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Exercise 1
Point 1
Question (a)

As already covered in the course, the gradient of a standard quadratic form at a point x0 is equal to:

∇f(x0) = Ax0 − b

Plugging in the definition of x0 and knowing that ∇f(xm) = Axm − b = 0 (according to the first necessary
condition for a minimizer), we obtain:

∇f(x0) = A(xm + v)− b = Axm +Av − b = b+ λv − b = λv

Question (b)

The steepest descent method takes exactly one iteration to reach the exact minimizer xm starting from the
point x0. This can be proven by first noticing that xm is a point standing in the line that first descent
direction would trace, which is equal to:

g(α) = −α · ∇f(x0) = −αλv

For α = 1
λ , and plugging in the definition of x0 = xm + v, we would reach a new iterate x1 equal to:

x1 = x0 − αλv = x0 − v = xm + v − v = xm

The only question that we need to answer now is why the SD algorithm would indeed choose α = 1
λ . To

answer this, we recall that the SD algorithm chooses α by solving a linear minimization option along the step
direction. Since we know xm is indeed the minimizer, f(xm) would be obviously strictly less that any other
f(x1 = x0 − αλv) with α 6= 1

λ .

Therefore, since x1 = xm, we have proven SD converges to the minimizer in one iteration.

Point 2
The right answer is choice (a), since the energy norm of the error indeed always decreases monotonically.

To prove that this is true, we first consider a way to express any iterate xk in function of the minimizer xs
and of the missing iterations:

xk = xs +
N∑
i=k

αiA
ip0
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This formula makes use of the fact that step directions in CG are all A-orthogonal with each other, so the
k-th search direction pk is equal to Akp0, where p0 = −r0 and r0 is the first residual.

Given that definition of iterates, we’re able to express the error after iteration k ek in a similar fashion:

ek = xk − xs =
N∑
i=k

αiA
ip0

We then recall the definition of energy norm ‖ek‖A:

‖ek‖A =
√
〈Aek, ek〉

We then want to show that ‖ek‖A = ‖xk − xs‖A > ‖ek+1‖A, which in turn is equivalent to claim that:

〈Aek, ek〉 > 〈Aek+1, ek+1〉

Knowing that the dot product is linear w.r.t. either of its arguments, we pull out the sum term related to
the k-th step (i.e. the first term in the sum that makes up ek) from both sides of 〈Aek, ek〉, obtaining the
following:

〈Aek+1, ek+1〉+ 〈αkAk+1p0, ek〉+ 〈Aek+1, αkA
kp0〉 > 〈Aek+1, ek+1〉

which in turn is equivalent to claim that:

〈αkAk+1p0, ek〉+ 〈Aek+1, αkA
kp0〉 > 0

From this expression we can collect term αk thanks to linearity of the dot-product:

αk(〈Ak+1p0, ek〉+ 〈Aek+1, A
kp0〉) > 0

and we can further “ignore” the αk term since we know that all αis are positive by definition:

〈Ak+1p0, ek〉+ 〈Aek+1, A
kp0〉 > 0

Then, we convert the dot-products in their equivalent vector to vector product form, and we plug in the
definitions of ek and ek+1:

pT0 (Ak+1)T (
N∑
i=k

αiA
ip0) + pT0 (Ak)T (

N∑
i=k+1

αiA
ip0) > 0

We then pull out the sum to cover all terms thanks to associativity of vector products:

N∑
i=k

(pT0 (Ak+1)TAip0)αi +
N∑

i=k+1
(pT0 (Ak)TAip0)αi > 0

We then, as before, can “ignore” all αi terms since we know by definition that they are all strictly positive.
We then recalled that we assumed that A is symmetric, so AT = A. In the end we have to show that these
two inequalities are true:
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pT0 A
k+1+ip0 > 0 ∀i ∈ [k,N ]

pT0 A
k+ip0 > 0 ∀i ∈ [k + 1, N ]

To show these inequalities are indeed true, we recall that A is symmetric and positive definite. We then
consider that if a matrix A is SPD, then Ai for any positive i is also SPD1. Therefore, both inequalities are
trivially true due to the definition of positive definite matrices.

Thanks to this we have indeed proven that the delta ‖ek‖A−‖ek+1‖A is indeed positive and thus as i increases
the energy norm of the error monotonically decreases.

1source: Wikipedia - Definite Matrix → Properties → Multiplication
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https://en.wikipedia.org/wiki/Definite_matrix#Multiplication
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