Optimization methods — Homework 2

Claudio Maggioni
April 11, 2021

1 Exercise 1

1.1 Implement the matrix A and the vector b, for the moment, without taking into
consideration the boundary conditions. As you can see, the matrix A is not
symmetric. Does an energy function of the problem exist? Consider N =4
and show your answer, explaining why it can or cannot exist.

The implementation of a function that generates A w.r.t. the parameter N can be found in the
MATLAB script main.m under Section 1.1.

The matrix A and the vector b appear in the following form:

1 0 0 0 0 0
-1 2 -1 0 0 h?
A=|0 -1 2 -1 0| p= |R?
0 0 0 0 1] | 0 |

1 0 0 0 0
-1 2 -1 0 N
A=lo 1 2 | 7 5
0 0 0 1 0

In order to solve the minimization problem we need to minimize the energy function:
L r T
¢($):§1‘ Az — b x

Computing the gradient of the minimizer, and considering that A is clearly not symmetric as
shown above, we find:

1 1
Ag(x) = §AT.7) + §Aac —b

If A would be symmetric, A¢(z) is equal to Az — b and therefore the semantic equivalence
between this energy function and the solution of Az = b is straightforward. However, if A is not
symmetric then this does not hold and an enegry function therefore does not exist.



1.2 Once the new matrix has been derived, write the energy function related to
the new problem and the corresponding gradient and Hessian.

As by the definitions of A and b given in the assignment, we already enforce ;1 = x,, = 0, since
the first and the last term of the matrix-vector product Ax are xy and x, respectively and the
system of equations represented by Ax = b would indeed include the equalities z; = b; = 0 and
Zn = by, = 0. Therefore, we can simply alter the matrix A without any need to perform any
other transformation in the system.

We therefore define A as a copy of A where 22,1 = Zn_lm = 0.

The objective function then becomes ¢(z) = %xTZx —b"x. And since the objective is a standard
quadratic form, the gradient is Az — b while the Hessian is A.

1.3 Write the Conjugate Gradient algorithm in the pdf and implement it Matlab
code in a function called CGSolve.

The Conjugate Gradient algorithm is the following;:

Algorithm 1: Conjugate Gradient algorithm

Set rg < Axg — b, pg < 19, k < 0O;
while r;, # 0 do

rgrk .
piApy’

Tht1 < Tk + OkDE;
Tkl < Tk + apApy;

QO <—

T

Tet1Tk+1 |
Bk‘—i—l — T%Tk 5
Pkl ¢ —Thit + Brt1Pk;
k+k+1;

end

The MATLAB solution of this task can be found in Section 1.3 of the script main.m under the
function CGSolve.

1.4 Solve the Poisson problem.
The solution of this task can be found in Section 1.4 of the script main.m. Due to space

constraints, the R1% column vector for the solution of x is not shown here but can be easily
derived by running the script and checking the variable x after the script execution.

1.5 Plot the value of energy function and the norm of the gradient (here, use
semilogy) as functions of the iterations.

The code to generate the plots below can be found in Section 1.5 of the script main.m.



1078

1071

—| 16

10710

| | | | | | | | |
451 . . . . . . . . . B 50 100 150 200 250 300 350 100 150 500
50 00 150 200 250 300 350 100 150 500

(b) Norm of the gradient w.r.t. iteration number

(a) Objective function values w.r.t. iteration number L
(y-axis is log scaled)

Figure 1: Plots for Exercise 1.4.

1.6 Finally, explain why the Conjugate Gradient method is a Krylov subspace
method.

We can say that the Conjugate Gradient method is a Krylov subspace method since we can say
that both all residuals r; and all search directions p; are contained in the span of 0 to k repeated
applications of matrix transformer A onto the initial search direction py. Broadly speaking, this
property is directly connected with the fact that the CG methods performs up to n steps exactly
for a n by n matrix, walking steps that are all A-orthogonal with each other (i.e. for all couples
of search steps p;, pj where ¢ # j, (Ap;,p;) = 0). To sum up our claim, we can say CG is indeed
a Krylov subspace method because:

span{rg,r1,...,r} = span{rg, Arg, ..., Akrg}

span{po, p1, ..., Pn} = span{rog, Aro, ... ,Akro}

These statements have been already proven in class and the proof can be found in Theorem 5.3
of Nocedal’s book.

2 Exercise 2

Consider the linear system Ax = b, where the matrix A is constructed in three different ways:
o A; = diag([1:10])
o Ay = diag(ones(1,10))
o Az =diag([1, 1, 1, 3, 4, 5, 5, 5, 10, 10])
o Ay =diag([1.1,1.2,1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0])



2.1 How many distinct eigenvalues has each matrix?

Each matrix has a distinct number of eigenvalues equal to the number of distinct elements on
its diagonal. So, in order, each A has respectively 10, 1, 5, and 10 distinct eigenvalues.

2.2 Construct a right-hand side b =rand(10,1) and apply the Conjugate Gradient
method to solve the system for each A.

The solution of this task can be found in section 2.2 of the main.m MATLAB script. Below are
the chosen b vector (which is unchanged between executions due to fixing the random generator

seed in the script) and the solutions of x for each matrix respectively.

[0.814723686393179 T
0.905791937075619
0.126986816293506
0.913375856139019
0.632359246225410
0.0975404049994095
0.278498218867048
0.546881519204984
0.957506835434298

| 0.964888535199277 |

r1 =

[0.814723686393179 T
0.452895968537810
0.0423289387645020
0.228343964034755
0.126471849245082
0.0162567341665680
0.0397854598381500
0.0683601899006230
0.106389648381589

10.0964888535199280 ]

T —

[0.814723686393179 ]
0.905791937075619
0.126986816293506
0.913375856139019
0.632359246225410
0.0975404049994095
0.278498218867048
0.546881519204984
0.957506835434298

| 0.964888535199277 |

Tr3 =

[0.814723686393179 T
0.905791937075619
0.126986816293506
0.304458618713007
0.158089811556352
0.0195080809998819
0.0556996437734097
0.109376303840997
0.0957506835434296

10.0964888535199280 ]

Tq

[0.740657896716011 T
0.754826614267239
0.0976821653904972
0.652411326111541
0.421572830214428
0.0609627567866090
0.163822480881755
0.303823066390868
0.503950965995613

| 0.482444267601989 |

2.3 Compute the logarithm energy norm of the error for each matrix and plot it
with respect to the number of iteration.

The code to generate the plots below and to compute the logarithm energy norm of the error
can be found in section 2.3 of the main.m MATLAB script.



(a) First matrix (b) Second matrix

(¢) Third matrix (d) Fourth matrix

Figure 2: Plots of logarithm energy norm of the error per iteration. Minus infinity logarithms
not shown in the plot.

2.4 Comment on the convergence of the method for the different matrices. What
can you say observing the number of iterations obtained and the number of
clusters of the eigenvalues of the related matrix?

The method converges quickly for each matrix. The fastest convergence surely happens for A2,
which is the identity matrix and therefore makes the Ax = b problem trivial.

For all the other matrices, we observe the energy norm of the error decreasing exponentially as
the iterations increase, eventually reaching 0 for the cases where the method converges exactly
(namely on matrices Al and A3).

Other than for the fourth matrix, the number of iterations is exactly equal to the number of
distinct eigenvalues for the matrix. That exception on the fourth matrix is simply due to the
tolerance termination condition holding true for an earlier iteration, i.e. we terminate early since
we find an approximation of = with residual norm below 1078,



