 147 147\\ 7 1 148 148\\ 7 2 151 151\\ 7 3 156 156\\ 7 4 163 163\\ 7 5 172 172\\ 7 6 183 183\\ 7 7 196 196\\ 7 8 211 211\\ 7 9 228 228\\ 7 10 247 247\\ 8 -10 292 292\\ 8 -9 273 273\\ 8 -8 256 256\\ 8 -7 241 241\\ 8 -6 228 228\\ 8 -5 217 217\\ 8 -4 208 208\\ 8 -3 201 201\\ 8 -2 196 196\\ 8 -1 193 193\\ 8 0 192 192\\ 8 1 193 193\\ 8 2 196 196\\ 8 3 201 201\\ 8 4 208 208\\ 8 5 217 217\\ 8 6 228 228\\ 8 7 241 241\\ 8 8 256 256\\ 8 9 273 273\\ 8 10 292 292\\ 9 -10 343 343\\ 9 -9 324 324\\ 9 -8 307 307\\ 9 -7 292 292\\ 9 -6 279 279\\ 9 -5 268 268\\ 9 -4 259 259\\ 9 -3 252 252\\ 9 -2 247 247\\ 9 -1 244 244\\ 9 0 243 243\\ 9 1 244 244\\ 9 2 247 247\\ 9 3 252 252\\ 9 4 259 259\\ 9 5 268 268\\ 9 6 279 279\\ 9 7 292 292\\ 9 8 307 307\\ 9 9 324 324\\ 9 10 343 343\\ 10 -10 400 400\\ 10 -9 381 381\\ 10 -8 364 364\\ 10 -7 349 349\\ 10 -6 336 336\\ 10 -5 325 325\\ 10 -4 316 316\\ 10 -3 309 309\\ 10 -2 304 304\\ 10 -1 301 301\\ 10 0 300 300\\ 10 1 301 301\\ 10 2 304 304\\ 10 3 309 309\\ 10 4 316 316\\ 10 5 325 325\\ 10 6 336 336\\ 10 7 349 349\\ 10 8 364 364\\ 10 9 381 381\\ 10 10 400 400\\ }; \end{axis} \begin{axis}[% width=0.737in, height=1.524in, at={(3.684in,2.609in)}, scale only axis, xmin=-10, xmax=10, tick align=outside, ymin=-10, ymax=10, zmin=0, zmax=600, view={-37.5}{30}, axis background/.style={fill=white}, title style={font=\bfseries}, title={u=4}, axis x line*=bottom, axis y line*=left, axis z line*=left, xmajorgrids, ymajorgrids, zmajorgrids ] \addplot3[% surf, shader=flat, z buffer=sort, colormap={mymap}{[1pt] rgb(0pt)=(0.2422,0.1504,0.6603); rgb(1pt)=(0.2444,0.1534,0.6728); rgb(2pt)=(0.2464,0.1569,0.6847); rgb(3pt)=(0.2484,0.1607,0.6961); rgb(4pt)=(0.2503,0.1648,0.7071); rgb(5pt)=(0.2522,0.1689,0.7179); rgb(6pt)=(0.254,0.1732,0.7286); rgb(7pt)=(0.2558,0.1773,0.7393); rgb(8pt)=(0.2576,0.1814,0.7501); rgb(9pt)=(0.2594,0.1854,0.761); rgb(11pt)=(0.2628,0.1932,0.7828); rgb(12pt)=(0.2645,0.1972,0.7937); rgb(13pt)=(0.2661,0.2011,0.8043); rgb(14pt)=(0.2676,0.2052,0.8148); rgb(15pt)=(0.2691,0.2094,0.8249); rgb(16pt)=(0.2704,0.2138,0.8346); rgb(17pt)=(0.2717,0.2184,0.8439); rgb(18pt)=(0.2729,0.2231,0.8528); rgb(19pt)=(0.274,0.228,0.8612); rgb(20pt)=(0.2749,0.233,0.8692); rgb(21pt)=(0.2758,0.2382,0.8767); rgb(22pt)=(0.2766,0.2435,0.884); rgb(23pt)=(0.2774,0.2489,0.8908); rgb(24pt)=(0.2781,0.2543,0.8973); rgb(25pt)=(0.2788,0.2598,0.9035); rgb(26pt)=(0.2794,0.2653,0.9094); rgb(27pt)=(0.2798,0.2708,0.915); rgb(28pt)=(0.2802,0.2764,0.9204); rgb(29pt)=(0.2806,0.2819,0.9255); rgb(30pt)=(0.2809,0.2875,0.9305); rgb(31pt)=(0.2811,0.293,0.9352); rgb(32pt)=(0.2813,0.2985,0.9397); rgb(33pt)=(0.2814,0.304,0.9441); rgb(34pt)=(0.2814,0.3095,0.9483); rgb(35pt)=(0.2813,0.315,0.9524); rgb(36pt)=(0.2811,0.3204,0.9563); rgb(37pt)=(0.2809,0.3259,0.96); rgb(38pt)=(0.2807,0.3313,0.9636); rgb(39pt)=(0.2803,0.3367,0.967); rgb(40pt)=(0.2798,0.3421,0.9702); rgb(41pt)=(0.2791,0.3475,0.9733); rgb(42pt)=(0.2784,0.3529,0.9763); rgb(43pt)=(0.2776,0.3583,0.9791); rgb(44pt)=(0.2766,0.3638,0.9817); rgb(45pt)=(0.2754,0.3693,0.984); rgb(46pt)=(0.2741,0.3748,0.9862); rgb(47pt)=(0.2726,0.3804,0.9881); rgb(48pt)=(0.271,0.386,0.9898); rgb(49pt)=(0.2691,0.3916,0.9912); rgb(50pt)=(0.267,0.3973,0.9924); rgb(51pt)=(0.2647,0.403,0.9935); rgb(52pt)=(0.2621,0.4088,0.9946); rgb(53pt)=(0.2591,0.4145,0.9955); rgb(54pt)=(0.2556,0.4203,0.9965); rgb(55pt)=(0.2517,0.4261,0.9974); rgb(56pt)=(0.2473,0.4319,0.9983); rgb(57pt)=(0.2424,0.4378,0.9991); rgb(58pt)=(0.2369,0.4437,0.9996); rgb(59pt)=(0.2311,0.4497,0.9995); rgb(60pt)=(0.225,0.4559,0.9985); rgb(61pt)=(0.2189,0.462,0.9968); rgb(62pt)=(0.2128,0.4682,0.9948); rgb(63pt)=(0.2066,0.4743,0.9926); rgb(64pt)=(0.2006,0.4803,0.9906); rgb(65pt)=(0.195,0.4861,0.9887); rgb(66pt)=(0.1903,0.4919,0.9867); rgb(67pt)=(0.1869,0.4975,0.9844); rgb(68pt)=(0.1847,0.503,0.9819); rgb(69pt)=(0.1831,0.5084,0.9793); rgb(70pt)=(0.1818,0.5138,0.9766); rgb(71pt)=(0.1806,0.5191,0.9738); rgb(72pt)=(0.1795,0.5244,0.9709); rgb(73pt)=(0.1785,0.5296,0.9677); rgb(74pt)=(0.1778,0.5349,0.9641); rgb(75pt)=(0.1773,0.5401,0.9602); rgb(76pt)=(0.1768,0.5452,0.956); rgb(77pt)=(0.1764,0.5504,0.9516); rgb(78pt)=(0.1755,0.5554,0.9473); rgb(79pt)=(0.174,0.5605,0.9432); rgb(80pt)=(0.1716,0.5655,0.9393); rgb(81pt)=(0.1686,0.5705,0.9357); rgb(82pt)=(0.1649,0.5755,0.9323); rgb(83pt)=(0.161,0.5805,0.9289); rgb(84pt)=(0.1573,0.5854,0.9254); rgb(85pt)=(0.154,0.5902,0.9218); rgb(86pt)=(0.1513,0.595,0.9182); rgb(87pt)=(0.1492,0.5997,0.9147); rgb(88pt)=(0.1475,0.6043,0.9113); rgb(89pt)=(0.1461,0.6089,0.908); rgb(90pt)=(0.1446,0.6135,0.905); rgb(91pt)=(0.1429,0.618,0.9022); rgb(92pt)=(0.1408,0.6226,0.8998); rgb(93pt)=(0.1383,0.6272,0.8975); rgb(94pt)=(0.1354,0.6317,0.8953); rgb(95pt)=(0.1321,0.6363,0.8932); rgb(96pt)=(0.1288,0.6408,0.891); rgb(97pt)=(0.1253,0.6453,0.8887); rgb(98pt)=(0.1219,0.6497,0.8862); rgb(99pt)=(0.1185,0.6541,0.8834); rgb(100pt)=(0.1152,0.6584,0.8804); rgb(101pt)=(0.1119,0.6627,0.877); rgb(102pt)=(0.1085,0.6669,0.8734); rgb(103pt)=(0.1048,0.671,0.8695); rgb(104pt)=(0.1009,0.675,0.8653); rgb(105pt)=(0.0964,0.6789,0.8609); rgb(106pt)=(0.0914,0.6828,0.8562); rgb(107pt)=(0.0855,0.6865,0.8513); rgb(108pt)=(0.0789,0.6902,0.8462); rgb(109pt)=(0.0713,0.6938,0.8409); rgb(110pt)=(0.0628,0.6972,0.8355); rgb(111pt)=(0.0535,0.7006,0.8299); rgb(112pt)=(0.0433,0.7039,0.8242); rgb(113pt)=(0.0328,0.7071,0.8183); rgb(114pt)=(0.0234,0.7103,0.8124); rgb(115pt)=(0.0155,0.7133,0.8064); rgb(116pt)=(0.0091,0.7163,0.8003); rgb(117pt)=(0.0046,0.7192,0.7941); rgb(118pt)=(0.0019,0.722,0.7878); rgb(119pt)=(0.0009,0.7248,0.7815); rgb(120pt)=(0.0018,0.7275,0.7752); rgb(121pt)=(0.0046,0.7301,0.7688); rgb(122pt)=(0.0094,0.7327,0.7623); rgb(123pt)=(0.0162,0.7352,0.7558); rgb(124pt)=(0.0253,0.7376,0.7492); rgb(125pt)=(0.0369,0.74,0.7426); rgb(126pt)=(0.0504,0.7423,0.7359); rgb(127pt)=(0.0638,0.7446,0.7292); rgb(128pt)=(0.077,0.7468,0.7224); rgb(129pt)=(0.0899,0.7489,0.7156); rgb(130pt)=(0.1023,0.751,0.7088); rgb(131pt)=(0.1141,0.7531,0.7019); rgb(132pt)=(0.1252,0.7552,0.695); rgb(133pt)=(0.1354,0.7572,0.6881); rgb(134pt)=(0.1448,0.7593,0.6812); rgb(135pt)=(0.1532,0.7614,0.6741); rgb(136pt)=(0.1609,0.7635,0.6671); rgb(137pt)=(0.1678,0.7656,0.6599); rgb(138pt)=(0.1741,0.7678,0.6527); rgb(139pt)=(0.1799,0.7699,0.6454); rgb(140pt)=(0.1853,0.7721,0.6379); rgb(141pt)=(0.1905,0.7743,0.6303); rgb(142pt)=(0.1954,0.7765,0.6225); rgb(143pt)=(0.2003,0.7787,0.6146); rgb(144pt)=(0.2061,0.7808,0.6065); rgb(145pt)=(0.2118,0.7828,0.5983); rgb(146pt)=(0.2178,0.7849,0.5899); rgb(147pt)=(0.2244,0.7869,0.5813); rgb(148pt)=(0.2318,0.7887,0.5725); rgb(149pt)=(0.2401,0.7905,0.5636); rgb(150pt)=(0.2491,0.7922,0.5546); rgb(151pt)=(0.2589,0.7937,0.5454); rgb(152pt)=(0.2695,0.7951,0.536); rgb(153pt)=(0.2809,0.7964,0.5266); rgb(154pt)=(0.2929,0.7975,0.517); rgb(155pt)=(0.3052,0.7985,0.5074); rgb(156pt)=(0.3176,0.7994,0.4975); rgb(157pt)=(0.3301,0.8002,0.4876); rgb(158pt)=(0.3424,0.8009,0.4774); rgb(159pt)=(0.3548,0.8016,0.4669); rgb(160pt)=(0.3671,0.8021,0.4563); rgb(161pt)=(0.3795,0.8026,0.4454); rgb(162pt)=(0.3921,0.8029,0.4344); rgb(163pt)=(0.405,0.8031,0.4233); rgb(164pt)=(0.4184,0.803,0.4122); rgb(165pt)=(0.4322,0.8028,0.4013); rgb(166pt)=(0.4463,0.8024,0.3904); rgb(167pt)=(0.4608,0.8018,0.3797); rgb(168pt)=(0.4753,0.8011,0.3691); rgb(169pt)=(0.4899,0.8002,0.3586); rgb(170pt)=(0.5044,0.7993,0.348); rgb(171pt)=(0.5187,0.7982,0.3374); rgb(172pt)=(0.5329,0.797,0.3267); rgb(173pt)=(0.547,0.7957,0.3159); rgb(175pt)=(0.5748,0.7929,0.2941); rgb(176pt)=(0.5886,0.7913,0.2833); rgb(177pt)=(0.6024,0.7896,0.2726); rgb(178pt)=(0.6161,0.7878,0.2622); rgb(179pt)=(0.6297,0.7859,0.2521); rgb(180pt)=(0.6433,0.7839,0.2423); rgb(181pt)=(0.6567,0.7818,0.2329); rgb(182pt)=(0.6701,0.7796,0.2239); rgb(183pt)=(0.6833,0.7773,0.2155); rgb(184pt)=(0.6963,0.775,0.2075); rgb(185pt)=(0.7091,0.7727,0.1998); rgb(186pt)=(0.7218,0.7703,0.1924); rgb(187pt)=(0.7344,0.7679,0.1852); rgb(188pt)=(0.7468,0.7654,0.1782); rgb(189pt)=(0.759,0.7629,0.1717); rgb(190pt)=(0.771,0.7604,0.1658); rgb(191pt)=(0.7829,0.7579,0.1608); rgb(192pt)=(0.7945,0.7554,0.157); rgb(193pt)=(0.806,0.7529,0.1546); rgb(194pt)=(0.8172,0.7505,0.1535); rgb(195pt)=(0.8281,0.7481,0.1536); rgb(196pt)=(0.8389,0.7457,0.1546); rgb(197pt)=(0.8495,0.7435,0.1564); rgb(198pt)=(0.86,0.7413,0.1587); rgb(199pt)=(0.8703,0.7392,0.1615); rgb(200pt)=(0.8804,0.7372,0.165); rgb(201pt)=(0.8903,0.7353,0.1695); rgb(202pt)=(0.9,0.7336,0.1749); rgb(203pt)=(0.9093,0.7321,0.1815); rgb(204pt)=(0.9184,0.7308,0.189); rgb(205pt)=(0.9272,0.7298,0.1973); rgb(206pt)=(0.9357,0.729,0.2061); rgb(207pt)=(0.944,0.7285,0.2151); rgb(208pt)=(0.9523,0.7284,0.2237); rgb(209pt)=(0.9606,0.7285,0.2312); rgb(210pt)=(0.9689,0.7292,0.2373); rgb(211pt)=(0.977,0.7304,0.2418); rgb(212pt)=(0.9842,0.733,0.2446); rgb(213pt)=(0.99,0.7365,0.2429); rgb(214pt)=(0.9946,0.7407,0.2394); rgb(215pt)=(0.9966,0.7458,0.2351); rgb(216pt)=(0.9971,0.7513,0.2309); rgb(217pt)=(0.9972,0.7569,0.2267); rgb(218pt)=(0.9971,0.7626,0.2224); rgb(219pt)=(0.9969,0.7683,0.2181); rgb(220pt)=(0.9966,0.774,0.2138); rgb(221pt)=(0.9962,0.7798,0.2095); rgb(222pt)=(0.9957,0.7856,0.2053); rgb(223pt)=(0.9949,0.7915,0.2012); rgb(224pt)=(0.9938,0.7974,0.1974); rgb(225pt)=(0.9923,0.8034,0.1939); rgb(226pt)=(0.9906,0.8095,0.1906); rgb(227pt)=(0.9885,0.8156,0.1875); rgb(228pt)=(0.9861,0.8218,0.1846); rgb(229pt)=(0.9835,0.828,0.1817); rgb(230pt)=(0.9807,0.8342,0.1787); rgb(231pt)=(0.9778,0.8404,0.1757); rgb(232pt)=(0.9748,0.8467,0.1726); rgb(233pt)=(0.972,0.8529,0.1695); rgb(234pt)=(0.9694,0.8591,0.1665); rgb(235pt)=(0.9671,0.8654,0.1636); rgb(236pt)=(0.9651,0.8716,0.1608); rgb(237pt)=(0.9634,0.8778,0.1582); rgb(238pt)=(0.9619,0.884,0.1557); rgb(239pt)=(0.9608,0.8902,0.1532); rgb(240pt)=(0.9601,0.8963,0.1507); rgb(241pt)=(0.9596,0.9023,0.148); rgb(242pt)=(0.9595,0.9084,0.145); rgb(243pt)=(0.9597,0.9143,0.1418); rgb(244pt)=(0.9601,0.9203,0.1382); rgb(245pt)=(0.9608,0.9262,0.1344); rgb(246pt)=(0.9618,0.932,0.1304); rgb(247pt)=(0.9629,0.9379,0.1261); rgb(248pt)=(0.9642,0.9437,0.1216); rgb(249pt)=(0.9657,0.9494,0.1168); rgb(250pt)=(0.9674,0.9552,0.1116); rgb(251pt)=(0.9692,0.9609,0.1061); rgb(252pt)=(0.9711,0.9667,0.1001); rgb(253pt)=(0.973,0.9724,0.0938); rgb(254pt)=(0.9749,0.9782,0.0872); rgb(255pt)=(0.9769,0.9839,0.0805)}, mesh/rows=21] table[row sep=crcr, point meta=\thisrow{c}] {% % x y z c\\ -10 -10 500 500\\ -10 -9 481 481\\ -10 -8 464 464\\ -10 -7 449 449\\ -10 -6 436 436\\ -10 -5 425 425\\ -10 -4 416 416\\ -10 -3 409 409\\ -10 -2 404 404\\ -10 -1 401 401\\ -10 0 400 400\\ -10 1 401 401\\ -10 2 404 404\\ -10 3 409 409\\ -10 4 416 416\\ -10 5 425 425\\ -10 6 436 436\\ -10 7 449 449\\ -10 8 464 464\\ -10 9 481 481\\ -10 10 500 500\\ -9 -10 424 424\\ -9 -9 405 405\\ -9 -8 388 388\\ -9 -7 373 373\\ -9 -6 360 360\\ -9 -5 349 349\\ -9 -4 340 340\\ -9 -3 333 333\\ -9 -2 328 328\\ -9 -1 325 325\\ -9 0 324 324\\ -9 1 325 325\\ -9 2 328 328\\ -9 3 333 333\\ -9 4 340 340\\ -9 5 349 349\\ -9 6 360 360\\ -9 7 373 373\\ -9 8 388 388\\ -9 9 405 405\\ -9 10 424 424\\ -8 -10 356 356\\ -8 -9 337 337\\ -8 -8 320 320\\ -8 -7 305 305\\ -8 -6 292 292\\ -8 -5 281 281\\ -8 -4 272 272\\ -8 -3 265 265\\ -8 -2 260 260\\ -8 -1 257 257\\ -8 0 256 256\\ -8 1 257 257\\ -8 2 260 260\\ -8 3 265 265\\ -8 4 272 272\\ -8 5 281 281\\ -8 6 292 292\\ -8 7 305 305\\ -8 8 320 320\\ -8 9 337 337\\ -8 10 356 356\\ -7 -10 296 296\\ -7 -9 277 277\\ -7 -8 260 260\\ -7 -7 245 245\\ -7 -6 232 232\\ -7 -5 221 221\\ -7 -4 212 212\\ -7 -3 205 205\\ -7 -2 200 200\\ -7 -1 197 197\\ -7 0 196 196\\ -7 1 197 197\\ -7 2 200 200\\ -7 3 205 205\\ -7 4 212 212\\ -7 5 221 221\\ -7 6 232 232\\ -7 7 245 245\\ -7 8 260 260\\ -7 9 277 277\\ -7 10 296 296\\ -6 -10 244 244\\ -6 -9 225 225\\ -6 -8 208 208\\ -6 -7 193 193\\ -6 -6 180 180\\ -6 -5 169 169\\ -6 -4 160 160\\ -6 -3 153 153\\ -6 -2 148 148\\ -6 -1 145 145\\ -6 0 144 144\\ -6 1 145 145\\ -6 2 148 148\\ -6 3 153 153\\ -6 4 160 160\\ -6 5 169 169\\ -6 6 180 180\\ -6 7 193 193\\ -6 8 208 208\\ -6 9 225 225\\ -6 10 244 244\\ -5 -10 200 200\\ -5 -9 181 181\\ -5 -8 164 164\\ -5 -7 149 149\\ -5 -6 136 136\\ -5 -5 125 125\\ -5 -4 116 116\\ -5 -3 109 109\\ -5 -2 104 104\\ -5 -1 101 101\\ -5 0 100 100\\ -5 1 101 101\\ -5 2 104 104\\ -5 3 109 109\\ -5 4 116 116\\ -5 5 125 125\\ -5 6 136 136\\ -5 7 149 149\\ -5 8 164 164\\ -5 9 181 181\\ -5 10 200 200\\ -4 -10 164 164\\ -4 -9 145 145\\ -4 -8 128 128\\ -4 -7 113 113\\ -4 -6 100 100\\ -4 -5 89 89\\ -4 -4 80 80\\ -4 -3 73 73\\ -4 -2 68 68\\ -4 -1 65 65\\ -4 0 64 64\\ -4 1 65 65\\ -4 2 68 68\\ -4 3 73 73\\ -4 4 80 80\\ -4 5 89 89\\ -4 6 100 100\\ -4 7 113 113\\ -4 8 128 128\\ -4 9 145 145\\ -4 10 164 164\\ -3 -10 136 136\\ -3 -9 117 117\\ -3 -8 100 100\\ -3 -7 85 85\\ -3 -6 72 72\\ -3 -5 61 61\\ -3 -4 52 52\\ -3 -3 45 45\\ -3 -2 40 40\\ -3 -1 37 37\\ -3 0 36 36\\ -3 1 37 37\\ -3 2 40 40\\ -3 3 45 45\\ -3 4 52 52\\ -3 5 61 61\\ -3 6 72 72\\ -3 7 85 85\\ -3 8 100 100\\ -3 9 117 117\\ -3 10 136 136\\ -2 -10 116 116\\ -2 -9 97 97\\ -2 -8 80 80\\ -2 -7 65 65\\ -2 -6 52 52\\ -2 -5 41 41\\ -2 -4 32 32\\ -2 -3 25 25\\ -2 -2 20 20\\ -2 -1 17 17\\ -2 0 16 16\\ -2 1 17 17\\ -2 2 20 20\\ -2 3 25 25\\ -2 4 32 32\\ -2 5 41 41\\ -2 6 52 52\\ -2 7 65 65\\ -2 8 80 80\\ -2 9 97 97\\ -2 10 116 116\\ -1 -10 104 104\\ -1 -9 85 85\\ -1 -8 68 68\\ -1 -7 53 53\\ -1 -6 40 40\\ -1 -5 29 29\\ -1 -4 20 20\\ -1 -3 13 13\\ -1 -2 8 8\\ -1 -1 5 5\\ -1 0 4 4\\ -1 1 5 5\\ -1 2 8 8\\ -1 3 13 13\\ -1 4 20 20\\ -1 5 29 29\\ -1 6 40 40\\ -1 7 53 53\\ -1 8 68 68\\ -1 9 85 85\\ -1 10 104 104\\ 0 -10 100 100\\ 0 -9 81 81\\ 0 -8 64 64\\ 0 -7 49 49\\ 0 -6 36 36\\ 0 -5 25 25\\ 0 -4 16 16\\ 0 -3 9 9\\ 0 -2 4 4\\ 0 -1 1 1\\ 0 0 0 0\\ 0 1 1 1\\ 0 2 4 4\\ 0 3 9 9\\ 0 4 16 16\\ 0 5 25 25\\ 0 6 36 36\\ 0 7 49 49\\ 0 8 64 64\\ 0 9 81 81\\ 0 10 100 100\\ 1 -10 104 104\\ 1 -9 85 85\\ 1 -8 68 68\\ 1 -7 53 53\\ 1 -6 40 40\\ 1 -5 29 29\\ 1 -4 20 20\\ 1 -3 13 13\\ 1 -2 8 8\\ 1 -1 5 5\\ 1 0 4 4\\ 1 1 5 5\\ 1 2 8 8\\ 1 3 13 13\\ 1 4 20 20\\ 1 5 29 29\\ 1 6 40 40\\ 1 7 53 53\\ 1 8 68 68\\ 1 9 85 85\\ 1 10 104 104\\ 2 -10 116 116\\ 2 -9 97 97\\ 2 -8 80 80\\ 2 -7 65 65\\ 2 -6 52 52\\ 2 -5 41 41\\ 2 -4 32 32\\ 2 -3 25 25\\ 2 -2 20 20\\ 2 -1 17 17\\ 2 0 16 16\\ 2 1 17 17\\ 2 2 20 20\\ 2 3 25 25\\ 2 4 32 32\\ 2 5 41 41\\ 2 6 52 52\\ 2 7 65 65\\ 2 8 80 80\\ 2 9 97 97\\ 2 10 116 116\\ 3 -10 136 136\\ 3 -9 117 117\\ 3 -8 100 100\\ 3 -7 85 85\\ 3 -6 72 72\\ 3 -5 61 61\\ 3 -4 52 52\\ 3 -3 45 45\\ 3 -2 40 40\\ 3 -1 37 37\\ 3 0 36 36\\ 3 1 37 37\\ 3 2 40 40\\ 3 3 45 45\\ 3 4 52 52\\ 3 5 61 61\\ 3 6 72 72\\ 3 7 85 85\\ 3 8 100 100\\ 3 9 117 117\\ 3 10 136 136\\ 4 -10 164 164\\ 4 -9 145 145\\ 4 -8 128 128\\ 4 -7 113 113\\ 4 -6 100 100\\ 4 -5 89 89\\ 4 -4 80 80\\ 4 -3 73 73\\ 4 -2 68 68\\ 4 -1 65 65\\ 4 0 64 64\\ 4 1 65 65\\ 4 2 68 68\\ 4 3 73 73\\ 4 4 80 80\\ 4 5 89 89\\ 4 6 100 100\\ 4 7 113 113\\ 4 8 128 128\\ 4 9 145 145\\ 4 10 164 164\\ 5 -10 200 200\\ 5 -9 181 181\\ 5 -8 164 164\\ 5 -7 149 149\\ 5 -6 136 136\\ 5 -5 125 125\\ 5 -4 116 116\\ 5 -3 109 109\\ 5 -2 104 104\\ 5 -1 101 101\\ 5 0 100 100\\ 5 1 101 101\\ 5 2 104 104\\ 5 3 109 109\\ 5 4 116 116\\ 5 5 125 125\\ 5 6 136 136\\ 5 7 149 149\\ 5 8 164 164\\ 5 9 181 181\\ 5 10 200 200\\ 6 -10 244 244\\ 6 -9 225 225\\ 6 -8 208 208\\ 6 -7 193 193\\ 6 -6 180 180\\ 6 -5 169 169\\ 6 -4 160 160\\ 6 -3 153 153\\ 6 -2 148 148\\ 6 -1 145 145\\ 6 0 144 144\\ 6 1 145 145\\ 6 2 148 148\\ 6 3 153 153\\ 6 4 160 160\\ 6 5 169 169\\ 6 6 180 180\\ 6 7 193 193\\ 6 8 208 208\\ 6 9 225 225\\ 6 10 244 244\\ 7 -10 296 296\\ 7 -9 277 277\\ 7 -8 260 260\\ 7 -7 245 245\\ 7 -6 232 232\\ 7 -5 221 221\\ 7 -4 212 212\\ 7 -3 205 205\\ 7 -2 200 200\\ 7 -1 197 197\\ 7 0 196 196\\ 7 1 197 197\\ 7 2 200 200\\ 7 3 205 205\\ 7 4 212 212\\ 7 5 221 221\\ 7 6 232 232\\ 7 7 245 245\\ 7 8 260 260\\ 7 9 277 277\\ 7 10 296 296\\ 8 -10 356 356\\ 8 -9 337 337\\ 8 -8 320 320\\ 8 -7 305 305\\ 8 -6 292 292\\ 8 -5 281 281\\ 8 -4 272 272\\ 8 -3 265 265\\ 8 -2 260 260\\ 8 -1 257 257\\ 8 0 256 256\\ 8 1 257 257\\ 8 2 260 260\\ 8 3 265 265\\ 8 4 272 272\\ 8 5 281 281\\ 8 6 292 292\\ 8 7 305 305\\ 8 8 320 320\\ 8 9 337 337\\ 8 10 356 356\\ 9 -10 424 424\\ 9 -9 405 405\\ 9 -8 388 388\\ 9 -7 373 373\\ 9 -6 360 360\\ 9 -5 349 349\\ 9 -4 340 340\\ 9 -3 333 333\\ 9 -2 328 328\\ 9 -1 325 325\\ 9 0 324 324\\ 9 1 325 325\\ 9 2 328 328\\ 9 3 333 333\\ 9 4 340 340\\ 9 5 349 349\\ 9 6 360 360\\ 9 7 373 373\\ 9 8 388 388\\ 9 9 405 405\\ 9 10 424 424\\ 10 -10 500 500\\ 10 -9 481 481\\ 10 -8 464 464\\ 10 -7 449 449\\ 10 -6 436 436\\ 10 -5 425 425\\ 10 -4 416 416\\ 10 -3 409 409\\ 10 -2 404 404\\ 10 -1 401 401\\ 10 0 400 400\\ 10 1 401 401\\ 10 2 404 404\\ 10 3 409 409\\ 10 4 416 416\\ 10 5 425 425\\ 10 6 436 436\\ 10 7 449 449\\ 10 8 464 464\\ 10 9 481 481\\ 10 10 500 500\\ }; \end{axis} \begin{axis}[% width=0.737in, height=1.524in, at={(4.654in,2.609in)}, scale only axis, xmin=-10, xmax=10, tick align=outside, ymin=-10, ymax=10, zmin=0, zmax=600, view={-37.5}{30}, axis background/.style={fill=white}, title style={font=\bfseries}, title={u=5}, axis x line*=bottom, axis y line*=left, axis z line*=left, xmajorgrids, ymajorgrids, zmajorgrids ] \addplot3[% surf, shader=flat, z buffer=sort, colormap={mymap}{[1pt] rgb(0pt)=(0.2422,0.1504,0.6603); rgb(1pt)=(0.2444,0.1534,0.6728); rgb(2pt)=(0.2464,0.1569,0.6847); rgb(3pt)=(0.2484,0.1607,0.6961); rgb(4pt)=(0.2503,0.1648,0.7071); rgb(5pt)=(0.2522,0.1689,0.7179); rgb(6pt)=(0.254,0.1732,0.7286); rgb(7pt)=(0.2558,0.1773,0.7393); rgb(8pt)=(0.2576,0.1814,0.7501); rgb(9pt)=(0.2594,0.1854,0.761); rgb(11pt)=(0.2628,0.1932,0.7828); rgb(12pt)=(0.2645,0.1972,0.7937); rgb(13pt)=(0.2661,0.2011,0.8043); rgb(14pt)=(0.2676,0.2052,0.8148); rgb(15pt)=(0.2691,0.2094,0.8249); rgb(16pt)=(0.2704,0.2138,0.8346); rgb(17pt)=(0.2717,0.2184,0.8439); rgb(18pt)=(0.2729,0.2231,0.8528); rgb(19pt)=(0.274,0.228,0.8612); rgb(20pt)=(0.2749,0.233,0.8692); rgb(21pt)=(0.2758,0.2382,0.8767); rgb(22pt)=(0.2766,0.2435,0.884); rgb(23pt)=(0.2774,0.2489,0.8908); rgb(24pt)=(0.2781,0.2543,0.8973); rgb(25pt)=(0.2788,0.2598,0.9035); rgb(26pt)=(0.2794,0.2653,0.9094); rgb(27pt)=(0.2798,0.2708,0.915); rgb(28pt)=(0.2802,0.2764,0.9204); rgb(29pt)=(0.2806,0.2819,0.9255); rgb(30pt)=(0.2809,0.2875,0.9305); rgb(31pt)=(0.2811,0.293,0.9352); rgb(32pt)=(0.2813,0.2985,0.9397); rgb(33pt)=(0.2814,0.304,0.9441); rgb(34pt)=(0.2814,0.3095,0.9483); rgb(35pt)=(0.2813,0.315,0.9524); rgb(36pt)=(0.2811,0.3204,0.9563); rgb(37pt)=(0.2809,0.3259,0.96); rgb(38pt)=(0.2807,0.3313,0.9636); rgb(39pt)=(0.2803,0.3367,0.967); rgb(40pt)=(0.2798,0.3421,0.9702); rgb(41pt)=(0.2791,0.3475,0.9733); rgb(42pt)=(0.2784,0.3529,0.9763); rgb(43pt)=(0.2776,0.3583,0.9791); rgb(44pt)=(0.2766,0.3638,0.9817); rgb(45pt)=(0.2754,0.3693,0.984); rgb(46pt)=(0.2741,0.3748,0.9862); rgb(47pt)=(0.2726,0.3804,0.9881); rgb(48pt)=(0.271,0.386,0.9898); rgb(49pt)=(0.2691,0.3916,0.9912); rgb(50pt)=(0.267,0.3973,0.9924); rgb(51pt)=(0.2647,0.403,0.9935); rgb(52pt)=(0.2621,0.4088,0.9946); rgb(53pt)=(0.2591,0.4145,0.9955); rgb(54pt)=(0.2556,0.4203,0.9965); rgb(55pt)=(0.2517,0.4261,0.9974); rgb(56pt)=(0.2473,0.4319,0.9983); rgb(57pt)=(0.2424,0.4378,0.9991); rgb(58pt)=(0.2369,0.4437,0.9996); rgb(59pt)=(0.2311,0.4497,0.9995); rgb(60pt)=(0.225,0.4559,0.9985); rgb(61pt)=(0.2189,0.462,0.9968); rgb(62pt)=(0.2128,0.4682,0.9948); rgb(63pt)=(0.2066,0.4743,0.9926); rgb(64pt)=(0.2006,0.4803,0.9906); rgb(65pt)=(0.195,0.4861,0.9887); rgb(66pt)=(0.1903,0.4919,0.9867); rgb(67pt)=(0.1869,0.4975,0.9844); rgb(68pt)=(0.1847,0.503,0.9819); rgb(69pt)=(0.1831,0.5084,0.9793); rgb(70pt)=(0.1818,0.5138,0.9766); rgb(71pt)=(0.1806,0.5191,0.9738); rgb(72pt)=(0.1795,0.5244,0.9709); rgb(73pt)=(0.1785,0.5296,0.9677); rgb(74pt)=(0.1778,0.5349,0.9641); rgb(75pt)=(0.1773,0.5401,0.9602); rgb(76pt)=(0.1768,0.5452,0.956); rgb(77pt)=(0.1764,0.5504,0.9516); rgb(78pt)=(0.1755,0.5554,0.9473); rgb(79pt)=(0.174,0.5605,0.9432); rgb(80pt)=(0.1716,0.5655,0.9393); rgb(81pt)=(0.1686,0.5705,0.9357); rgb(82pt)=(0.1649,0.5755,0.9323); rgb(83pt)=(0.161,0.5805,0.9289); rgb(84pt)=(0.1573,0.5854,0.9254); rgb(85pt)=(0.154,0.5902,0.9218); rgb(86pt)=(0.1513,0.595,0.9182); rgb(87pt)=(0.1492,0.5997,0.9147); rgb(88pt)=(0.1475,0.6043,0.9113); rgb(89pt)=(0.1461,0.6089,0.908); rgb(90pt)=(0.1446,0.6135,0.905); rgb(91pt)=(0.1429,0.618,0.9022); rgb(92pt)=(0.1408,0.6226,0.8998); rgb(93pt)=(0.1383,0.6272,0.8975); rgb(94pt)=(0.1354,0.6317,0.8953); rgb(95pt)=(0.1321,0.6363,0.8932); rgb(96pt)=(0.1288,0.6408,0.891); rgb(97pt)=(0.1253,0.6453,0.8887); rgb(98pt)=(0.1219,0.6497,0.8862); rgb(99pt)=(0.1185,0.6541,0.8834); rgb(100pt)=(0.1152,0.6584,0.8804); rgb(101pt)=(0.1119,0.6627,0.877); rgb(102pt)=(0.1085,0.6669,0.8734); rgb(103pt)=(0.1048,0.671,0.8695); rgb(104pt)=(0.1009,0.675,0.8653); rgb(105pt)=(0.0964,0.6789,0.8609); rgb(106pt)=(0.0914,0.6828,0.8562); rgb(107pt)=(0.0855,0.6865,0.8513); rgb(108pt)=(0.0789,0.6902,0.8462); rgb(109pt)=(0.0713,0.6938,0.8409); rgb(110pt)=(0.0628,0.6972,0.8355); rgb(111pt)=(0.0535,0.7006,0.8299); rgb(112pt)=(0.0433,0.7039,0.8242); rgb(113pt)=(0.0328,0.7071,0.8183); rgb(114pt)=(0.0234,0.7103,0.8124); rgb(115pt)=(0.0155,0.7133,0.8064); rgb(116pt)=(0.0091,0.7163,0.8003); rgb(117pt)=(0.0046,0.7192,0.7941); rgb(118pt)=(0.0019,0.722,0.7878); rgb(119pt)=(0.0009,0.7248,0.7815); rgb(120pt)=(0.0018,0.7275,0.7752); rgb(121pt)=(0.0046,0.7301,0.7688); rgb(122pt)=(0.0094,0.7327,0.7623); rgb(123pt)=(0.0162,0.7352,0.7558); rgb(124pt)=(0.0253,0.7376,0.7492); rgb(125pt)=(0.0369,0.74,0.7426); rgb(126pt)=(0.0504,0.7423,0.7359); rgb(127pt)=(0.0638,0.7446,0.7292); rgb(128pt)=(0.077,0.7468,0.7224); rgb(129pt)=(0.0899,0.7489,0.7156); rgb(130pt)=(0.1023,0.751,0.7088); rgb(131pt)=(0.1141,0.7531,0.7019); rgb(132pt)=(0.1252,0.7552,0.695); rgb(133pt)=(0.1354,0.7572,0.6881); rgb(134pt)=(0.1448,0.7593,0.6812); rgb(135pt)=(0.1532,0.7614,0.6741); rgb(136pt)=(0.1609,0.7635,0.6671); rgb(137pt)=(0.1678,0.7656,0.6599); rgb(138pt)=(0.1741,0.7678,0.6527); rgb(139pt)=(0.1799,0.7699,0.6454); rgb(140pt)=(0.1853,0.7721,0.6379); rgb(141pt)=(0.1905,0.7743,0.6303); rgb(142pt)=(0.1954,0.7765,0.6225); rgb(143pt)=(0.2003,0.7787,0.6146); rgb(144pt)=(0.2061,0.7808,0.6065); rgb(145pt)=(0.2118,0.7828,0.5983); rgb(146pt)=(0.2178,0.7849,0.5899); rgb(147pt)=(0.2244,0.7869,0.5813); rgb(148pt)=(0.2318,0.7887,0.5725); rgb(149pt)=(0.2401,0.7905,0.5636); rgb(150pt)=(0.2491,0.7922,0.5546); rgb(151pt)=(0.2589,0.7937,0.5454); rgb(152pt)=(0.2695,0.7951,0.536); rgb(153pt)=(0.2809,0.7964,0.5266); rgb(154pt)=(0.2929,0.7975,0.517); rgb(155pt)=(0.3052,0.7985,0.5074); rgb(156pt)=(0.3176,0.7994,0.4975); rgb(157pt)=(0.3301,0.8002,0.4876); rgb(158pt)=(0.3424,0.8009,0.4774); rgb(159pt)=(0.3548,0.8016,0.4669); rgb(160pt)=(0.3671,0.8021,0.4563); rgb(161pt)=(0.3795,0.8026,0.4454); rgb(162pt)=(0.3921,0.8029,0.4344); rgb(163pt)=(0.405,0.8031,0.4233); rgb(164pt)=(0.4184,0.803,0.4122); rgb(165pt)=(0.4322,0.8028,0.4013); rgb(166pt)=(0.4463,0.8024,0.3904); rgb(167pt)=(0.4608,0.8018,0.3797); rgb(168pt)=(0.4753,0.8011,0.3691); rgb(169pt)=(0.4899,0.8002,0.3586); rgb(170pt)=(0.5044,0.7993,0.348); rgb(171pt)=(0.5187,0.7982,0.3374); rgb(172pt)=(0.5329,0.797,0.3267); rgb(173pt)=(0.547,0.7957,0.3159); rgb(175pt)=(0.5748,0.7929,0.2941); rgb(176pt)=(0.5886,0.7913,0.2833); rgb(177pt)=(0.6024,0.7896,0.2726); rgb(178pt)=(0.6161,0.7878,0.2622); rgb(179pt)=(0.6297,0.7859,0.2521); rgb(180pt)=(0.6433,0.7839,0.2423); rgb(181pt)=(0.6567,0.7818,0.2329); rgb(182pt)=(0.6701,0.7796,0.2239); rgb(183pt)=(0.6833,0.7773,0.2155); rgb(184pt)=(0.6963,0.775,0.2075); rgb(185pt)=(0.7091,0.7727,0.1998); rgb(186pt)=(0.7218,0.7703,0.1924); rgb(187pt)=(0.7344,0.7679,0.1852); rgb(188pt)=(0.7468,0.7654,0.1782); rgb(189pt)=(0.759,0.7629,0.1717); rgb(190pt)=(0.771,0.7604,0.1658); rgb(191pt)=(0.7829,0.7579,0.1608); rgb(192pt)=(0.7945,0.7554,0.157); rgb(193pt)=(0.806,0.7529,0.1546); rgb(194pt)=(0.8172,0.7505,0.1535); rgb(195pt)=(0.8281,0.7481,0.1536); rgb(196pt)=(0.8389,0.7457,0.1546); rgb(197pt)=(0.8495,0.7435,0.1564); rgb(198pt)=(0.86,0.7413,0.1587); rgb(199pt)=(0.8703,0.7392,0.1615); rgb(200pt)=(0.8804,0.7372,0.165); rgb(201pt)=(0.8903,0.7353,0.1695); rgb(202pt)=(0.9,0.7336,0.1749); rgb(203pt)=(0.9093,0.7321,0.1815); rgb(204pt)=(0.9184,0.7308,0.189); rgb(205pt)=(0.9272,0.7298,0.1973); rgb(206pt)=(0.9357,0.729,0.2061); rgb(207pt)=(0.944,0.7285,0.2151); rgb(208pt)=(0.9523,0.7284,0.2237); rgb(209pt)=(0.9606,0.7285,0.2312); rgb(210pt)=(0.9689,0.7292,0.2373); rgb(211pt)=(0.977,0.7304,0.2418); rgb(212pt)=(0.9842,0.733,0.2446); rgb(213pt)=(0.99,0.7365,0.2429); rgb(214pt)=(0.9946,0.7407,0.2394); rgb(215pt)=(0.9966,0.7458,0.2351); rgb(216pt)=(0.9971,0.7513,0.2309); rgb(217pt)=(0.9972,0.7569,0.2267); rgb(218pt)=(0.9971,0.7626,0.2224); rgb(219pt)=(0.9969,0.7683,0.2181); rgb(220pt)=(0.9966,0.774,0.2138); rgb(221pt)=(0.9962,0.7798,0.2095); rgb(222pt)=(0.9957,0.7856,0.2053); rgb(223pt)=(0.9949,0.7915,0.2012); rgb(224pt)=(0.9938,0.7974,0.1974); rgb(225pt)=(0.9923,0.8034,0.1939); rgb(226pt)=(0.9906,0.8095,0.1906); rgb(227pt)=(0.9885,0.8156,0.1875); rgb(228pt)=(0.9861,0.8218,0.1846); rgb(229pt)=(0.9835,0.828,0.1817); rgb(230pt)=(0.9807,0.8342,0.1787); rgb(231pt)=(0.9778,0.8404,0.1757); rgb(232pt)=(0.9748,0.8467,0.1726); rgb(233pt)=(0.972,0.8529,0.1695); rgb(234pt)=(0.9694,0.8591,0.1665); rgb(235pt)=(0.9671,0.8654,0.1636); rgb(236pt)=(0.9651,0.8716,0.1608); rgb(237pt)=(0.9634,0.8778,0.1582); rgb(238pt)=(0.9619,0.884,0.1557); rgb(239pt)=(0.9608,0.8902,0.1532); rgb(240pt)=(0.9601,0.8963,0.1507); rgb(241pt)=(0.9596,0.9023,0.148); rgb(242pt)=(0.9595,0.9084,0.145); rgb(243pt)=(0.9597,0.9143,0.1418); rgb(244pt)=(0.9601,0.9203,0.1382); rgb(245pt)=(0.9608,0.9262,0.1344); rgb(246pt)=(0.9618,0.932,0.1304); rgb(247pt)=(0.9629,0.9379,0.1261); rgb(248pt)=(0.9642,0.9437,0.1216); rgb(249pt)=(0.9657,0.9494,0.1168); rgb(250pt)=(0.9674,0.9552,0.1116); rgb(251pt)=(0.9692,0.9609,0.1061); rgb(252pt)=(0.9711,0.9667,0.1001); rgb(253pt)=(0.973,0.9724,0.0938); rgb(254pt)=(0.9749,0.9782,0.0872); rgb(255pt)=(0.9769,0.9839,0.0805)}, mesh/rows=21] table[row sep=crcr, point meta=\thisrow{c}] {% % x y z c\\ -10 -10 600 600\\ -10 -9 581 581\\ -10 -8 564 564\\ -10 -7 549 549\\ -10 -6 536 536\\ -10 -5 525 525\\ -10 -4 516 516\\ -10 -3 509 509\\ -10 -2 504 504\\ -10 -1 501 501\\ -10 0 500 500\\ -10 1 501 501\\ -10 2 504 504\\ -10 3 509 509\\ -10 4 516 516\\ -10 5 525 525\\ -10 6 536 536\\ -10 7 549 549\\ -10 8 564 564\\ -10 9 581 581\\ -10 10 600 600\\ -9 -10 505 505\\ -9 -9 486 486\\ -9 -8 469 469\\ -9 -7 454 454\\ -9 -6 441 441\\ -9 -5 430 430\\ -9 -4 421 421\\ -9 -3 414 414\\ -9 -2 409 409\\ -9 -1 406 406\\ -9 0 405 405\\ -9 1 406 406\\ -9 2 409 409\\ -9 3 414 414\\ -9 4 421 421\\ -9 5 430 430\\ -9 6 441 441\\ -9 7 454 454\\ -9 8 469 469\\ -9 9 486 486\\ -9 10 505 505\\ -8 -10 420 420\\ -8 -9 401 401\\ -8 -8 384 384\\ -8 -7 369 369\\ -8 -6 356 356\\ -8 -5 345 345\\ -8 -4 336 336\\ -8 -3 329 329\\ -8 -2 324 324\\ -8 -1 321 321\\ -8 0 320 320\\ -8 1 321 321\\ -8 2 324 324\\ -8 3 329 329\\ -8 4 336 336\\ -8 5 345 345\\ -8 6 356 356\\ -8 7 369 369\\ -8 8 384 384\\ -8 9 401 401\\ -8 10 420 420\\ -7 -10 345 345\\ -7 -9 326 326\\ -7 -8 309 309\\ -7 -7 294 294\\ -7 -6 281 281\\ -7 -5 270 270\\ -7 -4 261 261\\ -7 -3 254 254\\ -7 -2 249 249\\ -7 -1 246 246\\ -7 0 245 245\\ -7 1 246 246\\ -7 2 249 249\\ -7 3 254 254\\ -7 4 261 261\\ -7 5 270 270\\ -7 6 281 281\\ -7 7 294 294\\ -7 8 309 309\\ -7 9 326 326\\ -7 10 345 345\\ -6 -10 280 280\\ -6 -9 261 261\\ -6 -8 244 244\\ -6 -7 229 229\\ -6 -6 216 216\\ -6 -5 205 205\\ -6 -4 196 196\\ -6 -3 189 189\\ -6 -2 184 184\\ -6 -1 181 181\\ -6 0 180 180\\ -6 1 181 181\\ -6 2 184 184\\ -6 3 189 189\\ -6 4 196 196\\ -6 5 205 205\\ -6 6 216 216\\ -6 7 229 229\\ -6 8 244 244\\ -6 9 261 261\\ -6 10 280 280\\ -5 -10 225 225\\ -5 -9 206 206\\ -5 -8 189 189\\ -5 -7 174 174\\ -5 -6 161 161\\ -5 -5 150 150\\ -5 -4 141 141\\ -5 -3 134 134\\ -5 -2 129 129\\ -5 -1 126 126\\ -5 0 125 125\\ -5 1 126 126\\ -5 2 129 129\\ -5 3 134 134\\ -5 4 141 141\\ -5 5 150 150\\ -5 6 161 161\\ -5 7 174 174\\ -5 8 189 189\\ -5 9 206 206\\ -5 10 225 225\\ -4 -10 180 180\\ -4 -9 161 161\\ -4 -8 144 144\\ -4 -7 129 129\\ -4 -6 116 116\\ -4 -5 105 105\\ -4 -4 96 96\\ -4 -3 89 89\\ -4 -2 84 84\\ -4 -1 81 81\\ -4 0 80 80\\ -4 1 81 81\\ -4 2 84 84\\ -4 3 89 89\\ -4 4 96 96\\ -4 5 105 105\\ -4 6 116 116\\ -4 7 129 129\\ -4 8 144 144\\ -4 9 161 161\\ -4 10 180 180\\ -3 -10 145 145\\ -3 -9 126 126\\ -3 -8 109 109\\ -3 -7 94 94\\ -3 -6 81 81\\ -3 -5 70 70\\ -3 -4 61 61\\ -3 -3 54 54\\ -3 -2 49 49\\ -3 -1 46 46\\ -3 0 45 45\\ -3 1 46 46\\ -3 2 49 49\\ -3 3 54 54\\ -3 4 61 61\\ -3 5 70 70\\ -3 6 81 81\\ -3 7 94 94\\ -3 8 109 109\\ -3 9 126 126\\ -3 10 145 145\\ -2 -10 120 120\\ -2 -9 101 101\\ -2 -8 84 84\\ -2 -7 69 69\\ -2 -6 56 56\\ -2 -5 45 45\\ -2 -4 36 36\\ -2 -3 29 29\\ -2 -2 24 24\\ -2 -1 21 21\\ -2 0 20 20\\ -2 1 21 21\\ -2 2 24 24\\ -2 3 29 29\\ -2 4 36 36\\ -2 5 45 45\\ -2 6 56 56\\ -2 7 69 69\\ -2 8 84 84\\ -2 9 101 101\\ -2 10 120 120\\ -1 -10 105 105\\ -1 -9 86 86\\ -1 -8 69 69\\ -1 -7 54 54\\ -1 -6 41 41\\ -1 -5 30 30\\ -1 -4 21 21\\ -1 -3 14 14\\ -1 -2 9 9\\ -1 -1 6 6\\ -1 0 5 5\\ -1 1 6 6\\ -1 2 9 9\\ -1 3 14 14\\ -1 4 21 21\\ -1 5 30 30\\ -1 6 41 41\\ -1 7 54 54\\ -1 8 69 69\\ -1 9 86 86\\ -1 10 105 105\\ 0 -10 100 100\\ 0 -9 81 81\\ 0 -8 64 64\\ 0 -7 49 49\\ 0 -6 36 36\\ 0 -5 25 25\\ 0 -4 16 16\\ 0 -3 9 9\\ 0 -2 4 4\\ 0 -1 1 1\\ 0 0 0 0\\ 0 1 1 1\\ 0 2 4 4\\ 0 3 9 9\\ 0 4 16 16\\ 0 5 25 25\\ 0 6 36 36\\ 0 7 49 49\\ 0 8 64 64\\ 0 9 81 81\\ 0 10 100 100\\ 1 -10 105 105\\ 1 -9 86 86\\ 1 -8 69 69\\ 1 -7 54 54\\ 1 -6 41 41\\ 1 -5 30 30\\ 1 -4 21 21\\ 1 -3 14 14\\ 1 -2 9 9\\ 1 -1 6 6\\ 1 0 5 5\\ 1 1 6 6\\ 1 2 9 9\\ 1 3 14 14\\ 1 4 21 21\\ 1 5 30 30\\ 1 6 41 41\\ 1 7 54 54\\ 1 8 69 69\\ 1 9 86 86\\ 1 10 105 105\\ 2 -10 120 120\\ 2 -9 101 101\\ 2 -8 84 84\\ 2 -7 69 69\\ 2 -6 56 56\\ 2 -5 45 45\\ 2 -4 36 36\\ 2 -3 29 29\\ 2 -2 24 24\\ 2 -1 21 21\\ 2 0 20 20\\ 2 1 21 21\\ 2 2 24 24\\ 2 3 29 29\\ 2 4 36 36\\ 2 5 45 45\\ 2 6 56 56\\ 2 7 69 69\\ 2 8 84 84\\ 2 9 101 101\\ 2 10 120 120\\ 3 -10 145 145\\ 3 -9 126 126\\ 3 -8 109 109\\ 3 -7 94 94\\ 3 -6 81 81\\ 3 -5 70 70\\ 3 -4 61 61\\ 3 -3 54 54\\ 3 -2 49 49\\ 3 -1 46 46\\ 3 0 45 45\\ 3 1 46 46\\ 3 2 49 49\\ 3 3 54 54\\ 3 4 61 61\\ 3 5 70 70\\ 3 6 81 81\\ 3 7 94 94\\ 3 8 109 109\\ 3 9 126 126\\ 3 10 145 145\\ 4 -10 180 180\\ 4 -9 161 161\\ 4 -8 144 144\\ 4 -7 129 129\\ 4 -6 116 116\\ 4 -5 105 105\\ 4 -4 96 96\\ 4 -3 89 89\\ 4 -2 84 84\\ 4 -1 81 81\\ 4 0 80 80\\ 4 1 81 81\\ 4 2 84 84\\ 4 3 89 89\\ 4 4 96 96\\ 4 5 105 105\\ 4 6 116 116\\ 4 7 129 129\\ 4 8 144 144\\ 4 9 161 161\\ 4 10 180 180\\ 5 -10 225 225\\ 5 -9 206 206\\ 5 -8 189 189\\ 5 -7 174 174\\ 5 -6 161 161\\ 5 -5 150 150\\ 5 -4 141 141\\ 5 -3 134 134\\ 5 -2 129 129\\ 5 -1 126 126\\ 5 0 125 125\\ 5 1 126 126\\ 5 2 129 129\\ 5 3 134 134\\ 5 4 141 141\\ 5 5 150 150\\ 5 6 161 161\\ 5 7 174 174\\ 5 8 189 189\\ 5 9 206 206\\ 5 10 225 225\\ 6 -10 280 280\\ 6 -9 261 261\\ 6 -8 244 244\\ 6 -7 229 229\\ 6 -6 216 216\\ 6 -5 205 205\\ 6 -4 196 196\\ 6 -3 189 189\\ 6 -2 184 184\\ 6 -1 181 181\\ 6 0 180 180\\ 6 1 181 181\\ 6 2 184 184\\ 6 3 189 189\\ 6 4 196 196\\ 6 5 205 205\\ 6 6 216 216\\ 6 7 229 229\\ 6 8 244 244\\ 6 9 261 261\\ 6 10 280 280\\ 7 -10 345 345\\ 7 -9 326 326\\ 7 -8 309 309\\ 7 -7 294 294\\ 7 -6 281 281\\ 7 -5 270 270\\ 7 -4 261 261\\ 7 -3 254 254\\ 7 -2 249 249\\ 7 -1 246 246\\ 7 0 245 245\\ 7 1 246 246\\ 7 2 249 249\\ 7 3 254 254\\ 7 4 261 261\\ 7 5 270 270\\ 7 6 281 281\\ 7 7 294 294\\ 7 8 309 309\\ 7 9 326 326\\ 7 10 345 345\\ 8 -10 420 420\\ 8 -9 401 401\\ 8 -8 384 384\\ 8 -7 369 369\\ 8 -6 356 356\\ 8 -5 345 345\\ 8 -4 336 336\\ 8 -3 329 329\\ 8 -2 324 324\\ 8 -1 321 321\\ 8 0 320 320\\ 8 1 321 321\\ 8 2 324 324\\ 8 3 329 329\\ 8 4 336 336\\ 8 5 345 345\\ 8 6 356 356\\ 8 7 369 369\\ 8 8 384 384\\ 8 9 401 401\\ 8 10 420 420\\ 9 -10 505 505\\ 9 -9 486 486\\ 9 -8 469 469\\ 9 -7 454 454\\ 9 -6 441 441\\ 9 -5 430 430\\ 9 -4 421 421\\ 9 -3 414 414\\ 9 -2 409 409\\ 9 -1 406 406\\ 9 0 405 405\\ 9 1 406 406\\ 9 2 409 409\\ 9 3 414 414\\ 9 4 421 421\\ 9 5 430 430\\ 9 6 441 441\\ 9 7 454 454\\ 9 8 469 469\\ 9 9 486 486\\ 9 10 505 505\\ 10 -10 600 600\\ 10 -9 581 581\\ 10 -8 564 564\\ 10 -7 549 549\\ 10 -6 536 536\\ 10 -5 525 525\\ 10 -4 516 516\\ 10 -3 509 509\\ 10 -2 504 504\\ 10 -1 501 501\\ 10 0 500 500\\ 10 1 501 501\\ 10 2 504 504\\ 10 3 509 509\\ 10 4 516 516\\ 10 5 525 525\\ 10 6 536 536\\ 10 7 549 549\\ 10 8 564 564\\ 10 9 581 581\\ 10 10 600 600\\ }; \end{axis} \begin{axis}[% width=0.737in, height=1.524in, at={(0.774in,0.491in)}, scale only axis, xmin=-10, xmax=10, tick align=outside, ymin=-10, ymax=10, zmin=0, zmax=700, view={-37.5}{30}, axis background/.style={fill=white}, title style={font=\bfseries}, title={u=6}, axis x line*=bottom, axis y line*=left, axis z line*=left, xmajorgrids, ymajorgrids, zmajorgrids ] \addplot3[% surf, shader=flat, z buffer=sort, colormap={mymap}{[1pt] rgb(0pt)=(0.2422,0.1504,0.6603); rgb(1pt)=(0.2444,0.1534,0.6728); rgb(2pt)=(0.2464,0.1569,0.6847); rgb(3pt)=(0.2484,0.1607,0.6961); rgb(4pt)=(0.2503,0.1648,0.7071); rgb(5pt)=(0.2522,0.1689,0.7179); rgb(6pt)=(0.254,0.1732,0.7286); rgb(7pt)=(0.2558,0.1773,0.7393); rgb(8pt)=(0.2576,0.1814,0.7501); rgb(9pt)=(0.2594,0.1854,0.761); rgb(11pt)=(0.2628,0.1932,0.7828); rgb(12pt)=(0.2645,0.1972,0.7937); rgb(13pt)=(0.2661,0.2011,0.8043); rgb(14pt)=(0.2676,0.2052,0.8148); rgb(15pt)=(0.2691,0.2094,0.8249); rgb(16pt)=(0.2704,0.2138,0.8346); rgb(17pt)=(0.2717,0.2184,0.8439); rgb(18pt)=(0.2729,0.2231,0.8528); rgb(19pt)=(0.274,0.228,0.8612); rgb(20pt)=(0.2749,0.233,0.8692); rgb(21pt)=(0.2758,0.2382,0.8767); rgb(22pt)=(0.2766,0.2435,0.884); rgb(23pt)=(0.2774,0.2489,0.8908); rgb(24pt)=(0.2781,0.2543,0.8973); rgb(25pt)=(0.2788,0.2598,0.9035); rgb(26pt)=(0.2794,0.2653,0.9094); rgb(27pt)=(0.2798,0.2708,0.915); rgb(28pt)=(0.2802,0.2764,0.9204); rgb(29pt)=(0.2806,0.2819,0.9255); rgb(30pt)=(0.2809,0.2875,0.9305); rgb(31pt)=(0.2811,0.293,0.9352); rgb(32pt)=(0.2813,0.2985,0.9397); rgb(33pt)=(0.2814,0.304,0.9441); rgb(34pt)=(0.2814,0.3095,0.9483); rgb(35pt)=(0.2813,0.315,0.9524); rgb(36pt)=(0.2811,0.3204,0.9563); rgb(37pt)=(0.2809,0.3259,0.96); rgb(38pt)=(0.2807,0.3313,0.9636); rgb(39pt)=(0.2803,0.3367,0.967); rgb(40pt)=(0.2798,0.3421,0.9702); rgb(41pt)=(0.2791,0.3475,0.9733); rgb(42pt)=(0.2784,0.3529,0.9763); rgb(43pt)=(0.2776,0.3583,0.9791); rgb(44pt)=(0.2766,0.3638,0.9817); rgb(45pt)=(0.2754,0.3693,0.984); rgb(46pt)=(0.2741,0.3748,0.9862); rgb(47pt)=(0.2726,0.3804,0.9881); rgb(48pt)=(0.271,0.386,0.9898); rgb(49pt)=(0.2691,0.3916,0.9912); rgb(50pt)=(0.267,0.3973,0.9924); rgb(51pt)=(0.2647,0.403,0.9935); rgb(52pt)=(0.2621,0.4088,0.9946); rgb(53pt)=(0.2591,0.4145,0.9955); rgb(54pt)=(0.2556,0.4203,0.9965); rgb(55pt)=(0.2517,0.4261,0.9974); rgb(56pt)=(0.2473,0.4319,0.9983); rgb(57pt)=(0.2424,0.4378,0.9991); rgb(58pt)=(0.2369,0.4437,0.9996); rgb(59pt)=(0.2311,0.4497,0.9995); rgb(60pt)=(0.225,0.4559,0.9985); rgb(61pt)=(0.2189,0.462,0.9968); rgb(62pt)=(0.2128,0.4682,0.9948); rgb(63pt)=(0.2066,0.4743,0.9926); rgb(64pt)=(0.2006,0.4803,0.9906); rgb(65pt)=(0.195,0.4861,0.9887); rgb(66pt)=(0.1903,0.4919,0.9867); rgb(67pt)=(0.1869,0.4975,0.9844); rgb(68pt)=(0.1847,0.503,0.9819); rgb(69pt)=(0.1831,0.5084,0.9793); rgb(70pt)=(0.1818,0.5138,0.9766); rgb(71pt)=(0.1806,0.5191,0.9738); rgb(72pt)=(0.1795,0.5244,0.9709); rgb(73pt)=(0.1785,0.5296,0.9677); rgb(74pt)=(0.1778,0.5349,0.9641); rgb(75pt)=(0.1773,0.5401,0.9602); rgb(76pt)=(0.1768,0.5452,0.956); rgb(77pt)=(0.1764,0.5504,0.9516); rgb(78pt)=(0.1755,0.5554,0.9473); rgb(79pt)=(0.174,0.5605,0.9432); rgb(80pt)=(0.1716,0.5655,0.9393); rgb(81pt)=(0.1686,0.5705,0.9357); rgb(82pt)=(0.1649,0.5755,0.9323); rgb(83pt)=(0.161,0.5805,0.9289); rgb(84pt)=(0.1573,0.5854,0.9254); rgb(85pt)=(0.154,0.5902,0.9218); rgb(86pt)=(0.1513,0.595,0.9182); rgb(87pt)=(0.1492,0.5997,0.9147); rgb(88pt)=(0.1475,0.6043,0.9113); rgb(89pt)=(0.1461,0.6089,0.908); rgb(90pt)=(0.1446,0.6135,0.905); rgb(91pt)=(0.1429,0.618,0.9022); rgb(92pt)=(0.1408,0.6226,0.8998); rgb(93pt)=(0.1383,0.6272,0.8975); rgb(94pt)=(0.1354,0.6317,0.8953); rgb(95pt)=(0.1321,0.6363,0.8932); rgb(96pt)=(0.1288,0.6408,0.891); rgb(97pt)=(0.1253,0.6453,0.8887); rgb(98pt)=(0.1219,0.6497,0.8862); rgb(99pt)=(0.1185,0.6541,0.8834); rgb(100pt)=(0.1152,0.6584,0.8804); rgb(101pt)=(0.1119,0.6627,0.877); rgb(102pt)=(0.1085,0.6669,0.8734); rgb(103pt)=(0.1048,0.671,0.8695); rgb(104pt)=(0.1009,0.675,0.8653); rgb(105pt)=(0.0964,0.6789,0.8609); rgb(106pt)=(0.0914,0.6828,0.8562); rgb(107pt)=(0.0855,0.6865,0.8513); rgb(108pt)=(0.0789,0.6902,0.8462); rgb(109pt)=(0.0713,0.6938,0.8409); rgb(110pt)=(0.0628,0.6972,0.8355); rgb(111pt)=(0.0535,0.7006,0.8299); rgb(112pt)=(0.0433,0.7039,0.8242); rgb(113pt)=(0.0328,0.7071,0.8183); rgb(114pt)=(0.0234,0.7103,0.8124); rgb(115pt)=(0.0155,0.7133,0.8064); rgb(116pt)=(0.0091,0.7163,0.8003); rgb(117pt)=(0.0046,0.7192,0.7941); rgb(118pt)=(0.0019,0.722,0.7878); rgb(119pt)=(0.0009,0.7248,0.7815); rgb(120pt)=(0.0018,0.7275,0.7752); rgb(121pt)=(0.0046,0.7301,0.7688); rgb(122pt)=(0.0094,0.7327,0.7623); rgb(123pt)=(0.0162,0.7352,0.7558); rgb(124pt)=(0.0253,0.7376,0.7492); rgb(125pt)=(0.0369,0.74,0.7426); rgb(126pt)=(0.0504,0.7423,0.7359); rgb(127pt)=(0.0638,0.7446,0.7292); rgb(128pt)=(0.077,0.7468,0.7224); rgb(129pt)=(0.0899,0.7489,0.7156); rgb(130pt)=(0.1023,0.751,0.7088); rgb(131pt)=(0.1141,0.7531,0.7019); rgb(132pt)=(0.1252,0.7552,0.695); rgb(133pt)=(0.1354,0.7572,0.6881); rgb(134pt)=(0.1448,0.7593,0.6812); rgb(135pt)=(0.1532,0.7614,0.6741); rgb(136pt)=(0.1609,0.7635,0.6671); rgb(137pt)=(0.1678,0.7656,0.6599); rgb(138pt)=(0.1741,0.7678,0.6527); rgb(139pt)=(0.1799,0.7699,0.6454); rgb(140pt)=(0.1853,0.7721,0.6379); rgb(141pt)=(0.1905,0.7743,0.6303); rgb(142pt)=(0.1954,0.7765,0.6225); rgb(143pt)=(0.2003,0.7787,0.6146); rgb(144pt)=(0.2061,0.7808,0.6065); rgb(145pt)=(0.2118,0.7828,0.5983); rgb(146pt)=(0.2178,0.7849,0.5899); rgb(147pt)=(0.2244,0.7869,0.5813); rgb(148pt)=(0.2318,0.7887,0.5725); rgb(149pt)=(0.2401,0.7905,0.5636); rgb(150pt)=(0.2491,0.7922,0.5546); rgb(151pt)=(0.2589,0.7937,0.5454); rgb(152pt)=(0.2695,0.7951,0.536); rgb(153pt)=(0.2809,0.7964,0.5266); rgb(154pt)=(0.2929,0.7975,0.517); rgb(155pt)=(0.3052,0.7985,0.5074); rgb(156pt)=(0.3176,0.7994,0.4975); rgb(157pt)=(0.3301,0.8002,0.4876); rgb(158pt)=(0.3424,0.8009,0.4774); rgb(159pt)=(0.3548,0.8016,0.4669); rgb(160pt)=(0.3671,0.8021,0.4563); rgb(161pt)=(0.3795,0.8026,0.4454); rgb(162pt)=(0.3921,0.8029,0.4344); rgb(163pt)=(0.405,0.8031,0.4233); rgb(164pt)=(0.4184,0.803,0.4122); rgb(165pt)=(0.4322,0.8028,0.4013); rgb(166pt)=(0.4463,0.8024,0.3904); rgb(167pt)=(0.4608,0.8018,0.3797); rgb(168pt)=(0.4753,0.8011,0.3691); rgb(169pt)=(0.4899,0.8002,0.3586); rgb(170pt)=(0.5044,0.7993,0.348); rgb(171pt)=(0.5187,0.7982,0.3374); rgb(172pt)=(0.5329,0.797,0.3267); rgb(173pt)=(0.547,0.7957,0.3159); rgb(175pt)=(0.5748,0.7929,0.2941); rgb(176pt)=(0.5886,0.7913,0.2833); rgb(177pt)=(0.6024,0.7896,0.2726); rgb(178pt)=(0.6161,0.7878,0.2622); rgb(179pt)=(0.6297,0.7859,0.2521); rgb(180pt)=(0.6433,0.7839,0.2423); rgb(181pt)=(0.6567,0.7818,0.2329); rgb(182pt)=(0.6701,0.7796,0.2239); rgb(183pt)=(0.6833,0.7773,0.2155); rgb(184pt)=(0.6963,0.775,0.2075); rgb(185pt)=(0.7091,0.7727,0.1998); rgb(186pt)=(0.7218,0.7703,0.1924); rgb(187pt)=(0.7344,0.7679,0.1852); rgb(188pt)=(0.7468,0.7654,0.1782); rgb(189pt)=(0.759,0.7629,0.1717); rgb(190pt)=(0.771,0.7604,0.1658); rgb(191pt)=(0.7829,0.7579,0.1608); rgb(192pt)=(0.7945,0.7554,0.157); rgb(193pt)=(0.806,0.7529,0.1546); rgb(194pt)=(0.8172,0.7505,0.1535); rgb(195pt)=(0.8281,0.7481,0.1536); rgb(196pt)=(0.8389,0.7457,0.1546); rgb(197pt)=(0.8495,0.7435,0.1564); rgb(198pt)=(0.86,0.7413,0.1587); rgb(199pt)=(0.8703,0.7392,0.1615); rgb(200pt)=(0.8804,0.7372,0.165); rgb(201pt)=(0.8903,0.7353,0.1695); rgb(202pt)=(0.9,0.7336,0.1749); rgb(203pt)=(0.9093,0.7321,0.1815); rgb(204pt)=(0.9184,0.7308,0.189); rgb(205pt)=(0.9272,0.7298,0.1973); rgb(206pt)=(0.9357,0.729,0.2061); rgb(207pt)=(0.944,0.7285,0.2151); rgb(208pt)=(0.9523,0.7284,0.2237); rgb(209pt)=(0.9606,0.7285,0.2312); rgb(210pt)=(0.9689,0.7292,0.2373); rgb(211pt)=(0.977,0.7304,0.2418); rgb(212pt)=(0.9842,0.733,0.2446); rgb(213pt)=(0.99,0.7365,0.2429); rgb(214pt)=(0.9946,0.7407,0.2394); rgb(215pt)=(0.9966,0.7458,0.2351); rgb(216pt)=(0.9971,0.7513,0.2309); rgb(217pt)=(0.9972,0.7569,0.2267); rgb(218pt)=(0.9971,0.7626,0.2224); rgb(219pt)=(0.9969,0.7683,0.2181); rgb(220pt)=(0.9966,0.774,0.2138); rgb(221pt)=(0.9962,0.7798,0.2095); rgb(222pt)=(0.9957,0.7856,0.2053); rgb(223pt)=(0.9949,0.7915,0.2012); rgb(224pt)=(0.9938,0.7974,0.1974); rgb(225pt)=(0.9923,0.8034,0.1939); rgb(226pt)=(0.9906,0.8095,0.1906); rgb(227pt)=(0.9885,0.8156,0.1875); rgb(228pt)=(0.9861,0.8218,0.1846); rgb(229pt)=(0.9835,0.828,0.1817); rgb(230pt)=(0.9807,0.8342,0.1787); rgb(231pt)=(0.9778,0.8404,0.1757); rgb(232pt)=(0.9748,0.8467,0.1726); rgb(233pt)=(0.972,0.8529,0.1695); rgb(234pt)=(0.9694,0.8591,0.1665); rgb(235pt)=(0.9671,0.8654,0.1636); rgb(236pt)=(0.9651,0.8716,0.1608); rgb(237pt)=(0.9634,0.8778,0.1582); rgb(238pt)=(0.9619,0.884,0.1557); rgb(239pt)=(0.9608,0.8902,0.1532); rgb(240pt)=(0.9601,0.8963,0.1507); rgb(241pt)=(0.9596,0.9023,0.148); rgb(242pt)=(0.9595,0.9084,0.145); rgb(243pt)=(0.9597,0.9143,0.1418); rgb(244pt)=(0.9601,0.9203,0.1382); rgb(245pt)=(0.9608,0.9262,0.1344); rgb(246pt)=(0.9618,0.932,0.1304); rgb(247pt)=(0.9629,0.9379,0.1261); rgb(248pt)=(0.9642,0.9437,0.1216); rgb(249pt)=(0.9657,0.9494,0.1168); rgb(250pt)=(0.9674,0.9552,0.1116); rgb(251pt)=(0.9692,0.9609,0.1061); rgb(252pt)=(0.9711,0.9667,0.1001); rgb(253pt)=(0.973,0.9724,0.0938); rgb(254pt)=(0.9749,0.9782,0.0872); rgb(255pt)=(0.9769,0.9839,0.0805)}, mesh/rows=21] table[row sep=crcr, point meta=\thisrow{c}] {% % x y z c\\ -10 -10 700 700\\ -10 -9 681 681\\ -10 -8 664 664\\ -10 -7 649 649\\ -10 -6 636 636\\ -10 -5 625 625\\ -10 -4 616 616\\ -10 -3 609 609\\ -10 -2 604 604\\ -10 -1 601 601\\ -10 0 600 600\\ -10 1 601 601\\ -10 2 604 604\\ -10 3 609 609\\ -10 4 616 616\\ -10 5 625 625\\ -10 6 636 636\\ -10 7 649 649\\ -10 8 664 664\\ -10 9 681 681\\ -10 10 700 700\\ -9 -10 586 586\\ -9 -9 567 567\\ -9 -8 550 550\\ -9 -7 535 535\\ -9 -6 522 522\\ -9 -5 511 511\\ -9 -4 502 502\\ -9 -3 495 495\\ -9 -2 490 490\\ -9 -1 487 487\\ -9 0 486 486\\ -9 1 487 487\\ -9 2 490 490\\ -9 3 495 495\\ -9 4 502 502\\ -9 5 511 511\\ -9 6 522 522\\ -9 7 535 535\\ -9 8 550 550\\ -9 9 567 567\\ -9 10 586 586\\ -8 -10 484 484\\ -8 -9 465 465\\ -8 -8 448 448\\ -8 -7 433 433\\ -8 -6 420 420\\ -8 -5 409 409\\ -8 -4 400 400\\ -8 -3 393 393\\ -8 -2 388 388\\ -8 -1 385 385\\ -8 0 384 384\\ -8 1 385 385\\ -8 2 388 388\\ -8 3 393 393\\ -8 4 400 400\\ -8 5 409 409\\ -8 6 420 420\\ -8 7 433 433\\ -8 8 448 448\\ -8 9 465 465\\ -8 10 484 484\\ -7 -10 394 394\\ -7 -9 375 375\\ -7 -8 358 358\\ -7 -7 343 343\\ -7 -6 330 330\\ -7 -5 319 319\\ -7 -4 310 310\\ -7 -3 303 303\\ -7 -2 298 298\\ -7 -1 295 295\\ -7 0 294 294\\ -7 1 295 295\\ -7 2 298 298\\ -7 3 303 303\\ -7 4 310 310\\ -7 5 319 319\\ -7 6 330 330\\ -7 7 343 343\\ -7 8 358 358\\ -7 9 375 375\\ -7 10 394 394\\ -6 -10 316 316\\ -6 -9 297 297\\ -6 -8 280 280\\ -6 -7 265 265\\ -6 -6 252 252\\ -6 -5 241 241\\ -6 -4 232 232\\ -6 -3 225 225\\ -6 -2 220 220\\ -6 -1 217 217\\ -6 0 216 216\\ -6 1 217 217\\ -6 2 220 220\\ -6 3 225 225\\ -6 4 232 232\\ -6 5 241 241\\ -6 6 252 252\\ -6 7 265 265\\ -6 8 280 280\\ -6 9 297 297\\ -6 10 316 316\\ -5 -10 250 250\\ -5 -9 231 231\\ -5 -8 214 214\\ -5 -7 199 199\\ -5 -6 186 186\\ -5 -5 175 175\\ -5 -4 166 166\\ -5 -3 159 159\\ -5 -2 154 154\\ -5 -1 151 151\\ -5 0 150 150\\ -5 1 151 151\\ -5 2 154 154\\ -5 3 159 159\\ -5 4 166 166\\ -5 5 175 175\\ -5 6 186 186\\ -5 7 199 199\\ -5 8 214 214\\ -5 9 231 231\\ -5 10 250 250\\ -4 -10 196 196\\ -4 -9 177 177\\ -4 -8 160 160\\ -4 -7 145 145\\ -4 -6 132 132\\ -4 -5 121 121\\ -4 -4 112 112\\ -4 -3 105 105\\ -4 -2 100 100\\ -4 -1 97 97\\ -4 0 96 96\\ -4 1 97 97\\ -4 2 100 100\\ -4 3 105 105\\ -4 4 112 112\\ -4 5 121 121\\ -4 6 132 132\\ -4 7 145 145\\ -4 8 160 160\\ -4 9 177 177\\ -4 10 196 196\\ -3 -10 154 154\\ -3 -9 135 135\\ -3 -8 118 118\\ -3 -7 103 103\\ -3 -6 90 90\\ -3 -5 79 79\\ -3 -4 70 70\\ -3 -3 63 63\\ -3 -2 58 58\\ -3 -1 55 55\\ -3 0 54 54\\ -3 1 55 55\\ -3 2 58 58\\ -3 3 63 63\\ -3 4 70 70\\ -3 5 79 79\\ -3 6 90 90\\ -3 7 103 103\\ -3 8 118 118\\ -3 9 135 135\\ -3 10 154 154\\ -2 -10 124 124\\ -2 -9 105 105\\ -2 -8 88 88\\ -2 -7 73 73\\ -2 -6 60 60\\ -2 -5 49 49\\ -2 -4 40 40\\ -2 -3 33 33\\ -2 -2 28 28\\ -2 -1 25 25\\ -2 0 24 24\\ -2 1 25 25\\ -2 2 28 28\\ -2 3 33 33\\ -2 4 40 40\\ -2 5 49 49\\ -2 6 60 60\\ -2 7 73 73\\ -2 8 88 88\\ -2 9 105 105\\ -2 10 124 124\\ -1 -10 106 106\\ -1 -9 87 87\\ -1 -8 70 70\\ -1 -7 55 55\\ -1 -6 42 42\\ -1 -5 31 31\\ -1 -4 22 22\\ -1 -3 15 15\\ -1 -2 10 10\\ -1 -1 7 7\\ -1 0 6 6\\ -1 1 7 7\\ -1 2 10 10\\ -1 3 15 15\\ -1 4 22 22\\ -1 5 31 31\\ -1 6 42 42\\ -1 7 55 55\\ -1 8 70 70\\ -1 9 87 87\\ -1 10 106 106\\ 0 -10 100 100\\ 0 -9 81 81\\ 0 -8 64 64\\ 0 -7 49 49\\ 0 -6 36 36\\ 0 -5 25 25\\ 0 -4 16 16\\ 0 -3 9 9\\ 0 -2 4 4\\ 0 -1 1 1\\ 0 0 0 0\\ 0 1 1 1\\ 0 2 4 4\\ 0 3 9 9\\ 0 4 16 16\\ 0 5 25 25\\ 0 6 36 36\\ 0 7 49 49\\ 0 8 64 64\\ 0 9 81 81\\ 0 10 100 100\\ 1 -10 106 106\\ 1 -9 87 87\\ 1 -8 70 70\\ 1 -7 55 55\\ 1 -6 42 42\\ 1 -5 31 31\\ 1 -4 22 22\\ 1 -3 15 15\\ 1 -2 10 10\\ 1 -1 7 7\\ 1 0 6 6\\ 1 1 7 7\\ 1 2 10 10\\ 1 3 15 15\\ 1 4 22 22\\ 1 5 31 31\\ 1 6 42 42\\ 1 7 55 55\\ 1 8 70 70\\ 1 9 87 87\\ 1 10 106 106\\ 2 -10 124 124\\ 2 -9 105 105\\ 2 -8 88 88\\ 2 -7 73 73\\ 2 -6 60 60\\ 2 -5 49 49\\ 2 -4 40 40\\ 2 -3 33 33\\ 2 -2 28 28\\ 2 -1 25 25\\ 2 0 24 24\\ 2 1 25 25\\ 2 2 28 28\\ 2 3 33 33\\ 2 4 40 40\\ 2 5 49 49\\ 2 6 60 60\\ 2 7 73 73\\ 2 8 88 88\\ 2 9 105 105\\ 2 10 124 124\\ 3 -10 154 154\\ 3 -9 135 135\\ 3 -8 118 118\\ 3 -7 103 103\\ 3 -6 90 90\\ 3 -5 79 79\\ 3 -4 70 70\\ 3 -3 63 63\\ 3 -2 58 58\\ 3 -1 55 55\\ 3 0 54 54\\ 3 1 55 55\\ 3 2 58 58\\ 3 3 63 63\\ 3 4 70 70\\ 3 5 79 79\\ 3 6 90 90\\ 3 7 103 103\\ 3 8 118 118\\ 3 9 135 135\\ 3 10 154 154\\ 4 -10 196 196\\ 4 -9 177 177\\ 4 -8 160 160\\ 4 -7 145 145\\ 4 -6 132 132\\ 4 -5 121 121\\ 4 -4 112 112\\ 4 -3 105 105\\ 4 -2 100 100\\ 4 -1 97 97\\ 4 0 96 96\\ 4 1 97 97\\ 4 2 100 100\\ 4 3 105 105\\ 4 4 112 112\\ 4 5 121 121\\ 4 6 132 132\\ 4 7 145 145\\ 4 8 160 160\\ 4 9 177 177\\ 4 10 196 196\\ 5 -10 250 250\\ 5 -9 231 231\\ 5 -8 214 214\\ 5 -7 199 199\\ 5 -6 186 186\\ 5 -5 175 175\\ 5 -4 166 166\\ 5 -3 159 159\\ 5 -2 154 154\\ 5 -1 151 151\\ 5 0 150 150\\ 5 1 151 151\\ 5 2 154 154\\ 5 3 159 159\\ 5 4 166 166\\ 5 5 175 175\\ 5 6 186 186\\ 5 7 199 199\\ 5 8 214 214\\ 5 9 231 231\\ 5 10 250 250\\ 6 -10 316 316\\ 6 -9 297 297\\ 6 -8 280 280\\ 6 -7 265 265\\ 6 -6 252 252\\ 6 -5 241 241\\ 6 -4 232 232\\ 6 -3 225 225\\ 6 -2 220 220\\ 6 -1 217 217\\ 6 0 216 216\\ 6 1 217 217\\ 6 2 220 220\\ 6 3 225 225\\ 6 4 232 232\\ 6 5 241 241\\ 6 6 252 252\\ 6 7 265 265\\ 6 8 280 280\\ 6 9 297 297\\ 6 10 316 316\\ 7 -10 394 394\\ 7 -9 375 375\\ 7 -8 358 358\\ 7 -7 343 343\\ 7 -6 330 330\\ 7 -5 319 319\\ 7 -4 310 310\\ 7 -3 303 303\\ 7 -2 298 298\\ 7 -1 295 295\\ 7 0 294 294\\ 7 1 295 295\\ 7 2 298 298\\ 7 3 303 303\\ 7 4 310 310\\ 7 5 319 319\\ 7 6 330 330\\ 7 7 343 343\\ 7 8 358 358\\ 7 9 375 375\\ 7 10 394 394\\ 8 -10 484 484\\ 8 -9 465 465\\ 8 -8 448 448\\ 8 -7 433 433\\ 8 -6 420 420\\ 8 -5 409 409\\ 8 -4 400 400\\ 8 -3 393 393\\ 8 -2 388 388\\ 8 -1 385 385\\ 8 0 384 384\\ 8 1 385 385\\ 8 2 388 388\\ 8 3 393 393\\ 8 4 400 400\\ 8 5 409 409\\ 8 6 420 420\\ 8 7 433 433\\ 8 8 448 448\\ 8 9 465 465\\ 8 10 484 484\\ 9 -10 586 586\\ 9 -9 567 567\\ 9 -8 550 550\\ 9 -7 535 535\\ 9 -6 522 522\\ 9 -5 511 511\\ 9 -4 502 502\\ 9 -3 495 495\\ 9 -2 490 490\\ 9 -1 487 487\\ 9 0 486 486\\ 9 1 487 487\\ 9 2 490 490\\ 9 3 495 495\\ 9 4 502 502\\ 9 5 511 511\\ 9 6 522 522\\ 9 7 535 535\\ 9 8 550 550\\ 9 9 567 567\\ 9 10 586 586\\ 10 -10 700 700\\ 10 -9 681 681\\ 10 -8 664 664\\ 10 -7 649 649\\ 10 -6 636 636\\ 10 -5 625 625\\ 10 -4 616 616\\ 10 -3 609 609\\ 10 -2 604 604\\ 10 -1 601 601\\ 10 0 600 600\\ 10 1 601 601\\ 10 2 604 604\\ 10 3 609 609\\ 10 4 616 616\\ 10 5 625 625\\ 10 6 636 636\\ 10 7 649 649\\ 10 8 664 664\\ 10 9 681 681\\ 10 10 700 700\\ }; \end{axis} \begin{axis}[% width=0.737in, height=1.524in, at={(1.744in,0.491in)}, scale only axis, xmin=-10, xmax=10, tick align=outside, ymin=-10, ymax=10, zmin=0, zmax=1000, view={-37.5}{30}, axis background/.style={fill=white}, title style={font=\bfseries}, title={u=7}, axis x line*=bottom, axis y line*=left, axis z line*=left, xmajorgrids, ymajorgrids, zmajorgrids ] \addplot3[% surf, shader=flat, z buffer=sort, colormap={mymap}{[1pt] rgb(0pt)=(0.2422,0.1504,0.6603); rgb(1pt)=(0.2444,0.1534,0.6728); rgb(2pt)=(0.2464,0.1569,0.6847); rgb(3pt)=(0.2484,0.1607,0.6961); rgb(4pt)=(0.2503,0.1648,0.7071); rgb(5pt)=(0.2522,0.1689,0.7179); rgb(6pt)=(0.254,0.1732,0.7286); rgb(7pt)=(0.2558,0.1773,0.7393); rgb(8pt)=(0.2576,0.1814,0.7501); rgb(9pt)=(0.2594,0.1854,0.761); rgb(11pt)=(0.2628,0.1932,0.7828); rgb(12pt)=(0.2645,0.1972,0.7937); rgb(13pt)=(0.2661,0.2011,0.8043); rgb(14pt)=(0.2676,0.2052,0.8148); rgb(15pt)=(0.2691,0.2094,0.8249); rgb(16pt)=(0.2704,0.2138,0.8346); rgb(17pt)=(0.2717,0.2184,0.8439); rgb(18pt)=(0.2729,0.2231,0.8528); rgb(19pt)=(0.274,0.228,0.8612); rgb(20pt)=(0.2749,0.233,0.8692); rgb(21pt)=(0.2758,0.2382,0.8767); rgb(22pt)=(0.2766,0.2435,0.884); rgb(23pt)=(0.2774,0.2489,0.8908); rgb(24pt)=(0.2781,0.2543,0.8973); rgb(25pt)=(0.2788,0.2598,0.9035); rgb(26pt)=(0.2794,0.2653,0.9094); rgb(27pt)=(0.2798,0.2708,0.915); rgb(28pt)=(0.2802,0.2764,0.9204); rgb(29pt)=(0.2806,0.2819,0.9255); rgb(30pt)=(0.2809,0.2875,0.9305); rgb(31pt)=(0.2811,0.293,0.9352); rgb(32pt)=(0.2813,0.2985,0.9397); rgb(33pt)=(0.2814,0.304,0.9441); rgb(34pt)=(0.2814,0.3095,0.9483); rgb(35pt)=(0.2813,0.315,0.9524); rgb(36pt)=(0.2811,0.3204,0.9563); rgb(37pt)=(0.2809,0.3259,0.96); rgb(38pt)=(0.2807,0.3313,0.9636); rgb(39pt)=(0.2803,0.3367,0.967); rgb(40pt)=(0.2798,0.3421,0.9702); rgb(41pt)=(0.2791,0.3475,0.9733); rgb(42pt)=(0.2784,0.3529,0.9763); rgb(43pt)=(0.2776,0.3583,0.9791); rgb(44pt)=(0.2766,0.3638,0.9817); rgb(45pt)=(0.2754,0.3693,0.984); rgb(46pt)=(0.2741,0.3748,0.9862); rgb(47pt)=(0.2726,0.3804,0.9881); rgb(48pt)=(0.271,0.386,0.9898); rgb(49pt)=(0.2691,0.3916,0.9912); rgb(50pt)=(0.267,0.3973,0.9924); rgb(51pt)=(0.2647,0.403,0.9935); rgb(52pt)=(0.2621,0.4088,0.9946); rgb(53pt)=(0.2591,0.4145,0.9955); rgb(54pt)=(0.2556,0.4203,0.9965); rgb(55pt)=(0.2517,0.4261,0.9974); rgb(56pt)=(0.2473,0.4319,0.9983); rgb(57pt)=(0.2424,0.4378,0.9991); rgb(58pt)=(0.2369,0.4437,0.9996); rgb(59pt)=(0.2311,0.4497,0.9995); rgb(60pt)=(0.225,0.4559,0.9985); rgb(61pt)=(0.2189,0.462,0.9968); rgb(62pt)=(0.2128,0.4682,0.9948); rgb(63pt)=(0.2066,0.4743,0.9926); rgb(64pt)=(0.2006,0.4803,0.9906); rgb(65pt)=(0.195,0.4861,0.9887); rgb(66pt)=(0.1903,0.4919,0.9867); rgb(67pt)=(0.1869,0.4975,0.9844); rgb(68pt)=(0.1847,0.503,0.9819); rgb(69pt)=(0.1831,0.5084,0.9793); rgb(70pt)=(0.1818,0.5138,0.9766); rgb(71pt)=(0.1806,0.5191,0.9738); rgb(72pt)=(0.1795,0.5244,0.9709); rgb(73pt)=(0.1785,0.5296,0.9677); rgb(74pt)=(0.1778,0.5349,0.9641); rgb(75pt)=(0.1773,0.5401,0.9602); rgb(76pt)=(0.1768,0.5452,0.956); rgb(77pt)=(0.1764,0.5504,0.9516); rgb(78pt)=(0.1755,0.5554,0.9473); rgb(79pt)=(0.174,0.5605,0.9432); rgb(80pt)=(0.1716,0.5655,0.9393); rgb(81pt)=(0.1686,0.5705,0.9357); rgb(82pt)=(0.1649,0.5755,0.9323); rgb(83pt)=(0.161,0.5805,0.9289); rgb(84pt)=(0.1573,0.5854,0.9254); rgb(85pt)=(0.154,0.5902,0.9218); rgb(86pt)=(0.1513,0.595,0.9182); rgb(87pt)=(0.1492,0.5997,0.9147); rgb(88pt)=(0.1475,0.6043,0.9113); rgb(89pt)=(0.1461,0.6089,0.908); rgb(90pt)=(0.1446,0.6135,0.905); rgb(91pt)=(0.1429,0.618,0.9022); rgb(92pt)=(0.1408,0.6226,0.8998); rgb(93pt)=(0.1383,0.6272,0.8975); rgb(94pt)=(0.1354,0.6317,0.8953); rgb(95pt)=(0.1321,0.6363,0.8932); rgb(96pt)=(0.1288,0.6408,0.891); rgb(97pt)=(0.1253,0.6453,0.8887); rgb(98pt)=(0.1219,0.6497,0.8862); rgb(99pt)=(0.1185,0.6541,0.8834); rgb(100pt)=(0.1152,0.6584,0.8804); rgb(101pt)=(0.1119,0.6627,0.877); rgb(102pt)=(0.1085,0.6669,0.8734); rgb(103pt)=(0.1048,0.671,0.8695); rgb(104pt)=(0.1009,0.675,0.8653); rgb(105pt)=(0.0964,0.6789,0.8609); rgb(106pt)=(0.0914,0.6828,0.8562); rgb(107pt)=(0.0855,0.6865,0.8513); rgb(108pt)=(0.0789,0.6902,0.8462); rgb(109pt)=(0.0713,0.6938,0.8409); rgb(110pt)=(0.0628,0.6972,0.8355); rgb(111pt)=(0.0535,0.7006,0.8299); rgb(112pt)=(0.0433,0.7039,0.8242); rgb(113pt)=(0.0328,0.7071,0.8183); rgb(114pt)=(0.0234,0.7103,0.8124); rgb(115pt)=(0.0155,0.7133,0.8064); rgb(116pt)=(0.0091,0.7163,0.8003); rgb(117pt)=(0.0046,0.7192,0.7941); rgb(118pt)=(0.0019,0.722,0.7878); rgb(119pt)=(0.0009,0.7248,0.7815); rgb(120pt)=(0.0018,0.7275,0.7752); rgb(121pt)=(0.0046,0.7301,0.7688); rgb(122pt)=(0.0094,0.7327,0.7623); rgb(123pt)=(0.0162,0.7352,0.7558); rgb(124pt)=(0.0253,0.7376,0.7492); rgb(125pt)=(0.0369,0.74,0.7426); rgb(126pt)=(0.0504,0.7423,0.7359); rgb(127pt)=(0.0638,0.7446,0.7292); rgb(128pt)=(0.077,0.7468,0.7224); rgb(129pt)=(0.0899,0.7489,0.7156); rgb(130pt)=(0.1023,0.751,0.7088); rgb(131pt)=(0.1141,0.7531,0.7019); rgb(132pt)=(0.1252,0.7552,0.695); rgb(133pt)=(0.1354,0.7572,0.6881); rgb(134pt)=(0.1448,0.7593,0.6812); rgb(135pt)=(0.1532,0.7614,0.6741); rgb(136pt)=(0.1609,0.7635,0.6671); rgb(137pt)=(0.1678,0.7656,0.6599); rgb(138pt)=(0.1741,0.7678,0.6527); rgb(139pt)=(0.1799,0.7699,0.6454); rgb(140pt)=(0.1853,0.7721,0.6379); rgb(141pt)=(0.1905,0.7743,0.6303); rgb(142pt)=(0.1954,0.7765,0.6225); rgb(143pt)=(0.2003,0.7787,0.6146); rgb(144pt)=(0.2061,0.7808,0.6065); rgb(145pt)=(0.2118,0.7828,0.5983); rgb(146pt)=(0.2178,0.7849,0.5899); rgb(147pt)=(0.2244,0.7869,0.5813); rgb(148pt)=(0.2318,0.7887,0.5725); rgb(149pt)=(0.2401,0.7905,0.5636); rgb(150pt)=(0.2491,0.7922,0.5546); rgb(151pt)=(0.2589,0.7937,0.5454); rgb(152pt)=(0.2695,0.7951,0.536); rgb(153pt)=(0.2809,0.7964,0.5266); rgb(154pt)=(0.2929,0.7975,0.517); rgb(155pt)=(0.3052,0.7985,0.5074); rgb(156pt)=(0.3176,0.7994,0.4975); rgb(157pt)=(0.3301,0.8002,0.4876); rgb(158pt)=(0.3424,0.8009,0.4774); rgb(159pt)=(0.3548,0.8016,0.4669); rgb(160pt)=(0.3671,0.8021,0.4563); rgb(161pt)=(0.3795,0.8026,0.4454); rgb(162pt)=(0.3921,0.8029,0.4344); rgb(163pt)=(0.405,0.8031,0.4233); rgb(164pt)=(0.4184,0.803,0.4122); rgb(165pt)=(0.4322,0.8028,0.4013); rgb(166pt)=(0.4463,0.8024,0.3904); rgb(167pt)=(0.4608,0.8018,0.3797); rgb(168pt)=(0.4753,0.8011,0.3691); rgb(169pt)=(0.4899,0.8002,0.3586); rgb(170pt)=(0.5044,0.7993,0.348); rgb(171pt)=(0.5187,0.7982,0.3374); rgb(172pt)=(0.5329,0.797,0.3267); rgb(173pt)=(0.547,0.7957,0.3159); rgb(175pt)=(0.5748,0.7929,0.2941); rgb(176pt)=(0.5886,0.7913,0.2833); rgb(177pt)=(0.6024,0.7896,0.2726); rgb(178pt)=(0.6161,0.7878,0.2622); rgb(179pt)=(0.6297,0.7859,0.2521); rgb(180pt)=(0.6433,0.7839,0.2423); rgb(181pt)=(0.6567,0.7818,0.2329); rgb(182pt)=(0.6701,0.7796,0.2239); rgb(183pt)=(0.6833,0.7773,0.2155); rgb(184pt)=(0.6963,0.775,0.2075); rgb(185pt)=(0.7091,0.7727,0.1998); rgb(186pt)=(0.7218,0.7703,0.1924); rgb(187pt)=(0.7344,0.7679,0.1852); rgb(188pt)=(0.7468,0.7654,0.1782); rgb(189pt)=(0.759,0.7629,0.1717); rgb(190pt)=(0.771,0.7604,0.1658); rgb(191pt)=(0.7829,0.7579,0.1608); rgb(192pt)=(0.7945,0.7554,0.157); rgb(193pt)=(0.806,0.7529,0.1546); rgb(194pt)=(0.8172,0.7505,0.1535); rgb(195pt)=(0.8281,0.7481,0.1536); rgb(196pt)=(0.8389,0.7457,0.1546); rgb(197pt)=(0.8495,0.7435,0.1564); rgb(198pt)=(0.86,0.7413,0.1587); rgb(199pt)=(0.8703,0.7392,0.1615); rgb(200pt)=(0.8804,0.7372,0.165); rgb(201pt)=(0.8903,0.7353,0.1695); rgb(202pt)=(0.9,0.7336,0.1749); rgb(203pt)=(0.9093,0.7321,0.1815); rgb(204pt)=(0.9184,0.7308,0.189); rgb(205pt)=(0.9272,0.7298,0.1973); rgb(206pt)=(0.9357,0.729,0.2061); rgb(207pt)=(0.944,0.7285,0.2151); rgb(208pt)=(0.9523,0.7284,0.2237); rgb(209pt)=(0.9606,0.7285,0.2312); rgb(210pt)=(0.9689,0.7292,0.2373); rgb(211pt)=(0.977,0.7304,0.2418); rgb(212pt)=(0.9842,0.733,0.2446); rgb(213pt)=(0.99,0.7365,0.2429); rgb(214pt)=(0.9946,0.7407,0.2394); rgb(215pt)=(0.9966,0.7458,0.2351); rgb(216pt)=(0.9971,0.7513,0.2309); rgb(217pt)=(0.9972,0.7569,0.2267); rgb(218pt)=(0.9971,0.7626,0.2224); rgb(219pt)=(0.9969,0.7683,0.2181); rgb(220pt)=(0.9966,0.774,0.2138); rgb(221pt)=(0.9962,0.7798,0.2095); rgb(222pt)=(0.9957,0.7856,0.2053); rgb(223pt)=(0.9949,0.7915,0.2012); rgb(224pt)=(0.9938,0.7974,0.1974); rgb(225pt)=(0.9923,0.8034,0.1939); rgb(226pt)=(0.9906,0.8095,0.1906); rgb(227pt)=(0.9885,0.8156,0.1875); rgb(228pt)=(0.9861,0.8218,0.1846); rgb(229pt)=(0.9835,0.828,0.1817); rgb(230pt)=(0.9807,0.8342,0.1787); rgb(231pt)=(0.9778,0.8404,0.1757); rgb(232pt)=(0.9748,0.8467,0.1726); rgb(233pt)=(0.972,0.8529,0.1695); rgb(234pt)=(0.9694,0.8591,0.1665); rgb(235pt)=(0.9671,0.8654,0.1636); rgb(236pt)=(0.9651,0.8716,0.1608); rgb(237pt)=(0.9634,0.8778,0.1582); rgb(238pt)=(0.9619,0.884,0.1557); rgb(239pt)=(0.9608,0.8902,0.1532); rgb(240pt)=(0.9601,0.8963,0.1507); rgb(241pt)=(0.9596,0.9023,0.148); rgb(242pt)=(0.9595,0.9084,0.145); rgb(243pt)=(0.9597,0.9143,0.1418); rgb(244pt)=(0.9601,0.9203,0.1382); rgb(245pt)=(0.9608,0.9262,0.1344); rgb(246pt)=(0.9618,0.932,0.1304); rgb(247pt)=(0.9629,0.9379,0.1261); rgb(248pt)=(0.9642,0.9437,0.1216); rgb(249pt)=(0.9657,0.9494,0.1168); rgb(250pt)=(0.9674,0.9552,0.1116); rgb(251pt)=(0.9692,0.9609,0.1061); rgb(252pt)=(0.9711,0.9667,0.1001); rgb(253pt)=(0.973,0.9724,0.0938); rgb(254pt)=(0.9749,0.9782,0.0872); rgb(255pt)=(0.9769,0.9839,0.0805)}, mesh/rows=21] table[row sep=crcr, point meta=\thisrow{c}] {% % x y z c\\ -10 -10 800 800\\ -10 -9 781 781\\ -10 -8 764 764\\ -10 -7 749 749\\ -10 -6 736 736\\ -10 -5 725 725\\ -10 -4 716 716\\ -10 -3 709 709\\ -10 -2 704 704\\ -10 -1 701 701\\ -10 0 700 700\\ -10 1 701 701\\ -10 2 704 704\\ -10 3 709 709\\ -10 4 716 716\\ -10 5 725 725\\ -10 6 736 736\\ -10 7 749 749\\ -10 8 764 764\\ -10 9 781 781\\ -10 10 800 800\\ -9 -10 667 667\\ -9 -9 648 648\\ -9 -8 631 631\\ -9 -7 616 616\\ -9 -6 603 603\\ -9 -5 592 592\\ -9 -4 583 583\\ -9 -3 576 576\\ -9 -2 571 571\\ -9 -1 568 568\\ -9 0 567 567\\ -9 1 568 568\\ -9 2 571 571\\ -9 3 576 576\\ -9 4 583 583\\ -9 5 592 592\\ -9 6 603 603\\ -9 7 616 616\\ -9 8 631 631\\ -9 9 648 648\\ -9 10 667 667\\ -8 -10 548 548\\ -8 -9 529 529\\ -8 -8 512 512\\ -8 -7 497 497\\ -8 -6 484 484\\ -8 -5 473 473\\ -8 -4 464 464\\ -8 -3 457 457\\ -8 -2 452 452\\ -8 -1 449 449\\ -8 0 448 448\\ -8 1 449 449\\ -8 2 452 452\\ -8 3 457 457\\ -8 4 464 464\\ -8 5 473 473\\ -8 6 484 484\\ -8 7 497 497\\ -8 8 512 512\\ -8 9 529 529\\ -8 10 548 548\\ -7 -10 443 443\\ -7 -9 424 424\\ -7 -8 407 407\\ -7 -7 392 392\\ -7 -6 379 379\\ -7 -5 368 368\\ -7 -4 359 359\\ -7 -3 352 352\\ -7 -2 347 347\\ -7 -1 344 344\\ -7 0 343 343\\ -7 1 344 344\\ -7 2 347 347\\ -7 3 352 352\\ -7 4 359 359\\ -7 5 368 368\\ -7 6 379 379\\ -7 7 392 392\\ -7 8 407 407\\ -7 9 424 424\\ -7 10 443 443\\ -6 -10 352 352\\ -6 -9 333 333\\ -6 -8 316 316\\ -6 -7 301 301\\ -6 -6 288 288\\ -6 -5 277 277\\ -6 -4 268 268\\ -6 -3 261 261\\ -6 -2 256 256\\ -6 -1 253 253\\ -6 0 252 252\\ -6 1 253 253\\ -6 2 256 256\\ -6 3 261 261\\ -6 4 268 268\\ -6 5 277 277\\ -6 6 288 288\\ -6 7 301 301\\ -6 8 316 316\\ -6 9 333 333\\ -6 10 352 352\\ -5 -10 275 275\\ -5 -9 256 256\\ -5 -8 239 239\\ -5 -7 224 224\\ -5 -6 211 211\\ -5 -5 200 200\\ -5 -4 191 191\\ -5 -3 184 184\\ -5 -2 179 179\\ -5 -1 176 176\\ -5 0 175 175\\ -5 1 176 176\\ -5 2 179 179\\ -5 3 184 184\\ -5 4 191 191\\ -5 5 200 200\\ -5 6 211 211\\ -5 7 224 224\\ -5 8 239 239\\ -5 9 256 256\\ -5 10 275 275\\ -4 -10 212 212\\ -4 -9 193 193\\ -4 -8 176 176\\ -4 -7 161 161\\ -4 -6 148 148\\ -4 -5 137 137\\ -4 -4 128 128\\ -4 -3 121 121\\ -4 -2 116 116\\ -4 -1 113 113\\ -4 0 112 112\\ -4 1 113 113\\ -4 2 116 116\\ -4 3 121 121\\ -4 4 128 128\\ -4 5 137 137\\ -4 6 148 148\\ -4 7 161 161\\ -4 8 176 176\\ -4 9 193 193\\ -4 10 212 212\\ -3 -10 163 163\\ -3 -9 144 144\\ -3 -8 127 127\\ -3 -7 112 112\\ -3 -6 99 99\\ -3 -5 88 88\\ -3 -4 79 79\\ -3 -3 72 72\\ -3 -2 67 67\\ -3 -1 64 64\\ -3 0 63 63\\ -3 1 64 64\\ -3 2 67 67\\ -3 3 72 72\\ -3 4 79 79\\ -3 5 88 88\\ -3 6 99 99\\ -3 7 112 112\\ -3 8 127 127\\ -3 9 144 144\\ -3 10 163 163\\ -2 -10 128 128\\ -2 -9 109 109\\ -2 -8 92 92\\ -2 -7 77 77\\ -2 -6 64 64\\ -2 -5 53 53\\ -2 -4 44 44\\ -2 -3 37 37\\ -2 -2 32 32\\ -2 -1 29 29\\ -2 0 28 28\\ -2 1 29 29\\ -2 2 32 32\\ -2 3 37 37\\ -2 4 44 44\\ -2 5 53 53\\ -2 6 64 64\\ -2 7 77 77\\ -2 8 92 92\\ -2 9 109 109\\ -2 10 128 128\\ -1 -10 107 107\\ -1 -9 88 88\\ -1 -8 71 71\\ -1 -7 56 56\\ -1 -6 43 43\\ -1 -5 32 32\\ -1 -4 23 23\\ -1 -3 16 16\\ -1 -2 11 11\\ -1 -1 8 8\\ -1 0 7 7\\ -1 1 8 8\\ -1 2 11 11\\ -1 3 16 16\\ -1 4 23 23\\ -1 5 32 32\\ -1 6 43 43\\ -1 7 56 56\\ -1 8 71 71\\ -1 9 88 88\\ -1 10 107 107\\ 0 -10 100 100\\ 0 -9 81 81\\ 0 -8 64 64\\ 0 -7 49 49\\ 0 -6 36 36\\ 0 -5 25 25\\ 0 -4 16 16\\ 0 -3 9 9\\ 0 -2 4 4\\ 0 -1 1 1\\ 0 0 0 0\\ 0 1 1 1\\ 0 2 4 4\\ 0 3 9 9\\ 0 4 16 16\\ 0 5 25 25\\ 0 6 36 36\\ 0 7 49 49\\ 0 8 64 64\\ 0 9 81 81\\ 0 10 100 100\\ 1 -10 107 107\\ 1 -9 88 88\\ 1 -8 71 71\\ 1 -7 56 56\\ 1 -6 43 43\\ 1 -5 32 32\\ 1 -4 23 23\\ 1 -3 16 16\\ 1 -2 11 11\\ 1 -1 8 8\\ 1 0 7 7\\ 1 1 8 8\\ 1 2 11 11\\ 1 3 16 16\\ 1 4 23 23\\ 1 5 32 32\\ 1 6 43 43\\ 1 7 56 56\\ 1 8 71 71\\ 1 9 88 88\\ 1 10 107 107\\ 2 -10 128 128\\ 2 -9 109 109\\ 2 -8 92 92\\ 2 -7 77 77\\ 2 -6 64 64\\ 2 -5 53 53\\ 2 -4 44 44\\ 2 -3 37 37\\ 2 -2 32 32\\ 2 -1 29 29\\ 2 0 28 28\\ 2 1 29 29\\ 2 2 32 32\\ 2 3 37 37\\ 2 4 44 44\\ 2 5 53 53\\ 2 6 64 64\\ 2 7 77 77\\ 2 8 92 92\\ 2 9 109 109\\ 2 10 128 128\\ 3 -10 163 163\\ 3 -9 144 144\\ 3 -8 127 127\\ 3 -7 112 112\\ 3 -6 99 99\\ 3 -5 88 88\\ 3 -4 79 79\\ 3 -3 72 72\\ 3 -2 67 67\\ 3 -1 64 64\\ 3 0 63 63\\ 3 1 64 64\\ 3 2 67 67\\ 3 3 72 72\\ 3 4 79 79\\ 3 5 88 88\\ 3 6 99 99\\ 3 7 112 112\\ 3 8 127 127\\ 3 9 144 144\\ 3 10 163 163\\ 4 -10 212 212\\ 4 -9 193 193\\ 4 -8 176 176\\ 4 -7 161 161\\ 4 -6 148 148\\ 4 -5 137 137\\ 4 -4 128 128\\ 4 -3 121 121\\ 4 -2 116 116\\ 4 -1 113 113\\ 4 0 112 112\\ 4 1 113 113\\ 4 2 116 116\\ 4 3 121 121\\ 4 4 128 128\\ 4 5 137 137\\ 4 6 148 148\\ 4 7 161 161\\ 4 8 176 176\\ 4 9 193 193\\ 4 10 212 212\\ 5 -10 275 275\\ 5 -9 256 256\\ 5 -8 239 239\\ 5 -7 224 224\\ 5 -6 211 211\\ 5 -5 200 200\\ 5 -4 191 191\\ 5 -3 184 184\\ 5 -2 179 179\\ 5 -1 176 176\\ 5 0 175 175\\ 5 1 176 176\\ 5 2 179 179\\ 5 3 184 184\\ 5 4 191 191\\ 5 5 200 200\\ 5 6 211 211\\ 5 7 224 224\\ 5 8 239 239\\ 5 9 256 256\\ 5 10 275 275\\ 6 -10 352 352\\ 6 -9 333 333\\ 6 -8 316 316\\ 6 -7 301 301\\ 6 -6 288 288\\ 6 -5 277 277\\ 6 -4 268 268\\ 6 -3 261 261\\ 6 -2 256 256\\ 6 -1 253 253\\ 6 0 252 252\\ 6 1 253 253\\ 6 2 256 256\\ 6 3 261 261\\ 6 4 268 268\\ 6 5 277 277\\ 6 6 288 288\\ 6 7 301 301\\ 6 8 316 316\\ 6 9 333 333\\ 6 10 352 352\\ 7 -10 443 443\\ 7 -9 424 424\\ 7 -8 407 407\\ 7 -7 392 392\\ 7 -6 379 379\\ 7 -5 368 368\\ 7 -4 359 359\\ 7 -3 352 352\\ 7 -2 347 347\\ 7 -1 344 344\\ 7 0 343 343\\ 7 1 344 344\\ 7 2 347 347\\ 7 3 352 352\\ 7 4 359 359\\ 7 5 368 368\\ 7 6 379 379\\ 7 7 392 392\\ 7 8 407 407\\ 7 9 424 424\\ 7 10 443 443\\ 8 -10 548 548\\ 8 -9 529 529\\ 8 -8 512 512\\ 8 -7 497 497\\ 8 -6 484 484\\ 8 -5 473 473\\ 8 -4 464 464\\ 8 -3 457 457\\ 8 -2 452 452\\ 8 -1 449 449\\ 8 0 448 448\\ 8 1 449 449\\ 8 2 452 452\\ 8 3 457 457\\ 8 4 464 464\\ 8 5 473 473\\ 8 6 484 484\\ 8 7 497 497\\ 8 8 512 512\\ 8 9 529 529\\ 8 10 548 548\\ 9 -10 667 667\\ 9 -9 648 648\\ 9 -8 631 631\\ 9 -7 616 616\\ 9 -6 603 603\\ 9 -5 592 592\\ 9 -4 583 583\\ 9 -3 576 576\\ 9 -2 571 571\\ 9 -1 568 568\\ 9 0 567 567\\ 9 1 568 568\\ 9 2 571 571\\ 9 3 576 576\\ 9 4 583 583\\ 9 5 592 592\\ 9 6 603 603\\ 9 7 616 616\\ 9 8 631 631\\ 9 9 648 648\\ 9 10 667 667\\ 10 -10 800 800\\ 10 -9 781 781\\ 10 -8 764 764\\ 10 -7 749 749\\ 10 -6 736 736\\ 10 -5 725 725\\ 10 -4 716 716\\ 10 -3 709 709\\ 10 -2 704 704\\ 10 -1 701 701\\ 10 0 700 700\\ 10 1 701 701\\ 10 2 704 704\\ 10 3 709 709\\ 10 4 716 716\\ 10 5 725 725\\ 10 6 736 736\\ 10 7 749 749\\ 10 8 764 764\\ 10 9 781 781\\ 10 10 800 800\\ }; \end{axis} \begin{axis}[% width=0.737in, height=1.524in, at={(2.714in,0.491in)}, scale only axis, xmin=-10, xmax=10, tick align=outside, ymin=-10, ymax=10, zmin=0, zmax=1000, view={-37.5}{30}, axis background/.style={fill=white}, title style={font=\bfseries}, title={u=8}, axis x line*=bottom, axis y line*=left, axis z line*=left, xmajorgrids, ymajorgrids, zmajorgrids ] \addplot3[% surf, shader=flat, z buffer=sort, colormap={mymap}{[1pt] rgb(0pt)=(0.2422,0.1504,0.6603); rgb(1pt)=(0.2444,0.1534,0.6728); rgb(2pt)=(0.2464,0.1569,0.6847); rgb(3pt)=(0.2484,0.1607,0.6961); rgb(4pt)=(0.2503,0.1648,0.7071); rgb(5pt)=(0.2522,0.1689,0.7179); rgb(6pt)=(0.254,0.1732,0.7286); rgb(7pt)=(0.2558,0.1773,0.7393); rgb(8pt)=(0.2576,0.1814,0.7501); rgb(9pt)=(0.2594,0.1854,0.761); rgb(11pt)=(0.2628,0.1932,0.7828); rgb(12pt)=(0.2645,0.1972,0.7937); rgb(13pt)=(0.2661,0.2011,0.8043); rgb(14pt)=(0.2676,0.2052,0.8148); rgb(15pt)=(0.2691,0.2094,0.8249); rgb(16pt)=(0.2704,0.2138,0.8346); rgb(17pt)=(0.2717,0.2184,0.8439); rgb(18pt)=(0.2729,0.2231,0.8528); rgb(19pt)=(0.274,0.228,0.8612); rgb(20pt)=(0.2749,0.233,0.8692); rgb(21pt)=(0.2758,0.2382,0.8767); rgb(22pt)=(0.2766,0.2435,0.884); rgb(23pt)=(0.2774,0.2489,0.8908); rgb(24pt)=(0.2781,0.2543,0.8973); rgb(25pt)=(0.2788,0.2598,0.9035); rgb(26pt)=(0.2794,0.2653,0.9094); rgb(27pt)=(0.2798,0.2708,0.915); rgb(28pt)=(0.2802,0.2764,0.9204); rgb(29pt)=(0.2806,0.2819,0.9255); rgb(30pt)=(0.2809,0.2875,0.9305); rgb(31pt)=(0.2811,0.293,0.9352); rgb(32pt)=(0.2813,0.2985,0.9397); rgb(33pt)=(0.2814,0.304,0.9441); rgb(34pt)=(0.2814,0.3095,0.9483); rgb(35pt)=(0.2813,0.315,0.9524); rgb(36pt)=(0.2811,0.3204,0.9563); rgb(37pt)=(0.2809,0.3259,0.96); rgb(38pt)=(0.2807,0.3313,0.9636); rgb(39pt)=(0.2803,0.3367,0.967); rgb(40pt)=(0.2798,0.3421,0.9702); rgb(41pt)=(0.2791,0.3475,0.9733); rgb(42pt)=(0.2784,0.3529,0.9763); rgb(43pt)=(0.2776,0.3583,0.9791); rgb(44pt)=(0.2766,0.3638,0.9817); rgb(45pt)=(0.2754,0.3693,0.984); rgb(46pt)=(0.2741,0.3748,0.9862); rgb(47pt)=(0.2726,0.3804,0.9881); rgb(48pt)=(0.271,0.386,0.9898); rgb(49pt)=(0.2691,0.3916,0.9912); rgb(50pt)=(0.267,0.3973,0.9924); rgb(51pt)=(0.2647,0.403,0.9935); rgb(52pt)=(0.2621,0.4088,0.9946); rgb(53pt)=(0.2591,0.4145,0.9955); rgb(54pt)=(0.2556,0.4203,0.9965); rgb(55pt)=(0.2517,0.4261,0.9974); rgb(56pt)=(0.2473,0.4319,0.9983); rgb(57pt)=(0.2424,0.4378,0.9991); rgb(58pt)=(0.2369,0.4437,0.9996); rgb(59pt)=(0.2311,0.4497,0.9995); rgb(60pt)=(0.225,0.4559,0.9985); rgb(61pt)=(0.2189,0.462,0.9968); rgb(62pt)=(0.2128,0.4682,0.9948); rgb(63pt)=(0.2066,0.4743,0.9926); rgb(64pt)=(0.2006,0.4803,0.9906); rgb(65pt)=(0.195,0.4861,0.9887); rgb(66pt)=(0.1903,0.4919,0.9867); rgb(67pt)=(0.1869,0.4975,0.9844); rgb(68pt)=(0.1847,0.503,0.9819); rgb(69pt)=(0.1831,0.5084,0.9793); rgb(70pt)=(0.1818,0.5138,0.9766); rgb(71pt)=(0.1806,0.5191,0.9738); rgb(72pt)=(0.1795,0.5244,0.9709); rgb(73pt)=(0.1785,0.5296,0.9677); rgb(74pt)=(0.1778,0.5349,0.9641); rgb(75pt)=(0.1773,0.5401,0.9602); rgb(76pt)=(0.1768,0.5452,0.956); rgb(77pt)=(0.1764,0.5504,0.9516); rgb(78pt)=(0.1755,0.5554,0.9473); rgb(79pt)=(0.174,0.5605,0.9432); rgb(80pt)=(0.1716,0.5655,0.9393); rgb(81pt)=(0.1686,0.5705,0.9357); rgb(82pt)=(0.1649,0.5755,0.9323); rgb(83pt)=(0.161,0.5805,0.9289); rgb(84pt)=(0.1573,0.5854,0.9254); rgb(85pt)=(0.154,0.5902,0.9218); rgb(86pt)=(0.1513,0.595,0.9182); rgb(87pt)=(0.1492,0.5997,0.9147); rgb(88pt)=(0.1475,0.6043,0.9113); rgb(89pt)=(0.1461,0.6089,0.908); rgb(90pt)=(0.1446,0.6135,0.905); rgb(91pt)=(0.1429,0.618,0.9022); rgb(92pt)=(0.1408,0.6226,0.8998); rgb(93pt)=(0.1383,0.6272,0.8975); rgb(94pt)=(0.1354,0.6317,0.8953); rgb(95pt)=(0.1321,0.6363,0.8932); rgb(96pt)=(0.1288,0.6408,0.891); rgb(97pt)=(0.1253,0.6453,0.8887); rgb(98pt)=(0.1219,0.6497,0.8862); rgb(99pt)=(0.1185,0.6541,0.8834); rgb(100pt)=(0.1152,0.6584,0.8804); rgb(101pt)=(0.1119,0.6627,0.877); rgb(102pt)=(0.1085,0.6669,0.8734); rgb(103pt)=(0.1048,0.671,0.8695); rgb(104pt)=(0.1009,0.675,0.8653); rgb(105pt)=(0.0964,0.6789,0.8609); rgb(106pt)=(0.0914,0.6828,0.8562); rgb(107pt)=(0.0855,0.6865,0.8513); rgb(108pt)=(0.0789,0.6902,0.8462); rgb(109pt)=(0.0713,0.6938,0.8409); rgb(110pt)=(0.0628,0.6972,0.8355); rgb(111pt)=(0.0535,0.7006,0.8299); rgb(112pt)=(0.0433,0.7039,0.8242); rgb(113pt)=(0.0328,0.7071,0.8183); rgb(114pt)=(0.0234,0.7103,0.8124); rgb(115pt)=(0.0155,0.7133,0.8064); rgb(116pt)=(0.0091,0.7163,0.8003); rgb(117pt)=(0.0046,0.7192,0.7941); rgb(118pt)=(0.0019,0.722,0.7878); rgb(119pt)=(0.0009,0.7248,0.7815); rgb(120pt)=(0.0018,0.7275,0.7752); rgb(121pt)=(0.0046,0.7301,0.7688); rgb(122pt)=(0.0094,0.7327,0.7623); rgb(123pt)=(0.0162,0.7352,0.7558); rgb(124pt)=(0.0253,0.7376,0.7492); rgb(125pt)=(0.0369,0.74,0.7426); rgb(126pt)=(0.0504,0.7423,0.7359); rgb(127pt)=(0.0638,0.7446,0.7292); rgb(128pt)=(0.077,0.7468,0.7224); rgb(129pt)=(0.0899,0.7489,0.7156); rgb(130pt)=(0.1023,0.751,0.7088); rgb(131pt)=(0.1141,0.7531,0.7019); rgb(132pt)=(0.1252,0.7552,0.695); rgb(133pt)=(0.1354,0.7572,0.6881); rgb(134pt)=(0.1448,0.7593,0.6812); rgb(135pt)=(0.1532,0.7614,0.6741); rgb(136pt)=(0.1609,0.7635,0.6671); rgb(137pt)=(0.1678,0.7656,0.6599); rgb(138pt)=(0.1741,0.7678,0.6527); rgb(139pt)=(0.1799,0.7699,0.6454); rgb(140pt)=(0.1853,0.7721,0.6379); rgb(141pt)=(0.1905,0.7743,0.6303); rgb(142pt)=(0.1954,0.7765,0.6225); rgb(143pt)=(0.2003,0.7787,0.6146); rgb(144pt)=(0.2061,0.7808,0.6065); rgb(145pt)=(0.2118,0.7828,0.5983); rgb(146pt)=(0.2178,0.7849,0.5899); rgb(147pt)=(0.2244,0.7869,0.5813); rgb(148pt)=(0.2318,0.7887,0.5725); rgb(149pt)=(0.2401,0.7905,0.5636); rgb(150pt)=(0.2491,0.7922,0.5546); rgb(151pt)=(0.2589,0.7937,0.5454); rgb(152pt)=(0.2695,0.7951,0.536); rgb(153pt)=(0.2809,0.7964,0.5266); rgb(154pt)=(0.2929,0.7975,0.517); rgb(155pt)=(0.3052,0.7985,0.5074); rgb(156pt)=(0.3176,0.7994,0.4975); rgb(157pt)=(0.3301,0.8002,0.4876); rgb(158pt)=(0.3424,0.8009,0.4774); rgb(159pt)=(0.3548,0.8016,0.4669); rgb(160pt)=(0.3671,0.8021,0.4563); rgb(161pt)=(0.3795,0.8026,0.4454); rgb(162pt)=(0.3921,0.8029,0.4344); rgb(163pt)=(0.405,0.8031,0.4233); rgb(164pt)=(0.4184,0.803,0.4122); rgb(165pt)=(0.4322,0.8028,0.4013); rgb(166pt)=(0.4463,0.8024,0.3904); rgb(167pt)=(0.4608,0.8018,0.3797); rgb(168pt)=(0.4753,0.8011,0.3691); rgb(169pt)=(0.4899,0.8002,0.3586); rgb(170pt)=(0.5044,0.7993,0.348); rgb(171pt)=(0.5187,0.7982,0.3374); rgb(172pt)=(0.5329,0.797,0.3267); rgb(173pt)=(0.547,0.7957,0.3159); rgb(175pt)=(0.5748,0.7929,0.2941); rgb(176pt)=(0.5886,0.7913,0.2833); rgb(177pt)=(0.6024,0.7896,0.2726); rgb(178pt)=(0.6161,0.7878,0.2622); rgb(179pt)=(0.6297,0.7859,0.2521); rgb(180pt)=(0.6433,0.7839,0.2423); rgb(181pt)=(0.6567,0.7818,0.2329); rgb(182pt)=(0.6701,0.7796,0.2239); rgb(183pt)=(0.6833,0.7773,0.2155); rgb(184pt)=(0.6963,0.775,0.2075); rgb(185pt)=(0.7091,0.7727,0.1998); rgb(186pt)=(0.7218,0.7703,0.1924); rgb(187pt)=(0.7344,0.7679,0.1852); rgb(188pt)=(0.7468,0.7654,0.1782); rgb(189pt)=(0.759,0.7629,0.1717); rgb(190pt)=(0.771,0.7604,0.1658); rgb(191pt)=(0.7829,0.7579,0.1608); rgb(192pt)=(0.7945,0.7554,0.157); rgb(193pt)=(0.806,0.7529,0.1546); rgb(194pt)=(0.8172,0.7505,0.1535); rgb(195pt)=(0.8281,0.7481,0.1536); rgb(196pt)=(0.8389,0.7457,0.1546); rgb(197pt)=(0.8495,0.7435,0.1564); rgb(198pt)=(0.86,0.7413,0.1587); rgb(199pt)=(0.8703,0.7392,0.1615); rgb(200pt)=(0.8804,0.7372,0.165); rgb(201pt)=(0.8903,0.7353,0.1695); rgb(202pt)=(0.9,0.7336,0.1749); rgb(203pt)=(0.9093,0.7321,0.1815); rgb(204pt)=(0.9184,0.7308,0.189); rgb(205pt)=(0.9272,0.7298,0.1973); rgb(206pt)=(0.9357,0.729,0.2061); rgb(207pt)=(0.944,0.7285,0.2151); rgb(208pt)=(0.9523,0.7284,0.2237); rgb(209pt)=(0.9606,0.7285,0.2312); rgb(210pt)=(0.9689,0.7292,0.2373); rgb(211pt)=(0.977,0.7304,0.2418); rgb(212pt)=(0.9842,0.733,0.2446); rgb(213pt)=(0.99,0.7365,0.2429); rgb(214pt)=(0.9946,0.7407,0.2394); rgb(215pt)=(0.9966,0.7458,0.2351); rgb(216pt)=(0.9971,0.7513,0.2309); rgb(217pt)=(0.9972,0.7569,0.2267); rgb(218pt)=(0.9971,0.7626,0.2224); rgb(219pt)=(0.9969,0.7683,0.2181); rgb(220pt)=(0.9966,0.774,0.2138); rgb(221pt)=(0.9962,0.7798,0.2095); rgb(222pt)=(0.9957,0.7856,0.2053); rgb(223pt)=(0.9949,0.7915,0.2012); rgb(224pt)=(0.9938,0.7974,0.1974); rgb(225pt)=(0.9923,0.8034,0.1939); rgb(226pt)=(0.9906,0.8095,0.1906); rgb(227pt)=(0.9885,0.8156,0.1875); rgb(228pt)=(0.9861,0.8218,0.1846); rgb(229pt)=(0.9835,0.828,0.1817); rgb(230pt)=(0.9807,0.8342,0.1787); rgb(231pt)=(0.9778,0.8404,0.1757); rgb(232pt)=(0.9748,0.8467,0.1726); rgb(233pt)=(0.972,0.8529,0.1695); rgb(234pt)=(0.9694,0.8591,0.1665); rgb(235pt)=(0.9671,0.8654,0.1636); rgb(236pt)=(0.9651,0.8716,0.1608); rgb(237pt)=(0.9634,0.8778,0.1582); rgb(238pt)=(0.9619,0.884,0.1557); rgb(239pt)=(0.9608,0.8902,0.1532); rgb(240pt)=(0.9601,0.8963,0.1507); rgb(241pt)=(0.9596,0.9023,0.148); rgb(242pt)=(0.9595,0.9084,0.145); rgb(243pt)=(0.9597,0.9143,0.1418); rgb(244pt)=(0.9601,0.9203,0.1382); rgb(245pt)=(0.9608,0.9262,0.1344); rgb(246pt)=(0.9618,0.932,0.1304); rgb(247pt)=(0.9629,0.9379,0.1261); rgb(248pt)=(0.9642,0.9437,0.1216); rgb(249pt)=(0.9657,0.9494,0.1168); rgb(250pt)=(0.9674,0.9552,0.1116); rgb(251pt)=(0.9692,0.9609,0.1061); rgb(252pt)=(0.9711,0.9667,0.1001); rgb(253pt)=(0.973,0.9724,0.0938); rgb(254pt)=(0.9749,0.9782,0.0872); rgb(255pt)=(0.9769,0.9839,0.0805)}, mesh/rows=21] table[row sep=crcr, point meta=\thisrow{c}] {% % x y z c\\ -10 -10 900 900\\ -10 -9 881 881\\ -10 -8 864 864\\ -10 -7 849 849\\ -10 -6 836 836\\ -10 -5 825 825\\ -10 -4 816 816\\ -10 -3 809 809\\ -10 -2 804 804\\ -10 -1 801 801\\ -10 0 800 800\\ -10 1 801 801\\ -10 2 804 804\\ -10 3 809 809\\ -10 4 816 816\\ -10 5 825 825\\ -10 6 836 836\\ -10 7 849 849\\ -10 8 864 864\\ -10 9 881 881\\ -10 10 900 900\\ -9 -10 748 748\\ -9 -9 729 729\\ -9 -8 712 712\\ -9 -7 697 697\\ -9 -6 684 684\\ -9 -5 673 673\\ -9 -4 664 664\\ -9 -3 657 657\\ -9 -2 652 652\\ -9 -1 649 649\\ -9 0 648 648\\ -9 1 649 649\\ -9 2 652 652\\ -9 3 657 657\\ -9 4 664 664\\ -9 5 673 673\\ -9 6 684 684\\ -9 7 697 697\\ -9 8 712 712\\ -9 9 729 729\\ -9 10 748 748\\ -8 -10 612 612\\ -8 -9 593 593\\ -8 -8 576 576\\ -8 -7 561 561\\ -8 -6 548 548\\ -8 -5 537 537\\ -8 -4 528 528\\ -8 -3 521 521\\ -8 -2 516 516\\ -8 -1 513 513\\ -8 0 512 512\\ -8 1 513 513\\ -8 2 516 516\\ -8 3 521 521\\ -8 4 528 528\\ -8 5 537 537\\ -8 6 548 548\\ -8 7 561 561\\ -8 8 576 576\\ -8 9 593 593\\ -8 10 612 612\\ -7 -10 492 492\\ -7 -9 473 473\\ -7 -8 456 456\\ -7 -7 441 441\\ -7 -6 428 428\\ -7 -5 417 417\\ -7 -4 408 408\\ -7 -3 401 401\\ -7 -2 396 396\\ -7 -1 393 393\\ -7 0 392 392\\ -7 1 393 393\\ -7 2 396 396\\ -7 3 401 401\\ -7 4 408 408\\ -7 5 417 417\\ -7 6 428 428\\ -7 7 441 441\\ -7 8 456 456\\ -7 9 473 473\\ -7 10 492 492\\ -6 -10 388 388\\ -6 -9 369 369\\ -6 -8 352 352\\ -6 -7 337 337\\ -6 -6 324 324\\ -6 -5 313 313\\ -6 -4 304 304\\ -6 -3 297 297\\ -6 -2 292 292\\ -6 -1 289 289\\ -6 0 288 288\\ -6 1 289 289\\ -6 2 292 292\\ -6 3 297 297\\ -6 4 304 304\\ -6 5 313 313\\ -6 6 324 324\\ -6 7 337 337\\ -6 8 352 352\\ -6 9 369 369\\ -6 10 388 388\\ -5 -10 300 300\\ -5 -9 281 281\\ -5 -8 264 264\\ -5 -7 249 249\\ -5 -6 236 236\\ -5 -5 225 225\\ -5 -4 216 216\\ -5 -3 209 209\\ -5 -2 204 204\\ -5 -1 201 201\\ -5 0 200 200\\ -5 1 201 201\\ -5 2 204 204\\ -5 3 209 209\\ -5 4 216 216\\ -5 5 225 225\\ -5 6 236 236\\ -5 7 249 249\\ -5 8 264 264\\ -5 9 281 281\\ -5 10 300 300\\ -4 -10 228 228\\ -4 -9 209 209\\ -4 -8 192 192\\ -4 -7 177 177\\ -4 -6 164 164\\ -4 -5 153 153\\ -4 -4 144 144\\ -4 -3 137 137\\ -4 -2 132 132\\ -4 -1 129 129\\ -4 0 128 128\\ -4 1 129 129\\ -4 2 132 132\\ -4 3 137 137\\ -4 4 144 144\\ -4 5 153 153\\ -4 6 164 164\\ -4 7 177 177\\ -4 8 192 192\\ -4 9 209 209\\ -4 10 228 228\\ -3 -10 172 172\\ -3 -9 153 153\\ -3 -8 136 136\\ -3 -7 121 121\\ -3 -6 108 108\\ -3 -5 97 97\\ -3 -4 88 88\\ -3 -3 81 81\\ -3 -2 76 76\\ -3 -1 73 73\\ -3 0 72 72\\ -3 1 73 73\\ -3 2 76 76\\ -3 3 81 81\\ -3 4 88 88\\ -3 5 97 97\\ -3 6 108 108\\ -3 7 121 121\\ -3 8 136 136\\ -3 9 153 153\\ -3 10 172 172\\ -2 -10 132 132\\ -2 -9 113 113\\ -2 -8 96 96\\ -2 -7 81 81\\ -2 -6 68 68\\ -2 -5 57 57\\ -2 -4 48 48\\ -2 -3 41 41\\ -2 -2 36 36\\ -2 -1 33 33\\ -2 0 32 32\\ -2 1 33 33\\ -2 2 36 36\\ -2 3 41 41\\ -2 4 48 48\\ -2 5 57 57\\ -2 6 68 68\\ -2 7 81 81\\ -2 8 96 96\\ -2 9 113 113\\ -2 10 132 132\\ -1 -10 108 108\\ -1 -9 89 89\\ -1 -8 72 72\\ -1 -7 57 57\\ -1 -6 44 44\\ -1 -5 33 33\\ -1 -4 24 24\\ -1 -3 17 17\\ -1 -2 12 12\\ -1 -1 9 9\\ -1 0 8 8\\ -1 1 9 9\\ -1 2 12 12\\ -1 3 17 17\\ -1 4 24 24\\ -1 5 33 33\\ -1 6 44 44\\ -1 7 57 57\\ -1 8 72 72\\ -1 9 89 89\\ -1 10 108 108\\ 0 -10 100 100\\ 0 -9 81 81\\ 0 -8 64 64\\ 0 -7 49 49\\ 0 -6 36 36\\ 0 -5 25 25\\ 0 -4 16 16\\ 0 -3 9 9\\ 0 -2 4 4\\ 0 -1 1 1\\ 0 0 0 0\\ 0 1 1 1\\ 0 2 4 4\\ 0 3 9 9\\ 0 4 16 16\\ 0 5 25 25\\ 0 6 36 36\\ 0 7 49 49\\ 0 8 64 64\\ 0 9 81 81\\ 0 10 100 100\\ 1 -10 108 108\\ 1 -9 89 89\\ 1 -8 72 72\\ 1 -7 57 57\\ 1 -6 44 44\\ 1 -5 33 33\\ 1 -4 24 24\\ 1 -3 17 17\\ 1 -2 12 12\\ 1 -1 9 9\\ 1 0 8 8\\ 1 1 9 9\\ 1 2 12 12\\ 1 3 17 17\\ 1 4 24 24\\ 1 5 33 33\\ 1 6 44 44\\ 1 7 57 57\\ 1 8 72 72\\ 1 9 89 89\\ 1 10 108 108\\ 2 -10 132 132\\ 2 -9 113 113\\ 2 -8 96 96\\ 2 -7 81 81\\ 2 -6 68 68\\ 2 -5 57 57\\ 2 -4 48 48\\ 2 -3 41 41\\ 2 -2 36 36\\ 2 -1 33 33\\ 2 0 32 32\\ 2 1 33 33\\ 2 2 36 36\\ 2 3 41 41\\ 2 4 48 48\\ 2 5 57 57\\ 2 6 68 68\\ 2 7 81 81\\ 2 8 96 96\\ 2 9 113 113\\ 2 10 132 132\\ 3 -10 172 172\\ 3 -9 153 153\\ 3 -8 136 136\\ 3 -7 121 121\\ 3 -6 108 108\\ 3 -5 97 97\\ 3 -4 88 88\\ 3 -3 81 81\\ 3 -2 76 76\\ 3 -1 73 73\\ 3 0 72 72\\ 3 1 73 73\\ 3 2 76 76\\ 3 3 81 81\\ 3 4 88 88\\ 3 5 97 97\\ 3 6 108 108\\ 3 7 121 121\\ 3 8 136 136\\ 3 9 153 153\\ 3 10 172 172\\ 4 -10 228 228\\ 4 -9 209 209\\ 4 -8 192 192\\ 4 -7 177 177\\ 4 -6 164 164\\ 4 -5 153 153\\ 4 -4 144 144\\ 4 -3 137 137\\ 4 -2 132 132\\ 4 -1 129 129\\ 4 0 128 128\\ 4 1 129 129\\ 4 2 132 132\\ 4 3 137 137\\ 4 4 144 144\\ 4 5 153 153\\ 4 6 164 164\\ 4 7 177 177\\ 4 8 192 192\\ 4 9 209 209\\ 4 10 228 228\\ 5 -10 300 300\\ 5 -9 281 281\\ 5 -8 264 264\\ 5 -7 249 249\\ 5 -6 236 236\\ 5 -5 225 225\\ 5 -4 216 216\\ 5 -3 209 209\\ 5 -2 204 204\\ 5 -1 201 201\\ 5 0 200 200\\ 5 1 201 201\\ 5 2 204 204\\ 5 3 209 209\\ 5 4 216 216\\ 5 5 225 225\\ 5 6 236 236\\ 5 7 249 249\\ 5 8 264 264\\ 5 9 281 281\\ 5 10 300 300\\ 6 -10 388 388\\ 6 -9 369 369\\ 6 -8 352 352\\ 6 -7 337 337\\ 6 -6 324 324\\ 6 -5 313 313\\ 6 -4 304 304\\ 6 -3 297 297\\ 6 -2 292 292\\ 6 -1 289 289\\ 6 0 288 288\\ 6 1 289 289\\ 6 2 292 292\\ 6 3 297 297\\ 6 4 304 304\\ 6 5 313 313\\ 6 6 324 324\\ 6 7 337 337\\ 6 8 352 352\\ 6 9 369 369\\ 6 10 388 388\\ 7 -10 492 492\\ 7 -9 473 473\\ 7 -8 456 456\\ 7 -7 441 441\\ 7 -6 428 428\\ 7 -5 417 417\\ 7 -4 408 408\\ 7 -3 401 401\\ 7 -2 396 396\\ 7 -1 393 393\\ 7 0 392 392\\ 7 1 393 393\\ 7 2 396 396\\ 7 3 401 401\\ 7 4 408 408\\ 7 5 417 417\\ 7 6 428 428\\ 7 7 441 441\\ 7 8 456 456\\ 7 9 473 473\\ 7 10 492 492\\ 8 -10 612 612\\ 8 -9 593 593\\ 8 -8 576 576\\ 8 -7 561 561\\ 8 -6 548 548\\ 8 -5 537 537\\ 8 -4 528 528\\ 8 -3 521 521\\ 8 -2 516 516\\ 8 -1 513 513\\ 8 0 512 512\\ 8 1 513 513\\ 8 2 516 516\\ 8 3 521 521\\ 8 4 528 528\\ 8 5 537 537\\ 8 6 548 548\\ 8 7 561 561\\ 8 8 576 576\\ 8 9 593 593\\ 8 10 612 612\\ 9 -10 748 748\\ 9 -9 729 729\\ 9 -8 712 712\\ 9 -7 697 697\\ 9 -6 684 684\\ 9 -5 673 673\\ 9 -4 664 664\\ 9 -3 657 657\\ 9 -2 652 652\\ 9 -1 649 649\\ 9 0 648 648\\ 9 1 649 649\\ 9 2 652 652\\ 9 3 657 657\\ 9 4 664 664\\ 9 5 673 673\\ 9 6 684 684\\ 9 7 697 697\\ 9 8 712 712\\ 9 9 729 729\\ 9 10 748 748\\ 10 -10 900 900\\ 10 -9 881 881\\ 10 -8 864 864\\ 10 -7 849 849\\ 10 -6 836 836\\ 10 -5 825 825\\ 10 -4 816 816\\ 10 -3 809 809\\ 10 -2 804 804\\ 10 -1 801 801\\ 10 0 800 800\\ 10 1 801 801\\ 10 2 804 804\\ 10 3 809 809\\ 10 4 816 816\\ 10 5 825 825\\ 10 6 836 836\\ 10 7 849 849\\ 10 8 864 864\\ 10 9 881 881\\ 10 10 900 900\\ }; \end{axis} \begin{axis}[% width=0.737in, height=1.524in, at={(3.684in,0.491in)}, scale only axis, xmin=-10, xmax=10, tick align=outside, ymin=-10, ymax=10, zmin=0, zmax=1000, view={-37.5}{30}, axis background/.style={fill=white}, title style={font=\bfseries}, title={u=9}, axis x line*=bottom, axis y line*=left, axis z line*=left, xmajorgrids, ymajorgrids, zmajorgrids ] \addplot3[% surf, shader=flat, z buffer=sort, colormap={mymap}{[1pt] rgb(0pt)=(0.2422,0.1504,0.6603); rgb(1pt)=(0.2444,0.1534,0.6728); rgb(2pt)=(0.2464,0.1569,0.6847); rgb(3pt)=(0.2484,0.1607,0.6961); rgb(4pt)=(0.2503,0.1648,0.7071); rgb(5pt)=(0.2522,0.1689,0.7179); rgb(6pt)=(0.254,0.1732,0.7286); rgb(7pt)=(0.2558,0.1773,0.7393); rgb(8pt)=(0.2576,0.1814,0.7501); rgb(9pt)=(0.2594,0.1854,0.761); rgb(11pt)=(0.2628,0.1932,0.7828); rgb(12pt)=(0.2645,0.1972,0.7937); rgb(13pt)=(0.2661,0.2011,0.8043); rgb(14pt)=(0.2676,0.2052,0.8148); rgb(15pt)=(0.2691,0.2094,0.8249); rgb(16pt)=(0.2704,0.2138,0.8346); rgb(17pt)=(0.2717,0.2184,0.8439); rgb(18pt)=(0.2729,0.2231,0.8528); rgb(19pt)=(0.274,0.228,0.8612); rgb(20pt)=(0.2749,0.233,0.8692); rgb(21pt)=(0.2758,0.2382,0.8767); rgb(22pt)=(0.2766,0.2435,0.884); rgb(23pt)=(0.2774,0.2489,0.8908); rgb(24pt)=(0.2781,0.2543,0.8973); rgb(25pt)=(0.2788,0.2598,0.9035); rgb(26pt)=(0.2794,0.2653,0.9094); rgb(27pt)=(0.2798,0.2708,0.915); rgb(28pt)=(0.2802,0.2764,0.9204); rgb(29pt)=(0.2806,0.2819,0.9255); rgb(30pt)=(0.2809,0.2875,0.9305); rgb(31pt)=(0.2811,0.293,0.9352); rgb(32pt)=(0.2813,0.2985,0.9397); rgb(33pt)=(0.2814,0.304,0.9441); rgb(34pt)=(0.2814,0.3095,0.9483); rgb(35pt)=(0.2813,0.315,0.9524); rgb(36pt)=(0.2811,0.3204,0.9563); rgb(37pt)=(0.2809,0.3259,0.96); rgb(38pt)=(0.2807,0.3313,0.9636); rgb(39pt)=(0.2803,0.3367,0.967); rgb(40pt)=(0.2798,0.3421,0.9702); rgb(41pt)=(0.2791,0.3475,0.9733); rgb(42pt)=(0.2784,0.3529,0.9763); rgb(43pt)=(0.2776,0.3583,0.9791); rgb(44pt)=(0.2766,0.3638,0.9817); rgb(45pt)=(0.2754,0.3693,0.984); rgb(46pt)=(0.2741,0.3748,0.9862); rgb(47pt)=(0.2726,0.3804,0.9881); rgb(48pt)=(0.271,0.386,0.9898); rgb(49pt)=(0.2691,0.3916,0.9912); rgb(50pt)=(0.267,0.3973,0.9924); rgb(51pt)=(0.2647,0.403,0.9935); rgb(52pt)=(0.2621,0.4088,0.9946); rgb(53pt)=(0.2591,0.4145,0.9955); rgb(54pt)=(0.2556,0.4203,0.9965); rgb(55pt)=(0.2517,0.4261,0.9974); rgb(56pt)=(0.2473,0.4319,0.9983); rgb(57pt)=(0.2424,0.4378,0.9991); rgb(58pt)=(0.2369,0.4437,0.9996); rgb(59pt)=(0.2311,0.4497,0.9995); rgb(60pt)=(0.225,0.4559,0.9985); rgb(61pt)=(0.2189,0.462,0.9968); rgb(62pt)=(0.2128,0.4682,0.9948); rgb(63pt)=(0.2066,0.4743,0.9926); rgb(64pt)=(0.2006,0.4803,0.9906); rgb(65pt)=(0.195,0.4861,0.9887); rgb(66pt)=(0.1903,0.4919,0.9867); rgb(67pt)=(0.1869,0.4975,0.9844); rgb(68pt)=(0.1847,0.503,0.9819); rgb(69pt)=(0.1831,0.5084,0.9793); rgb(70pt)=(0.1818,0.5138,0.9766); rgb(71pt)=(0.1806,0.5191,0.9738); rgb(72pt)=(0.1795,0.5244,0.9709); rgb(73pt)=(0.1785,0.5296,0.9677); rgb(74pt)=(0.1778,0.5349,0.9641); rgb(75pt)=(0.1773,0.5401,0.9602); rgb(76pt)=(0.1768,0.5452,0.956); rgb(77pt)=(0.1764,0.5504,0.9516); rgb(78pt)=(0.1755,0.5554,0.9473); rgb(79pt)=(0.174,0.5605,0.9432); rgb(80pt)=(0.1716,0.5655,0.9393); rgb(81pt)=(0.1686,0.5705,0.9357); rgb(82pt)=(0.1649,0.5755,0.9323); rgb(83pt)=(0.161,0.5805,0.9289); rgb(84pt)=(0.1573,0.5854,0.9254); rgb(85pt)=(0.154,0.5902,0.9218); rgb(86pt)=(0.1513,0.595,0.9182); rgb(87pt)=(0.1492,0.5997,0.9147); rgb(88pt)=(0.1475,0.6043,0.9113); rgb(89pt)=(0.1461,0.6089,0.908); rgb(90pt)=(0.1446,0.6135,0.905); rgb(91pt)=(0.1429,0.618,0.9022); rgb(92pt)=(0.1408,0.6226,0.8998); rgb(93pt)=(0.1383,0.6272,0.8975); rgb(94pt)=(0.1354,0.6317,0.8953); rgb(95pt)=(0.1321,0.6363,0.8932); rgb(96pt)=(0.1288,0.6408,0.891); rgb(97pt)=(0.1253,0.6453,0.8887); rgb(98pt)=(0.1219,0.6497,0.8862); rgb(99pt)=(0.1185,0.6541,0.8834); rgb(100pt)=(0.1152,0.6584,0.8804); rgb(101pt)=(0.1119,0.6627,0.877); rgb(102pt)=(0.1085,0.6669,0.8734); rgb(103pt)=(0.1048,0.671,0.8695); rgb(104pt)=(0.1009,0.675,0.8653); rgb(105pt)=(0.0964,0.6789,0.8609); rgb(106pt)=(0.0914,0.6828,0.8562); rgb(107pt)=(0.0855,0.6865,0.8513); rgb(108pt)=(0.0789,0.6902,0.8462); rgb(109pt)=(0.0713,0.6938,0.8409); rgb(110pt)=(0.0628,0.6972,0.8355); rgb(111pt)=(0.0535,0.7006,0.8299); rgb(112pt)=(0.0433,0.7039,0.8242); rgb(113pt)=(0.0328,0.7071,0.8183); rgb(114pt)=(0.0234,0.7103,0.8124); rgb(115pt)=(0.0155,0.7133,0.8064); rgb(116pt)=(0.0091,0.7163,0.8003); rgb(117pt)=(0.0046,0.7192,0.7941); rgb(118pt)=(0.0019,0.722,0.7878); rgb(119pt)=(0.0009,0.7248,0.7815); rgb(120pt)=(0.0018,0.7275,0.7752); rgb(121pt)=(0.0046,0.7301,0.7688); rgb(122pt)=(0.0094,0.7327,0.7623); rgb(123pt)=(0.0162,0.7352,0.7558); rgb(124pt)=(0.0253,0.7376,0.7492); rgb(125pt)=(0.0369,0.74,0.7426); rgb(126pt)=(0.0504,0.7423,0.7359); rgb(127pt)=(0.0638,0.7446,0.7292); rgb(128pt)=(0.077,0.7468,0.7224); rgb(129pt)=(0.0899,0.7489,0.7156); rgb(130pt)=(0.1023,0.751,0.7088); rgb(131pt)=(0.1141,0.7531,0.7019); rgb(132pt)=(0.1252,0.7552,0.695); rgb(133pt)=(0.1354,0.7572,0.6881); rgb(134pt)=(0.1448,0.7593,0.6812); rgb(135pt)=(0.1532,0.7614,0.6741); rgb(136pt)=(0.1609,0.7635,0.6671); rgb(137pt)=(0.1678,0.7656,0.6599); rgb(138pt)=(0.1741,0.7678,0.6527); rgb(139pt)=(0.1799,0.7699,0.6454); rgb(140pt)=(0.1853,0.7721,0.6379); rgb(141pt)=(0.1905,0.7743,0.6303); rgb(142pt)=(0.1954,0.7765,0.6225); rgb(143pt)=(0.2003,0.7787,0.6146); rgb(144pt)=(0.2061,0.7808,0.6065); rgb(145pt)=(0.2118,0.7828,0.5983); rgb(146pt)=(0.2178,0.7849,0.5899); rgb(147pt)=(0.2244,0.7869,0.5813); rgb(148pt)=(0.2318,0.7887,0.5725); rgb(149pt)=(0.2401,0.7905,0.5636); rgb(150pt)=(0.2491,0.7922,0.5546); rgb(151pt)=(0.2589,0.7937,0.5454); rgb(152pt)=(0.2695,0.7951,0.536); rgb(153pt)=(0.2809,0.7964,0.5266); rgb(154pt)=(0.2929,0.7975,0.517); rgb(155pt)=(0.3052,0.7985,0.5074); rgb(156pt)=(0.3176,0.7994,0.4975); rgb(157pt)=(0.3301,0.8002,0.4876); rgb(158pt)=(0.3424,0.8009,0.4774); rgb(159pt)=(0.3548,0.8016,0.4669); rgb(160pt)=(0.3671,0.8021,0.4563); rgb(161pt)=(0.3795,0.8026,0.4454); rgb(162pt)=(0.3921,0.8029,0.4344); rgb(163pt)=(0.405,0.8031,0.4233); rgb(164pt)=(0.4184,0.803,0.4122); rgb(165pt)=(0.4322,0.8028,0.4013); rgb(166pt)=(0.4463,0.8024,0.3904); rgb(167pt)=(0.4608,0.8018,0.3797); rgb(168pt)=(0.4753,0.8011,0.3691); rgb(169pt)=(0.4899,0.8002,0.3586); rgb(170pt)=(0.5044,0.7993,0.348); rgb(171pt)=(0.5187,0.7982,0.3374); rgb(172pt)=(0.5329,0.797,0.3267); rgb(173pt)=(0.547,0.7957,0.3159); rgb(175pt)=(0.5748,0.7929,0.2941); rgb(176pt)=(0.5886,0.7913,0.2833); rgb(177pt)=(0.6024,0.7896,0.2726); rgb(178pt)=(0.6161,0.7878,0.2622); rgb(179pt)=(0.6297,0.7859,0.2521); rgb(180pt)=(0.6433,0.7839,0.2423); rgb(181pt)=(0.6567,0.7818,0.2329); rgb(182pt)=(0.6701,0.7796,0.2239); rgb(183pt)=(0.6833,0.7773,0.2155); rgb(184pt)=(0.6963,0.775,0.2075); rgb(185pt)=(0.7091,0.7727,0.1998); rgb(186pt)=(0.7218,0.7703,0.1924); rgb(187pt)=(0.7344,0.7679,0.1852); rgb(188pt)=(0.7468,0.7654,0.1782); rgb(189pt)=(0.759,0.7629,0.1717); rgb(190pt)=(0.771,0.7604,0.1658); rgb(191pt)=(0.7829,0.7579,0.1608); rgb(192pt)=(0.7945,0.7554,0.157); rgb(193pt)=(0.806,0.7529,0.1546); rgb(194pt)=(0.8172,0.7505,0.1535); rgb(195pt)=(0.8281,0.7481,0.1536); rgb(196pt)=(0.8389,0.7457,0.1546); rgb(197pt)=(0.8495,0.7435,0.1564); rgb(198pt)=(0.86,0.7413,0.1587); rgb(199pt)=(0.8703,0.7392,0.1615); rgb(200pt)=(0.8804,0.7372,0.165); rgb(201pt)=(0.8903,0.7353,0.1695); rgb(202pt)=(0.9,0.7336,0.1749); rgb(203pt)=(0.9093,0.7321,0.1815); rgb(204pt)=(0.9184,0.7308,0.189); rgb(205pt)=(0.9272,0.7298,0.1973); rgb(206pt)=(0.9357,0.729,0.2061); rgb(207pt)=(0.944,0.7285,0.2151); rgb(208pt)=(0.9523,0.7284,0.2237); rgb(209pt)=(0.9606,0.7285,0.2312); rgb(210pt)=(0.9689,0.7292,0.2373); rgb(211pt)=(0.977,0.7304,0.2418); rgb(212pt)=(0.9842,0.733,0.2446); rgb(213pt)=(0.99,0.7365,0.2429); rgb(214pt)=(0.9946,0.7407,0.2394); rgb(215pt)=(0.9966,0.7458,0.2351); rgb(216pt)=(0.9971,0.7513,0.2309); rgb(217pt)=(0.9972,0.7569,0.2267); rgb(218pt)=(0.9971,0.7626,0.2224); rgb(219pt)=(0.9969,0.7683,0.2181); rgb(220pt)=(0.9966,0.774,0.2138); rgb(221pt)=(0.9962,0.7798,0.2095); rgb(222pt)=(0.9957,0.7856,0.2053); rgb(223pt)=(0.9949,0.7915,0.2012); rgb(224pt)=(0.9938,0.7974,0.1974); rgb(225pt)=(0.9923,0.8034,0.1939); rgb(226pt)=(0.9906,0.8095,0.1906); rgb(227pt)=(0.9885,0.8156,0.1875); rgb(228pt)=(0.9861,0.8218,0.1846); rgb(229pt)=(0.9835,0.828,0.1817); rgb(230pt)=(0.9807,0.8342,0.1787); rgb(231pt)=(0.9778,0.8404,0.1757); rgb(232pt)=(0.9748,0.8467,0.1726); rgb(233pt)=(0.972,0.8529,0.1695); rgb(234pt)=(0.9694,0.8591,0.1665); rgb(235pt)=(0.9671,0.8654,0.1636); rgb(236pt)=(0.9651,0.8716,0.1608); rgb(237pt)=(0.9634,0.8778,0.1582); rgb(238pt)=(0.9619,0.884,0.1557); rgb(239pt)=(0.9608,0.8902,0.1532); rgb(240pt)=(0.9601,0.8963,0.1507); rgb(241pt)=(0.9596,0.9023,0.148); rgb(242pt)=(0.9595,0.9084,0.145); rgb(243pt)=(0.9597,0.9143,0.1418); rgb(244pt)=(0.9601,0.9203,0.1382); rgb(245pt)=(0.9608,0.9262,0.1344); rgb(246pt)=(0.9618,0.932,0.1304); rgb(247pt)=(0.9629,0.9379,0.1261); rgb(248pt)=(0.9642,0.9437,0.1216); rgb(249pt)=(0.9657,0.9494,0.1168); rgb(250pt)=(0.9674,0.9552,0.1116); rgb(251pt)=(0.9692,0.9609,0.1061); rgb(252pt)=(0.9711,0.9667,0.1001); rgb(253pt)=(0.973,0.9724,0.0938); rgb(254pt)=(0.9749,0.9782,0.0872); rgb(255pt)=(0.9769,0.9839,0.0805)}, mesh/rows=21] table[row sep=crcr, point meta=\thisrow{c}] {% % x y z c\\ -10 -10 1000 1000\\ -10 -9 981 981\\ -10 -8 964 964\\ -10 -7 949 949\\ -10 -6 936 936\\ -10 -5 925 925\\ -10 -4 916 916\\ -10 -3 909 909\\ -10 -2 904 904\\ -10 -1 901 901\\ -10 0 900 900\\ -10 1 901 901\\ -10 2 904 904\\ -10 3 909 909\\ -10 4 916 916\\ -10 5 925 925\\ -10 6 936 936\\ -10 7 949 949\\ -10 8 964 964\\ -10 9 981 981\\ -10 10 1000 1000\\ -9 -10 829 829\\ -9 -9 810 810\\ -9 -8 793 793\\ -9 -7 778 778\\ -9 -6 765 765\\ -9 -5 754 754\\ -9 -4 745 745\\ -9 -3 738 738\\ -9 -2 733 733\\ -9 -1 730 730\\ -9 0 729 729\\ -9 1 730 730\\ -9 2 733 733\\ -9 3 738 738\\ -9 4 745 745\\ -9 5 754 754\\ -9 6 765 765\\ -9 7 778 778\\ -9 8 793 793\\ -9 9 810 810\\ -9 10 829 829\\ -8 -10 676 676\\ -8 -9 657 657\\ -8 -8 640 640\\ -8 -7 625 625\\ -8 -6 612 612\\ -8 -5 601 601\\ -8 -4 592 592\\ -8 -3 585 585\\ -8 -2 580 580\\ -8 -1 577 577\\ -8 0 576 576\\ -8 1 577 577\\ -8 2 580 580\\ -8 3 585 585\\ -8 4 592 592\\ -8 5 601 601\\ -8 6 612 612\\ -8 7 625 625\\ -8 8 640 640\\ -8 9 657 657\\ -8 10 676 676\\ -7 -10 541 541\\ -7 -9 522 522\\ -7 -8 505 505\\ -7 -7 490 490\\ -7 -6 477 477\\ -7 -5 466 466\\ -7 -4 457 457\\ -7 -3 450 450\\ -7 -2 445 445\\ -7 -1 442 442\\ -7 0 441 441\\ -7 1 442 442\\ -7 2 445 445\\ -7 3 450 450\\ -7 4 457 457\\ -7 5 466 466\\ -7 6 477 477\\ -7 7 490 490\\ -7 8 505 505\\ -7 9 522 522\\ -7 10 541 541\\ -6 -10 424 424\\ -6 -9 405 405\\ -6 -8 388 388\\ -6 -7 373 373\\ -6 -6 360 360\\ -6 -5 349 349\\ -6 -4 340 340\\ -6 -3 333 333\\ -6 -2 328 328\\ -6 -1 325 325\\ -6 0 324 324\\ -6 1 325 325\\ -6 2 328 328\\ -6 3 333 333\\ -6 4 340 340\\ -6 5 349 349\\ -6 6 360 360\\ -6 7 373 373\\ -6 8 388 388\\ -6 9 405 405\\ -6 10 424 424\\ -5 -10 325 325\\ -5 -9 306 306\\ -5 -8 289 289\\ -5 -7 274 274\\ -5 -6 261 261\\ -5 -5 250 250\\ -5 -4 241 241\\ -5 -3 234 234\\ -5 -2 229 229\\ -5 -1 226 226\\ -5 0 225 225\\ -5 1 226 226\\ -5 2 229 229\\ -5 3 234 234\\ -5 4 241 241\\ -5 5 250 250\\ -5 6 261 261\\ -5 7 274 274\\ -5 8 289 289\\ -5 9 306 306\\ -5 10 325 325\\ -4 -10 244 244\\ -4 -9 225 225\\ -4 -8 208 208\\ -4 -7 193 193\\ -4 -6 180 180\\ -4 -5 169 169\\ -4 -4 160 160\\ -4 -3 153 153\\ -4 -2 148 148\\ -4 -1 145 145\\ -4 0 144 144\\ -4 1 145 145\\ -4 2 148 148\\ -4 3 153 153\\ -4 4 160 160\\ -4 5 169 169\\ -4 6 180 180\\ -4 7 193 193\\ -4 8 208 208\\ -4 9 225 225\\ -4 10 244 244\\ -3 -10 181 181\\ -3 -9 162 162\\ -3 -8 145 145\\ -3 -7 130 130\\ -3 -6 117 117\\ -3 -5 106 106\\ -3 -4 97 97\\ -3 -3 90 90\\ -3 -2 85 85\\ -3 -1 82 82\\ -3 0 81 81\\ -3 1 82 82\\ -3 2 85 85\\ -3 3 90 90\\ -3 4 97 97\\ -3 5 106 106\\ -3 6 117 117\\ -3 7 130 130\\ -3 8 145 145\\ -3 9 162 162\\ -3 10 181 181\\ -2 -10 136 136\\ -2 -9 117 117\\ -2 -8 100 100\\ -2 -7 85 85\\ -2 -6 72 72\\ -2 -5 61 61\\ -2 -4 52 52\\ -2 -3 45 45\\ -2 -2 40 40\\ -2 -1 37 37\\ -2 0 36 36\\ -2 1 37 37\\ -2 2 40 40\\ -2 3 45 45\\ -2 4 52 52\\ -2 5 61 61\\ -2 6 72 72\\ -2 7 85 85\\ -2 8 100 100\\ -2 9 117 117\\ -2 10 136 136\\ -1 -10 109 109\\ -1 -9 90 90\\ -1 -8 73 73\\ -1 -7 58 58\\ -1 -6 45 45\\ -1 -5 34 34\\ -1 -4 25 25\\ -1 -3 18 18\\ -1 -2 13 13\\ -1 -1 10 10\\ -1 0 9 9\\ -1 1 10 10\\ -1 2 13 13\\ -1 3 18 18\\ -1 4 25 25\\ -1 5 34 34\\ -1 6 45 45\\ -1 7 58 58\\ -1 8 73 73\\ -1 9 90 90\\ -1 10 109 109\\ 0 -10 100 100\\ 0 -9 81 81\\ 0 -8 64 64\\ 0 -7 49 49\\ 0 -6 36 36\\ 0 -5 25 25\\ 0 -4 16 16\\ 0 -3 9 9\\ 0 -2 4 4\\ 0 -1 1 1\\ 0 0 0 0\\ 0 1 1 1\\ 0 2 4 4\\ 0 3 9 9\\ 0 4 16 16\\ 0 5 25 25\\ 0 6 36 36\\ 0 7 49 49\\ 0 8 64 64\\ 0 9 81 81\\ 0 10 100 100\\ 1 -10 109 109\\ 1 -9 90 90\\ 1 -8 73 73\\ 1 -7 58 58\\ 1 -6 45 45\\ 1 -5 34 34\\ 1 -4 25 25\\ 1 -3 18 18\\ 1 -2 13 13\\ 1 -1 10 10\\ 1 0 9 9\\ 1 1 10 10\\ 1 2 13 13\\ 1 3 18 18\\ 1 4 25 25\\ 1 5 34 34\\ 1 6 45 45\\ 1 7 58 58\\ 1 8 73 73\\ 1 9 90 90\\ 1 10 109 109\\ 2 -10 136 136\\ 2 -9 117 117\\ 2 -8 100 100\\ 2 -7 85 85\\ 2 -6 72 72\\ 2 -5 61 61\\ 2 -4 52 52\\ 2 -3 45 45\\ 2 -2 40 40\\ 2 -1 37 37\\ 2 0 36 36\\ 2 1 37 37\\ 2 2 40 40\\ 2 3 45 45\\ 2 4 52 52\\ 2 5 61 61\\ 2 6 72 72\\ 2 7 85 85\\ 2 8 100 100\\ 2 9 117 117\\ 2 10 136 136\\ 3 -10 181 181\\ 3 -9 162 162\\ 3 -8 145 145\\ 3 -7 130 130\\ 3 -6 117 117\\ 3 -5 106 106\\ 3 -4 97 97\\ 3 -3 90 90\\ 3 -2 85 85\\ 3 -1 82 82\\ 3 0 81 81\\ 3 1 82 82\\ 3 2 85 85\\ 3 3 90 90\\ 3 4 97 97\\ 3 5 106 106\\ 3 6 117 117\\ 3 7 130 130\\ 3 8 145 145\\ 3 9 162 162\\ 3 10 181 181\\ 4 -10 244 244\\ 4 -9 225 225\\ 4 -8 208 208\\ 4 -7 193 193\\ 4 -6 180 180\\ 4 -5 169 169\\ 4 -4 160 160\\ 4 -3 153 153\\ 4 -2 148 148\\ 4 -1 145 145\\ 4 0 144 144\\ 4 1 145 145\\ 4 2 148 148\\ 4 3 153 153\\ 4 4 160 160\\ 4 5 169 169\\ 4 6 180 180\\ 4 7 193 193\\ 4 8 208 208\\ 4 9 225 225\\ 4 10 244 244\\ 5 -10 325 325\\ 5 -9 306 306\\ 5 -8 289 289\\ 5 -7 274 274\\ 5 -6 261 261\\ 5 -5 250 250\\ 5 -4 241 241\\ 5 -3 234 234\\ 5 -2 229 229\\ 5 -1 226 226\\ 5 0 225 225\\ 5 1 226 226\\ 5 2 229 229\\ 5 3 234 234\\ 5 4 241 241\\ 5 5 250 250\\ 5 6 261 261\\ 5 7 274 274\\ 5 8 289 289\\ 5 9 306 306\\ 5 10 325 325\\ 6 -10 424 424\\ 6 -9 405 405\\ 6 -8 388 388\\ 6 -7 373 373\\ 6 -6 360 360\\ 6 -5 349 349\\ 6 -4 340 340\\ 6 -3 333 333\\ 6 -2 328 328\\ 6 -1 325 325\\ 6 0 324 324\\ 6 1 325 325\\ 6 2 328 328\\ 6 3 333 333\\ 6 4 340 340\\ 6 5 349 349\\ 6 6 360 360\\ 6 7 373 373\\ 6 8 388 388\\ 6 9 405 405\\ 6 10 424 424\\ 7 -10 541 541\\ 7 -9 522 522\\ 7 -8 505 505\\ 7 -7 490 490\\ 7 -6 477 477\\ 7 -5 466 466\\ 7 -4 457 457\\ 7 -3 450 450\\ 7 -2 445 445\\ 7 -1 442 442\\ 7 0 441 441\\ 7 1 442 442\\ 7 2 445 445\\ 7 3 450 450\\ 7 4 457 457\\ 7 5 466 466\\ 7 6 477 477\\ 7 7 490 490\\ 7 8 505 505\\ 7 9 522 522\\ 7 10 541 541\\ 8 -10 676 676\\ 8 -9 657 657\\ 8 -8 640 640\\ 8 -7 625 625\\ 8 -6 612 612\\ 8 -5 601 601\\ 8 -4 592 592\\ 8 -3 585 585\\ 8 -2 580 580\\ 8 -1 577 577\\ 8 0 576 576\\ 8 1 577 577\\ 8 2 580 580\\ 8 3 585 585\\ 8 4 592 592\\ 8 5 601 601\\ 8 6 612 612\\ 8 7 625 625\\ 8 8 640 640\\ 8 9 657 657\\ 8 10 676 676\\ 9 -10 829 829\\ 9 -9 810 810\\ 9 -8 793 793\\ 9 -7 778 778\\ 9 -6 765 765\\ 9 -5 754 754\\ 9 -4 745 745\\ 9 -3 738 738\\ 9 -2 733 733\\ 9 -1 730 730\\ 9 0 729 729\\ 9 1 730 730\\ 9 2 733 733\\ 9 3 738 738\\ 9 4 745 745\\ 9 5 754 754\\ 9 6 765 765\\ 9 7 778 778\\ 9 8 793 793\\ 9 9 810 810\\ 9 10 829 829\\ 10 -10 1000 1000\\ 10 -9 981 981\\ 10 -8 964 964\\ 10 -7 949 949\\ 10 -6 936 936\\ 10 -5 925 925\\ 10 -4 916 916\\ 10 -3 909 909\\ 10 -2 904 904\\ 10 -1 901 901\\ 10 0 900 900\\ 10 1 901 901\\ 10 2 904 904\\ 10 3 909 909\\ 10 4 916 916\\ 10 5 925 925\\ 10 6 936 936\\ 10 7 949 949\\ 10 8 964 964\\ 10 9 981 981\\ 10 10 1000 1000\\ }; \end{axis} \begin{axis}[% width=0.737in, height=1.524in, at={(4.654in,0.491in)}, scale only axis, xmin=-10, xmax=10, tick align=outside, ymin=-10, ymax=10, zmin=0, zmax=1100, view={-37.5}{30}, axis background/.style={fill=white}, title style={font=\bfseries}, title={u=10}, axis x line*=bottom, axis y line*=left, axis z line*=left, xmajorgrids, ymajorgrids, zmajorgrids ] \addplot3[% surf, shader=flat, z buffer=sort, colormap={mymap}{[1pt] rgb(0pt)=(0.2422,0.1504,0.6603); rgb(1pt)=(0.2444,0.1534,0.6728); rgb(2pt)=(0.2464,0.1569,0.6847); rgb(3pt)=(0.2484,0.1607,0.6961); rgb(4pt)=(0.2503,0.1648,0.7071); rgb(5pt)=(0.2522,0.1689,0.7179); rgb(6pt)=(0.254,0.1732,0.7286); rgb(7pt)=(0.2558,0.1773,0.7393); rgb(8pt)=(0.2576,0.1814,0.7501); rgb(9pt)=(0.2594,0.1854,0.761); rgb(11pt)=(0.2628,0.1932,0.7828); rgb(12pt)=(0.2645,0.1972,0.7937); rgb(13pt)=(0.2661,0.2011,0.8043); rgb(14pt)=(0.2676,0.2052,0.8148); rgb(15pt)=(0.2691,0.2094,0.8249); rgb(16pt)=(0.2704,0.2138,0.8346); rgb(17pt)=(0.2717,0.2184,0.8439); rgb(18pt)=(0.2729,0.2231,0.8528); rgb(19pt)=(0.274,0.228,0.8612); rgb(20pt)=(0.2749,0.233,0.8692); rgb(21pt)=(0.2758,0.2382,0.8767); rgb(22pt)=(0.2766,0.2435,0.884); rgb(23pt)=(0.2774,0.2489,0.8908); rgb(24pt)=(0.2781,0.2543,0.8973); rgb(25pt)=(0.2788,0.2598,0.9035); rgb(26pt)=(0.2794,0.2653,0.9094); rgb(27pt)=(0.2798,0.2708,0.915); rgb(28pt)=(0.2802,0.2764,0.9204); rgb(29pt)=(0.2806,0.2819,0.9255); rgb(30pt)=(0.2809,0.2875,0.9305); rgb(31pt)=(0.2811,0.293,0.9352); rgb(32pt)=(0.2813,0.2985,0.9397); rgb(33pt)=(0.2814,0.304,0.9441); rgb(34pt)=(0.2814,0.3095,0.9483); rgb(35pt)=(0.2813,0.315,0.9524); rgb(36pt)=(0.2811,0.3204,0.9563); rgb(37pt)=(0.2809,0.3259,0.96); rgb(38pt)=(0.2807,0.3313,0.9636); rgb(39pt)=(0.2803,0.3367,0.967); rgb(40pt)=(0.2798,0.3421,0.9702); rgb(41pt)=(0.2791,0.3475,0.9733); rgb(42pt)=(0.2784,0.3529,0.9763); rgb(43pt)=(0.2776,0.3583,0.9791); rgb(44pt)=(0.2766,0.3638,0.9817); rgb(45pt)=(0.2754,0.3693,0.984); rgb(46pt)=(0.2741,0.3748,0.9862); rgb(47pt)=(0.2726,0.3804,0.9881); rgb(48pt)=(0.271,0.386,0.9898); rgb(49pt)=(0.2691,0.3916,0.9912); rgb(50pt)=(0.267,0.3973,0.9924); rgb(51pt)=(0.2647,0.403,0.9935); rgb(52pt)=(0.2621,0.4088,0.9946); rgb(53pt)=(0.2591,0.4145,0.9955); rgb(54pt)=(0.2556,0.4203,0.9965); rgb(55pt)=(0.2517,0.4261,0.9974); rgb(56pt)=(0.2473,0.4319,0.9983); rgb(57pt)=(0.2424,0.4378,0.9991); rgb(58pt)=(0.2369,0.4437,0.9996); rgb(59pt)=(0.2311,0.4497,0.9995); rgb(60pt)=(0.225,0.4559,0.9985); rgb(61pt)=(0.2189,0.462,0.9968); rgb(62pt)=(0.2128,0.4682,0.9948); rgb(63pt)=(0.2066,0.4743,0.9926); rgb(64pt)=(0.2006,0.4803,0.9906); rgb(65pt)=(0.195,0.4861,0.9887); rgb(66pt)=(0.1903,0.4919,0.9867); rgb(67pt)=(0.1869,0.4975,0.9844); rgb(68pt)=(0.1847,0.503,0.9819); rgb(69pt)=(0.1831,0.5084,0.9793); rgb(70pt)=(0.1818,0.5138,0.9766); rgb(71pt)=(0.1806,0.5191,0.9738); rgb(72pt)=(0.1795,0.5244,0.9709); rgb(73pt)=(0.1785,0.5296,0.9677); rgb(74pt)=(0.1778,0.5349,0.9641); rgb(75pt)=(0.1773,0.5401,0.9602); rgb(76pt)=(0.1768,0.5452,0.956); rgb(77pt)=(0.1764,0.5504,0.9516); rgb(78pt)=(0.1755,0.5554,0.9473); rgb(79pt)=(0.174,0.5605,0.9432); rgb(80pt)=(0.1716,0.5655,0.9393); rgb(81pt)=(0.1686,0.5705,0.9357); rgb(82pt)=(0.1649,0.5755,0.9323); rgb(83pt)=(0.161,0.5805,0.9289); rgb(84pt)=(0.1573,0.5854,0.9254); rgb(85pt)=(0.154,0.5902,0.9218); rgb(86pt)=(0.1513,0.595,0.9182); rgb(87pt)=(0.1492,0.5997,0.9147); rgb(88pt)=(0.1475,0.6043,0.9113); rgb(89pt)=(0.1461,0.6089,0.908); rgb(90pt)=(0.1446,0.6135,0.905); rgb(91pt)=(0.1429,0.618,0.9022); rgb(92pt)=(0.1408,0.6226,0.8998); rgb(93pt)=(0.1383,0.6272,0.8975); rgb(94pt)=(0.1354,0.6317,0.8953); rgb(95pt)=(0.1321,0.6363,0.8932); rgb(96pt)=(0.1288,0.6408,0.891); rgb(97pt)=(0.1253,0.6453,0.8887); rgb(98pt)=(0.1219,0.6497,0.8862); rgb(99pt)=(0.1185,0.6541,0.8834); rgb(100pt)=(0.1152,0.6584,0.8804); rgb(101pt)=(0.1119,0.6627,0.877); rgb(102pt)=(0.1085,0.6669,0.8734); rgb(103pt)=(0.1048,0.671,0.8695); rgb(104pt)=(0.1009,0.675,0.8653); rgb(105pt)=(0.0964,0.6789,0.8609); rgb(106pt)=(0.0914,0.6828,0.8562); rgb(107pt)=(0.0855,0.6865,0.8513); rgb(108pt)=(0.0789,0.6902,0.8462); rgb(109pt)=(0.0713,0.6938,0.8409); rgb(110pt)=(0.0628,0.6972,0.8355); rgb(111pt)=(0.0535,0.7006,0.8299); rgb(112pt)=(0.0433,0.7039,0.8242); rgb(113pt)=(0.0328,0.7071,0.8183); rgb(114pt)=(0.0234,0.7103,0.8124); rgb(115pt)=(0.0155,0.7133,0.8064); rgb(116pt)=(0.0091,0.7163,0.8003); rgb(117pt)=(0.0046,0.7192,0.7941); rgb(118pt)=(0.0019,0.722,0.7878); rgb(119pt)=(0.0009,0.7248,0.7815); rgb(120pt)=(0.0018,0.7275,0.7752); rgb(121pt)=(0.0046,0.7301,0.7688); rgb(122pt)=(0.0094,0.7327,0.7623); rgb(123pt)=(0.0162,0.7352,0.7558); rgb(124pt)=(0.0253,0.7376,0.7492); rgb(125pt)=(0.0369,0.74,0.7426); rgb(126pt)=(0.0504,0.7423,0.7359); rgb(127pt)=(0.0638,0.7446,0.7292); rgb(128pt)=(0.077,0.7468,0.7224); rgb(129pt)=(0.0899,0.7489,0.7156); rgb(130pt)=(0.1023,0.751,0.7088); rgb(131pt)=(0.1141,0.7531,0.7019); rgb(132pt)=(0.1252,0.7552,0.695); rgb(133pt)=(0.1354,0.7572,0.6881); rgb(134pt)=(0.1448,0.7593,0.6812); rgb(135pt)=(0.1532,0.7614,0.6741); rgb(136pt)=(0.1609,0.7635,0.6671); rgb(137pt)=(0.1678,0.7656,0.6599); rgb(138pt)=(0.1741,0.7678,0.6527); rgb(139pt)=(0.1799,0.7699,0.6454); rgb(140pt)=(0.1853,0.7721,0.6379); rgb(141pt)=(0.1905,0.7743,0.6303); rgb(142pt)=(0.1954,0.7765,0.6225); rgb(143pt)=(0.2003,0.7787,0.6146); rgb(144pt)=(0.2061,0.7808,0.6065); rgb(145pt)=(0.2118,0.7828,0.5983); rgb(146pt)=(0.2178,0.7849,0.5899); rgb(147pt)=(0.2244,0.7869,0.5813); rgb(148pt)=(0.2318,0.7887,0.5725); rgb(149pt)=(0.2401,0.7905,0.5636); rgb(150pt)=(0.2491,0.7922,0.5546); rgb(151pt)=(0.2589,0.7937,0.5454); rgb(152pt)=(0.2695,0.7951,0.536); rgb(153pt)=(0.2809,0.7964,0.5266); rgb(154pt)=(0.2929,0.7975,0.517); rgb(155pt)=(0.3052,0.7985,0.5074); rgb(156pt)=(0.3176,0.7994,0.4975); rgb(157pt)=(0.3301,0.8002,0.4876); rgb(158pt)=(0.3424,0.8009,0.4774); rgb(159pt)=(0.3548,0.8016,0.4669); rgb(160pt)=(0.3671,0.8021,0.4563); rgb(161pt)=(0.3795,0.8026,0.4454); rgb(162pt)=(0.3921,0.8029,0.4344); rgb(163pt)=(0.405,0.8031,0.4233); rgb(164pt)=(0.4184,0.803,0.4122); rgb(165pt)=(0.4322,0.8028,0.4013); rgb(166pt)=(0.4463,0.8024,0.3904); rgb(167pt)=(0.4608,0.8018,0.3797); rgb(168pt)=(0.4753,0.8011,0.3691); rgb(169pt)=(0.4899,0.8002,0.3586); rgb(170pt)=(0.5044,0.7993,0.348); rgb(171pt)=(0.5187,0.7982,0.3374); rgb(172pt)=(0.5329,0.797,0.3267); rgb(173pt)=(0.547,0.7957,0.3159); rgb(175pt)=(0.5748,0.7929,0.2941); rgb(176pt)=(0.5886,0.7913,0.2833); rgb(177pt)=(0.6024,0.7896,0.2726); rgb(178pt)=(0.6161,0.7878,0.2622); rgb(179pt)=(0.6297,0.7859,0.2521); rgb(180pt)=(0.6433,0.7839,0.2423); rgb(181pt)=(0.6567,0.7818,0.2329); rgb(182pt)=(0.6701,0.7796,0.2239); rgb(183pt)=(0.6833,0.7773,0.2155); rgb(184pt)=(0.6963,0.775,0.2075); rgb(185pt)=(0.7091,0.7727,0.1998); rgb(186pt)=(0.7218,0.7703,0.1924); rgb(187pt)=(0.7344,0.7679,0.1852); rgb(188pt)=(0.7468,0.7654,0.1782); rgb(189pt)=(0.759,0.7629,0.1717); rgb(190pt)=(0.771,0.7604,0.1658); rgb(191pt)=(0.7829,0.7579,0.1608); rgb(192pt)=(0.7945,0.7554,0.157); rgb(193pt)=(0.806,0.7529,0.1546); rgb(194pt)=(0.8172,0.7505,0.1535); rgb(195pt)=(0.8281,0.7481,0.1536); rgb(196pt)=(0.8389,0.7457,0.1546); rgb(197pt)=(0.8495,0.7435,0.1564); rgb(198pt)=(0.86,0.7413,0.1587); rgb(199pt)=(0.8703,0.7392,0.1615); rgb(200pt)=(0.8804,0.7372,0.165); rgb(201pt)=(0.8903,0.7353,0.1695); rgb(202pt)=(0.9,0.7336,0.1749); rgb(203pt)=(0.9093,0.7321,0.1815); rgb(204pt)=(0.9184,0.7308,0.189); rgb(205pt)=(0.9272,0.7298,0.1973); rgb(206pt)=(0.9357,0.729,0.2061); rgb(207pt)=(0.944,0.7285,0.2151); rgb(208pt)=(0.9523,0.7284,0.2237); rgb(209pt)=(0.9606,0.7285,0.2312); rgb(210pt)=(0.9689,0.7292,0.2373); rgb(211pt)=(0.977,0.7304,0.2418); rgb(212pt)=(0.9842,0.733,0.2446); rgb(213pt)=(0.99,0.7365,0.2429); rgb(214pt)=(0.9946,0.7407,0.2394); rgb(215pt)=(0.9966,0.7458,0.2351); rgb(216pt)=(0.9971,0.7513,0.2309); rgb(217pt)=(0.9972,0.7569,0.2267); rgb(218pt)=(0.9971,0.7626,0.2224); rgb(219pt)=(0.9969,0.7683,0.2181); rgb(220pt)=(0.9966,0.774,0.2138); rgb(221pt)=(0.9962,0.7798,0.2095); rgb(222pt)=(0.9957,0.7856,0.2053); rgb(223pt)=(0.9949,0.7915,0.2012); rgb(224pt)=(0.9938,0.7974,0.1974); rgb(225pt)=(0.9923,0.8034,0.1939); rgb(226pt)=(0.9906,0.8095,0.1906); rgb(227pt)=(0.9885,0.8156,0.1875); rgb(228pt)=(0.9861,0.8218,0.1846); rgb(229pt)=(0.9835,0.828,0.1817); rgb(230pt)=(0.9807,0.8342,0.1787); rgb(231pt)=(0.9778,0.8404,0.1757); rgb(232pt)=(0.9748,0.8467,0.1726); rgb(233pt)=(0.972,0.8529,0.1695); rgb(234pt)=(0.9694,0.8591,0.1665); rgb(235pt)=(0.9671,0.8654,0.1636); rgb(236pt)=(0.9651,0.8716,0.1608); rgb(237pt)=(0.9634,0.8778,0.1582); rgb(238pt)=(0.9619,0.884,0.1557); rgb(239pt)=(0.9608,0.8902,0.1532); rgb(240pt)=(0.9601,0.8963,0.1507); rgb(241pt)=(0.9596,0.9023,0.148); rgb(242pt)=(0.9595,0.9084,0.145); rgb(243pt)=(0.9597,0.9143,0.1418); rgb(244pt)=(0.9601,0.9203,0.1382); rgb(245pt)=(0.9608,0.9262,0.1344); rgb(246pt)=(0.9618,0.932,0.1304); rgb(247pt)=(0.9629,0.9379,0.1261); rgb(248pt)=(0.9642,0.9437,0.1216); rgb(249pt)=(0.9657,0.9494,0.1168); rgb(250pt)=(0.9674,0.9552,0.1116); rgb(251pt)=(0.9692,0.9609,0.1061); rgb(252pt)=(0.9711,0.9667,0.1001); rgb(253pt)=(0.973,0.9724,0.0938); rgb(254pt)=(0.9749,0.9782,0.0872); rgb(255pt)=(0.9769,0.9839,0.0805)}, mesh/rows=21] table[row sep=crcr, point meta=\thisrow{c}] {% % x y z c\\ -10 -10 1100 1100\\ -10 -9 1081 1081\\ -10 -8 1064 1064\\ -10 -7 1049 1049\\ -10 -6 1036 1036\\ -10 -5 1025 1025\\ -10 -4 1016 1016\\ -10 -3 1009 1009\\ -10 -2 1004 1004\\ -10 -1 1001 1001\\ -10 0 1000 1000\\ -10 1 1001 1001\\ -10 2 1004 1004\\ -10 3 1009 1009\\ -10 4 1016 1016\\ -10 5 1025 1025\\ -10 6 1036 1036\\ -10 7 1049 1049\\ -10 8 1064 1064\\ -10 9 1081 1081\\ -10 10 1100 1100\\ -9 -10 910 910\\ -9 -9 891 891\\ -9 -8 874 874\\ -9 -7 859 859\\ -9 -6 846 846\\ -9 -5 835 835\\ -9 -4 826 826\\ -9 -3 819 819\\ -9 -2 814 814\\ -9 -1 811 811\\ -9 0 810 810\\ -9 1 811 811\\ -9 2 814 814\\ -9 3 819 819\\ -9 4 826 826\\ -9 5 835 835\\ -9 6 846 846\\ -9 7 859 859\\ -9 8 874 874\\ -9 9 891 891\\ -9 10 910 910\\ -8 -10 740 740\\ -8 -9 721 721\\ -8 -8 704 704\\ -8 -7 689 689\\ -8 -6 676 676\\ -8 -5 665 665\\ -8 -4 656 656\\ -8 -3 649 649\\ -8 -2 644 644\\ -8 -1 641 641\\ -8 0 640 640\\ -8 1 641 641\\ -8 2 644 644\\ -8 3 649 649\\ -8 4 656 656\\ -8 5 665 665\\ -8 6 676 676\\ -8 7 689 689\\ -8 8 704 704\\ -8 9 721 721\\ -8 10 740 740\\ -7 -10 590 590\\ -7 -9 571 571\\ -7 -8 554 554\\ -7 -7 539 539\\ -7 -6 526 526\\ -7 -5 515 515\\ -7 -4 506 506\\ -7 -3 499 499\\ -7 -2 494 494\\ -7 -1 491 491\\ -7 0 490 490\\ -7 1 491 491\\ -7 2 494 494\\ -7 3 499 499\\ -7 4 506 506\\ -7 5 515 515\\ -7 6 526 526\\ -7 7 539 539\\ -7 8 554 554\\ -7 9 571 571\\ -7 10 590 590\\ -6 -10 460 460\\ -6 -9 441 441\\ -6 -8 424 424\\ -6 -7 409 409\\ -6 -6 396 396\\ -6 -5 385 385\\ -6 -4 376 376\\ -6 -3 369 369\\ -6 -2 364 364\\ -6 -1 361 361\\ -6 0 360 360\\ -6 1 361 361\\ -6 2 364 364\\ -6 3 369 369\\ -6 4 376 376\\ -6 5 385 385\\ -6 6 396 396\\ -6 7 409 409\\ -6 8 424 424\\ -6 9 441 441\\ -6 10 460 460\\ -5 -10 350 350\\ -5 -9 331 331\\ -5 -8 314 314\\ -5 -7 299 299\\ -5 -6 286 286\\ -5 -5 275 275\\ -5 -4 266 266\\ -5 -3 259 259\\ -5 -2 254 254\\ -5 -1 251 251\\ -5 0 250 250\\ -5 1 251 251\\ -5 2 254 254\\ -5 3 259 259\\ -5 4 266 266\\ -5 5 275 275\\ -5 6 286 286\\ -5 7 299 299\\ -5 8 314 314\\ -5 9 331 331\\ -5 10 350 350\\ -4 -10 260 260\\ -4 -9 241 241\\ -4 -8 224 224\\ -4 -7 209 209\\ -4 -6 196 196\\ -4 -5 185 185\\ -4 -4 176 176\\ -4 -3 169 169\\ -4 -2 164 164\\ -4 -1 161 161\\ -4 0 160 160\\ -4 1 161 161\\ -4 2 164 164\\ -4 3 169 169\\ -4 4 176 176\\ -4 5 185 185\\ -4 6 196 196\\ -4 7 209 209\\ -4 8 224 224\\ -4 9 241 241\\ -4 10 260 260\\ -3 -10 190 190\\ -3 -9 171 171\\ -3 -8 154 154\\ -3 -7 139 139\\ -3 -6 126 126\\ -3 -5 115 115\\ -3 -4 106 106\\ -3 -3 99 99\\ -3 -2 94 94\\ -3 -1 91 91\\ -3 0 90 90\\ -3 1 91 91\\ -3 2 94 94\\ -3 3 99 99\\ -3 4 106 106\\ -3 5 115 115\\ -3 6 126 126\\ -3 7 139 139\\ -3 8 154 154\\ -3 9 171 171\\ -3 10 190 190\\ -2 -10 140 140\\ -2 -9 121 121\\ -2 -8 104 104\\ -2 -7 89 89\\ -2 -6 76 76\\ -2 -5 65 65\\ -2 -4 56 56\\ -2 -3 49 49\\ -2 -2 44 44\\ -2 -1 41 41\\ -2 0 40 40\\ -2 1 41 41\\ -2 2 44 44\\ -2 3 49 49\\ -2 4 56 56\\ -2 5 65 65\\ -2 6 76 76\\ -2 7 89 89\\ -2 8 104 104\\ -2 9 121 121\\ -2 10 140 140\\ -1 -10 110 110\\ -1 -9 91 91\\ -1 -8 74 74\\ -1 -7 59 59\\ -1 -6 46 46\\ -1 -5 35 35\\ -1 -4 26 26\\ -1 -3 19 19\\ -1 -2 14 14\\ -1 -1 11 11\\ -1 0 10 10\\ -1 1 11 11\\ -1 2 14 14\\ -1 3 19 19\\ -1 4 26 26\\ -1 5 35 35\\ -1 6 46 46\\ -1 7 59 59\\ -1 8 74 74\\ -1 9 91 91\\ -1 10 110 110\\ 0 -10 100 100\\ 0 -9 81 81\\ 0 -8 64 64\\ 0 -7 49 49\\ 0 -6 36 36\\ 0 -5 25 25\\ 0 -4 16 16\\ 0 -3 9 9\\ 0 -2 4 4\\ 0 -1 1 1\\ 0 0 0 0\\ 0 1 1 1\\ 0 2 4 4\\ 0 3 9 9\\ 0 4 16 16\\ 0 5 25 25\\ 0 6 36 36\\ 0 7 49 49\\ 0 8 64 64\\ 0 9 81 81\\ 0 10 100 100\\ 1 -10 110 110\\ 1 -9 91 91\\ 1 -8 74 74\\ 1 -7 59 59\\ 1 -6 46 46\\ 1 -5 35 35\\ 1 -4 26 26\\ 1 -3 19 19\\ 1 -2 14 14\\ 1 -1 11 11\\ 1 0 10 10\\ 1 1 11 11\\ 1 2 14 14\\ 1 3 19 19\\ 1 4 26 26\\ 1 5 35 35\\ 1 6 46 46\\ 1 7 59 59\\ 1 8 74 74\\ 1 9 91 91\\ 1 10 110 110\\ 2 -10 140 140\\ 2 -9 121 121\\ 2 -8 104 104\\ 2 -7 89 89\\ 2 -6 76 76\\ 2 -5 65 65\\ 2 -4 56 56\\ 2 -3 49 49\\ 2 -2 44 44\\ 2 -1 41 41\\ 2 0 40 40\\ 2 1 41 41\\ 2 2 44 44\\ 2 3 49 49\\ 2 4 56 56\\ 2 5 65 65\\ 2 6 76 76\\ 2 7 89 89\\ 2 8 104 104\\ 2 9 121 121\\ 2 10 140 140\\ 3 -10 190 190\\ 3 -9 171 171\\ 3 -8 154 154\\ 3 -7 139 139\\ 3 -6 126 126\\ 3 -5 115 115\\ 3 -4 106 106\\ 3 -3 99 99\\ 3 -2 94 94\\ 3 -1 91 91\\ 3 0 90 90\\ 3 1 91 91\\ 3 2 94 94\\ 3 3 99 99\\ 3 4 106 106\\ 3 5 115 115\\ 3 6 126 126\\ 3 7 139 139\\ 3 8 154 154\\ 3 9 171 171\\ 3 10 190 190\\ 4 -10 260 260\\ 4 -9 241 241\\ 4 -8 224 224\\ 4 -7 209 209\\ 4 -6 196 196\\ 4 -5 185 185\\ 4 -4 176 176\\ 4 -3 169 169\\ 4 -2 164 164\\ 4 -1 161 161\\ 4 0 160 160\\ 4 1 161 161\\ 4 2 164 164\\ 4 3 169 169\\ 4 4 176 176\\ 4 5 185 185\\ 4 6 196 196\\ 4 7 209 209\\ 4 8 224 224\\ 4 9 241 241\\ 4 10 260 260\\ 5 -10 350 350\\ 5 -9 331 331\\ 5 -8 314 314\\ 5 -7 299 299\\ 5 -6 286 286\\ 5 -5 275 275\\ 5 -4 266 266\\ 5 -3 259 259\\ 5 -2 254 254\\ 5 -1 251 251\\ 5 0 250 250\\ 5 1 251 251\\ 5 2 254 254\\ 5 3 259 259\\ 5 4 266 266\\ 5 5 275 275\\ 5 6 286 286\\ 5 7 299 299\\ 5 8 314 314\\ 5 9 331 331\\ 5 10 350 350\\ 6 -10 460 460\\ 6 -9 441 441\\ 6 -8 424 424\\ 6 -7 409 409\\ 6 -6 396 396\\ 6 -5 385 385\\ 6 -4 376 376\\ 6 -3 369 369\\ 6 -2 364 364\\ 6 -1 361 361\\ 6 0 360 360\\ 6 1 361 361\\ 6 2 364 364\\ 6 3 369 369\\ 6 4 376 376\\ 6 5 385 385\\ 6 6 396 396\\ 6 7 409 409\\ 6 8 424 424\\ 6 9 441 441\\ 6 10 460 460\\ 7 -10 590 590\\ 7 -9 571 571\\ 7 -8 554 554\\ 7 -7 539 539\\ 7 -6 526 526\\ 7 -5 515 515\\ 7 -4 506 506\\ 7 -3 499 499\\ 7 -2 494 494\\ 7 -1 491 491\\ 7 0 490 490\\ 7 1 491 491\\ 7 2 494 494\\ 7 3 499 499\\ 7 4 506 506\\ 7 5 515 515\\ 7 6 526 526\\ 7 7 539 539\\ 7 8 554 554\\ 7 9 571 571\\ 7 10 590 590\\ 8 -10 740 740\\ 8 -9 721 721\\ 8 -8 704 704\\ 8 -7 689 689\\ 8 -6 676 676\\ 8 -5 665 665\\ 8 -4 656 656\\ 8 -3 649 649\\ 8 -2 644 644\\ 8 -1 641 641\\ 8 0 640 640\\ 8 1 641 641\\ 8 2 644 644\\ 8 3 649 649\\ 8 4 656 656\\ 8 5 665 665\\ 8 6 676 676\\ 8 7 689 689\\ 8 8 704 704\\ 8 9 721 721\\ 8 10 740 740\\ 9 -10 910 910\\ 9 -9 891 891\\ 9 -8 874 874\\ 9 -7 859 859\\ 9 -6 846 846\\ 9 -5 835 835\\ 9 -4 826 826\\ 9 -3 819 819\\ 9 -2 814 814\\ 9 -1 811 811\\ 9 0 810 810\\ 9 1 811 811\\ 9 2 814 814\\ 9 3 819 819\\ 9 4 826 826\\ 9 5 835 835\\ 9 6 846 846\\ 9 7 859 859\\ 9 8 874 874\\ 9 9 891 891\\ 9 10 910 910\\ 10 -10 1100 1100\\ 10 -9 1081 1081\\ 10 -8 1064 1064\\ 10 -7 1049 1049\\ 10 -6 1036 1036\\ 10 -5 1025 1025\\ 10 -4 1016 1016\\ 10 -3 1009 1009\\ 10 -2 1004 1004\\ 10 -1 1001 1001\\ 10 0 1000 1000\\ 10 1 1001 1001\\ 10 2 1004 1004\\ 10 3 1009 1009\\ 10 4 1016 1016\\ 10 5 1025 1025\\ 10 6 1036 1036\\ 10 7 1049 1049\\ 10 8 1064 1064\\ 10 9 1081 1081\\ 10 10 1100 1100\\ }; \end{axis} \end{tikzpicture}%