This repository has been archived on 2024-10-22. You can view files and clone it, but cannot push or open issues or pull requests.
OM/Claudio_Maggioni_1/surf.tex

4744 lines
No EOL
152 KiB
TeX

% This file was created by matlab2tikz.
%
\begin{tikzpicture}
\begin{axis}[%
width=0.737in,
height=1.524in,
at={(0.774in,2.609in)},
scale only axis,
xmin=-10,
xmax=10,
tick align=outside,
ymin=-10,
ymax=10,
zmin=0,
zmax=200,
view={-37.5}{30},
axis background/.style={fill=white},
title style={yshift=1ex, font=\tiny\bfseries},
title={u=1},
axis x line*=bottom,
axis y line*=left,
axis z line*=left,
xmajorgrids,
ymajorgrids,
zmajorgrids
]
\addplot3[%
surf,
shader=flat, z buffer=sort, colormap={mymap}{[1pt] rgb(0pt)=(0.2422,0.1504,0.6603); rgb(1pt)=(0.2444,0.1534,0.6728); rgb(2pt)=(0.2464,0.1569,0.6847); rgb(3pt)=(0.2484,0.1607,0.6961); rgb(4pt)=(0.2503,0.1648,0.7071); rgb(5pt)=(0.2522,0.1689,0.7179); rgb(6pt)=(0.254,0.1732,0.7286); rgb(7pt)=(0.2558,0.1773,0.7393); rgb(8pt)=(0.2576,0.1814,0.7501); rgb(9pt)=(0.2594,0.1854,0.761); rgb(11pt)=(0.2628,0.1932,0.7828); rgb(12pt)=(0.2645,0.1972,0.7937); rgb(13pt)=(0.2661,0.2011,0.8043); rgb(14pt)=(0.2676,0.2052,0.8148); rgb(15pt)=(0.2691,0.2094,0.8249); rgb(16pt)=(0.2704,0.2138,0.8346); rgb(17pt)=(0.2717,0.2184,0.8439); rgb(18pt)=(0.2729,0.2231,0.8528); rgb(19pt)=(0.274,0.228,0.8612); rgb(20pt)=(0.2749,0.233,0.8692); rgb(21pt)=(0.2758,0.2382,0.8767); rgb(22pt)=(0.2766,0.2435,0.884); rgb(23pt)=(0.2774,0.2489,0.8908); rgb(24pt)=(0.2781,0.2543,0.8973); rgb(25pt)=(0.2788,0.2598,0.9035); rgb(26pt)=(0.2794,0.2653,0.9094); rgb(27pt)=(0.2798,0.2708,0.915); rgb(28pt)=(0.2802,0.2764,0.9204); rgb(29pt)=(0.2806,0.2819,0.9255); rgb(30pt)=(0.2809,0.2875,0.9305); rgb(31pt)=(0.2811,0.293,0.9352); rgb(32pt)=(0.2813,0.2985,0.9397); rgb(33pt)=(0.2814,0.304,0.9441); rgb(34pt)=(0.2814,0.3095,0.9483); rgb(35pt)=(0.2813,0.315,0.9524); rgb(36pt)=(0.2811,0.3204,0.9563); rgb(37pt)=(0.2809,0.3259,0.96); rgb(38pt)=(0.2807,0.3313,0.9636); rgb(39pt)=(0.2803,0.3367,0.967); rgb(40pt)=(0.2798,0.3421,0.9702); rgb(41pt)=(0.2791,0.3475,0.9733); rgb(42pt)=(0.2784,0.3529,0.9763); rgb(43pt)=(0.2776,0.3583,0.9791); rgb(44pt)=(0.2766,0.3638,0.9817); rgb(45pt)=(0.2754,0.3693,0.984); rgb(46pt)=(0.2741,0.3748,0.9862); rgb(47pt)=(0.2726,0.3804,0.9881); rgb(48pt)=(0.271,0.386,0.9898); rgb(49pt)=(0.2691,0.3916,0.9912); rgb(50pt)=(0.267,0.3973,0.9924); rgb(51pt)=(0.2647,0.403,0.9935); rgb(52pt)=(0.2621,0.4088,0.9946); rgb(53pt)=(0.2591,0.4145,0.9955); rgb(54pt)=(0.2556,0.4203,0.9965); rgb(55pt)=(0.2517,0.4261,0.9974); rgb(56pt)=(0.2473,0.4319,0.9983); rgb(57pt)=(0.2424,0.4378,0.9991); rgb(58pt)=(0.2369,0.4437,0.9996); rgb(59pt)=(0.2311,0.4497,0.9995); rgb(60pt)=(0.225,0.4559,0.9985); rgb(61pt)=(0.2189,0.462,0.9968); rgb(62pt)=(0.2128,0.4682,0.9948); rgb(63pt)=(0.2066,0.4743,0.9926); rgb(64pt)=(0.2006,0.4803,0.9906); rgb(65pt)=(0.195,0.4861,0.9887); rgb(66pt)=(0.1903,0.4919,0.9867); rgb(67pt)=(0.1869,0.4975,0.9844); rgb(68pt)=(0.1847,0.503,0.9819); rgb(69pt)=(0.1831,0.5084,0.9793); rgb(70pt)=(0.1818,0.5138,0.9766); rgb(71pt)=(0.1806,0.5191,0.9738); rgb(72pt)=(0.1795,0.5244,0.9709); rgb(73pt)=(0.1785,0.5296,0.9677); rgb(74pt)=(0.1778,0.5349,0.9641); rgb(75pt)=(0.1773,0.5401,0.9602); rgb(76pt)=(0.1768,0.5452,0.956); rgb(77pt)=(0.1764,0.5504,0.9516); rgb(78pt)=(0.1755,0.5554,0.9473); rgb(79pt)=(0.174,0.5605,0.9432); rgb(80pt)=(0.1716,0.5655,0.9393); rgb(81pt)=(0.1686,0.5705,0.9357); rgb(82pt)=(0.1649,0.5755,0.9323); rgb(83pt)=(0.161,0.5805,0.9289); rgb(84pt)=(0.1573,0.5854,0.9254); rgb(85pt)=(0.154,0.5902,0.9218); rgb(86pt)=(0.1513,0.595,0.9182); rgb(87pt)=(0.1492,0.5997,0.9147); rgb(88pt)=(0.1475,0.6043,0.9113); rgb(89pt)=(0.1461,0.6089,0.908); rgb(90pt)=(0.1446,0.6135,0.905); rgb(91pt)=(0.1429,0.618,0.9022); rgb(92pt)=(0.1408,0.6226,0.8998); rgb(93pt)=(0.1383,0.6272,0.8975); rgb(94pt)=(0.1354,0.6317,0.8953); rgb(95pt)=(0.1321,0.6363,0.8932); rgb(96pt)=(0.1288,0.6408,0.891); rgb(97pt)=(0.1253,0.6453,0.8887); rgb(98pt)=(0.1219,0.6497,0.8862); rgb(99pt)=(0.1185,0.6541,0.8834); rgb(100pt)=(0.1152,0.6584,0.8804); rgb(101pt)=(0.1119,0.6627,0.877); rgb(102pt)=(0.1085,0.6669,0.8734); rgb(103pt)=(0.1048,0.671,0.8695); rgb(104pt)=(0.1009,0.675,0.8653); rgb(105pt)=(0.0964,0.6789,0.8609); rgb(106pt)=(0.0914,0.6828,0.8562); rgb(107pt)=(0.0855,0.6865,0.8513); rgb(108pt)=(0.0789,0.6902,0.8462); rgb(109pt)=(0.0713,0.6938,0.8409); rgb(110pt)=(0.0628,0.6972,0.8355); rgb(111pt)=(0.0535,0.7006,0.8299); rgb(112pt)=(0.0433,0.7039,0.8242); rgb(113pt)=(0.0328,0.7071,0.8183); rgb(114pt)=(0.0234,0.7103,0.8124); rgb(115pt)=(0.0155,0.7133,0.8064); rgb(116pt)=(0.0091,0.7163,0.8003); rgb(117pt)=(0.0046,0.7192,0.7941); rgb(118pt)=(0.0019,0.722,0.7878); rgb(119pt)=(0.0009,0.7248,0.7815); rgb(120pt)=(0.0018,0.7275,0.7752); rgb(121pt)=(0.0046,0.7301,0.7688); rgb(122pt)=(0.0094,0.7327,0.7623); rgb(123pt)=(0.0162,0.7352,0.7558); rgb(124pt)=(0.0253,0.7376,0.7492); rgb(125pt)=(0.0369,0.74,0.7426); rgb(126pt)=(0.0504,0.7423,0.7359); rgb(127pt)=(0.0638,0.7446,0.7292); rgb(128pt)=(0.077,0.7468,0.7224); rgb(129pt)=(0.0899,0.7489,0.7156); rgb(130pt)=(0.1023,0.751,0.7088); rgb(131pt)=(0.1141,0.7531,0.7019); rgb(132pt)=(0.1252,0.7552,0.695); rgb(133pt)=(0.1354,0.7572,0.6881); rgb(134pt)=(0.1448,0.7593,0.6812); rgb(135pt)=(0.1532,0.7614,0.6741); rgb(136pt)=(0.1609,0.7635,0.6671); rgb(137pt)=(0.1678,0.7656,0.6599); rgb(138pt)=(0.1741,0.7678,0.6527); rgb(139pt)=(0.1799,0.7699,0.6454); rgb(140pt)=(0.1853,0.7721,0.6379); rgb(141pt)=(0.1905,0.7743,0.6303); rgb(142pt)=(0.1954,0.7765,0.6225); rgb(143pt)=(0.2003,0.7787,0.6146); rgb(144pt)=(0.2061,0.7808,0.6065); rgb(145pt)=(0.2118,0.7828,0.5983); rgb(146pt)=(0.2178,0.7849,0.5899); rgb(147pt)=(0.2244,0.7869,0.5813); rgb(148pt)=(0.2318,0.7887,0.5725); rgb(149pt)=(0.2401,0.7905,0.5636); rgb(150pt)=(0.2491,0.7922,0.5546); rgb(151pt)=(0.2589,0.7937,0.5454); rgb(152pt)=(0.2695,0.7951,0.536); rgb(153pt)=(0.2809,0.7964,0.5266); rgb(154pt)=(0.2929,0.7975,0.517); rgb(155pt)=(0.3052,0.7985,0.5074); rgb(156pt)=(0.3176,0.7994,0.4975); rgb(157pt)=(0.3301,0.8002,0.4876); rgb(158pt)=(0.3424,0.8009,0.4774); rgb(159pt)=(0.3548,0.8016,0.4669); rgb(160pt)=(0.3671,0.8021,0.4563); rgb(161pt)=(0.3795,0.8026,0.4454); rgb(162pt)=(0.3921,0.8029,0.4344); rgb(163pt)=(0.405,0.8031,0.4233); rgb(164pt)=(0.4184,0.803,0.4122); rgb(165pt)=(0.4322,0.8028,0.4013); rgb(166pt)=(0.4463,0.8024,0.3904); rgb(167pt)=(0.4608,0.8018,0.3797); rgb(168pt)=(0.4753,0.8011,0.3691); rgb(169pt)=(0.4899,0.8002,0.3586); rgb(170pt)=(0.5044,0.7993,0.348); rgb(171pt)=(0.5187,0.7982,0.3374); rgb(172pt)=(0.5329,0.797,0.3267); rgb(173pt)=(0.547,0.7957,0.3159); rgb(175pt)=(0.5748,0.7929,0.2941); rgb(176pt)=(0.5886,0.7913,0.2833); rgb(177pt)=(0.6024,0.7896,0.2726); rgb(178pt)=(0.6161,0.7878,0.2622); rgb(179pt)=(0.6297,0.7859,0.2521); rgb(180pt)=(0.6433,0.7839,0.2423); rgb(181pt)=(0.6567,0.7818,0.2329); rgb(182pt)=(0.6701,0.7796,0.2239); rgb(183pt)=(0.6833,0.7773,0.2155); rgb(184pt)=(0.6963,0.775,0.2075); rgb(185pt)=(0.7091,0.7727,0.1998); rgb(186pt)=(0.7218,0.7703,0.1924); rgb(187pt)=(0.7344,0.7679,0.1852); rgb(188pt)=(0.7468,0.7654,0.1782); rgb(189pt)=(0.759,0.7629,0.1717); rgb(190pt)=(0.771,0.7604,0.1658); rgb(191pt)=(0.7829,0.7579,0.1608); rgb(192pt)=(0.7945,0.7554,0.157); rgb(193pt)=(0.806,0.7529,0.1546); rgb(194pt)=(0.8172,0.7505,0.1535); rgb(195pt)=(0.8281,0.7481,0.1536); rgb(196pt)=(0.8389,0.7457,0.1546); rgb(197pt)=(0.8495,0.7435,0.1564); rgb(198pt)=(0.86,0.7413,0.1587); rgb(199pt)=(0.8703,0.7392,0.1615); rgb(200pt)=(0.8804,0.7372,0.165); rgb(201pt)=(0.8903,0.7353,0.1695); rgb(202pt)=(0.9,0.7336,0.1749); rgb(203pt)=(0.9093,0.7321,0.1815); rgb(204pt)=(0.9184,0.7308,0.189); rgb(205pt)=(0.9272,0.7298,0.1973); rgb(206pt)=(0.9357,0.729,0.2061); rgb(207pt)=(0.944,0.7285,0.2151); rgb(208pt)=(0.9523,0.7284,0.2237); rgb(209pt)=(0.9606,0.7285,0.2312); rgb(210pt)=(0.9689,0.7292,0.2373); rgb(211pt)=(0.977,0.7304,0.2418); rgb(212pt)=(0.9842,0.733,0.2446); rgb(213pt)=(0.99,0.7365,0.2429); rgb(214pt)=(0.9946,0.7407,0.2394); rgb(215pt)=(0.9966,0.7458,0.2351); rgb(216pt)=(0.9971,0.7513,0.2309); rgb(217pt)=(0.9972,0.7569,0.2267); rgb(218pt)=(0.9971,0.7626,0.2224); rgb(219pt)=(0.9969,0.7683,0.2181); rgb(220pt)=(0.9966,0.774,0.2138); rgb(221pt)=(0.9962,0.7798,0.2095); rgb(222pt)=(0.9957,0.7856,0.2053); rgb(223pt)=(0.9949,0.7915,0.2012); rgb(224pt)=(0.9938,0.7974,0.1974); rgb(225pt)=(0.9923,0.8034,0.1939); rgb(226pt)=(0.9906,0.8095,0.1906); rgb(227pt)=(0.9885,0.8156,0.1875); rgb(228pt)=(0.9861,0.8218,0.1846); rgb(229pt)=(0.9835,0.828,0.1817); rgb(230pt)=(0.9807,0.8342,0.1787); rgb(231pt)=(0.9778,0.8404,0.1757); rgb(232pt)=(0.9748,0.8467,0.1726); rgb(233pt)=(0.972,0.8529,0.1695); rgb(234pt)=(0.9694,0.8591,0.1665); rgb(235pt)=(0.9671,0.8654,0.1636); rgb(236pt)=(0.9651,0.8716,0.1608); rgb(237pt)=(0.9634,0.8778,0.1582); rgb(238pt)=(0.9619,0.884,0.1557); rgb(239pt)=(0.9608,0.8902,0.1532); rgb(240pt)=(0.9601,0.8963,0.1507); rgb(241pt)=(0.9596,0.9023,0.148); rgb(242pt)=(0.9595,0.9084,0.145); rgb(243pt)=(0.9597,0.9143,0.1418); rgb(244pt)=(0.9601,0.9203,0.1382); rgb(245pt)=(0.9608,0.9262,0.1344); rgb(246pt)=(0.9618,0.932,0.1304); rgb(247pt)=(0.9629,0.9379,0.1261); rgb(248pt)=(0.9642,0.9437,0.1216); rgb(249pt)=(0.9657,0.9494,0.1168); rgb(250pt)=(0.9674,0.9552,0.1116); rgb(251pt)=(0.9692,0.9609,0.1061); rgb(252pt)=(0.9711,0.9667,0.1001); rgb(253pt)=(0.973,0.9724,0.0938); rgb(254pt)=(0.9749,0.9782,0.0872); rgb(255pt)=(0.9769,0.9839,0.0805)}, mesh/rows=21]
table[row sep=crcr, point meta=\thisrow{c}] {%
%
x y z c\\
-10 -10 200 200\\
-10 -9 181 181\\
-10 -8 164 164\\
-10 -7 149 149\\
-10 -6 136 136\\
-10 -5 125 125\\
-10 -4 116 116\\
-10 -3 109 109\\
-10 -2 104 104\\
-10 -1 101 101\\
-10 0 100 100\\
-10 1 101 101\\
-10 2 104 104\\
-10 3 109 109\\
-10 4 116 116\\
-10 5 125 125\\
-10 6 136 136\\
-10 7 149 149\\
-10 8 164 164\\
-10 9 181 181\\
-10 10 200 200\\
-9 -10 181 181\\
-9 -9 162 162\\
-9 -8 145 145\\
-9 -7 130 130\\
-9 -6 117 117\\
-9 -5 106 106\\
-9 -4 97 97\\
-9 -3 90 90\\
-9 -2 85 85\\
-9 -1 82 82\\
-9 0 81 81\\
-9 1 82 82\\
-9 2 85 85\\
-9 3 90 90\\
-9 4 97 97\\
-9 5 106 106\\
-9 6 117 117\\
-9 7 130 130\\
-9 8 145 145\\
-9 9 162 162\\
-9 10 181 181\\
-8 -10 164 164\\
-8 -9 145 145\\
-8 -8 128 128\\
-8 -7 113 113\\
-8 -6 100 100\\
-8 -5 89 89\\
-8 -4 80 80\\
-8 -3 73 73\\
-8 -2 68 68\\
-8 -1 65 65\\
-8 0 64 64\\
-8 1 65 65\\
-8 2 68 68\\
-8 3 73 73\\
-8 4 80 80\\
-8 5 89 89\\
-8 6 100 100\\
-8 7 113 113\\
-8 8 128 128\\
-8 9 145 145\\
-8 10 164 164\\
-7 -10 149 149\\
-7 -9 130 130\\
-7 -8 113 113\\
-7 -7 98 98\\
-7 -6 85 85\\
-7 -5 74 74\\
-7 -4 65 65\\
-7 -3 58 58\\
-7 -2 53 53\\
-7 -1 50 50\\
-7 0 49 49\\
-7 1 50 50\\
-7 2 53 53\\
-7 3 58 58\\
-7 4 65 65\\
-7 5 74 74\\
-7 6 85 85\\
-7 7 98 98\\
-7 8 113 113\\
-7 9 130 130\\
-7 10 149 149\\
-6 -10 136 136\\
-6 -9 117 117\\
-6 -8 100 100\\
-6 -7 85 85\\
-6 -6 72 72\\
-6 -5 61 61\\
-6 -4 52 52\\
-6 -3 45 45\\
-6 -2 40 40\\
-6 -1 37 37\\
-6 0 36 36\\
-6 1 37 37\\
-6 2 40 40\\
-6 3 45 45\\
-6 4 52 52\\
-6 5 61 61\\
-6 6 72 72\\
-6 7 85 85\\
-6 8 100 100\\
-6 9 117 117\\
-6 10 136 136\\
-5 -10 125 125\\
-5 -9 106 106\\
-5 -8 89 89\\
-5 -7 74 74\\
-5 -6 61 61\\
-5 -5 50 50\\
-5 -4 41 41\\
-5 -3 34 34\\
-5 -2 29 29\\
-5 -1 26 26\\
-5 0 25 25\\
-5 1 26 26\\
-5 2 29 29\\
-5 3 34 34\\
-5 4 41 41\\
-5 5 50 50\\
-5 6 61 61\\
-5 7 74 74\\
-5 8 89 89\\
-5 9 106 106\\
-5 10 125 125\\
-4 -10 116 116\\
-4 -9 97 97\\
-4 -8 80 80\\
-4 -7 65 65\\
-4 -6 52 52\\
-4 -5 41 41\\
-4 -4 32 32\\
-4 -3 25 25\\
-4 -2 20 20\\
-4 -1 17 17\\
-4 0 16 16\\
-4 1 17 17\\
-4 2 20 20\\
-4 3 25 25\\
-4 4 32 32\\
-4 5 41 41\\
-4 6 52 52\\
-4 7 65 65\\
-4 8 80 80\\
-4 9 97 97\\
-4 10 116 116\\
-3 -10 109 109\\
-3 -9 90 90\\
-3 -8 73 73\\
-3 -7 58 58\\
-3 -6 45 45\\
-3 -5 34 34\\
-3 -4 25 25\\
-3 -3 18 18\\
-3 -2 13 13\\
-3 -1 10 10\\
-3 0 9 9\\
-3 1 10 10\\
-3 2 13 13\\
-3 3 18 18\\
-3 4 25 25\\
-3 5 34 34\\
-3 6 45 45\\
-3 7 58 58\\
-3 8 73 73\\
-3 9 90 90\\
-3 10 109 109\\
-2 -10 104 104\\
-2 -9 85 85\\
-2 -8 68 68\\
-2 -7 53 53\\
-2 -6 40 40\\
-2 -5 29 29\\
-2 -4 20 20\\
-2 -3 13 13\\
-2 -2 8 8\\
-2 -1 5 5\\
-2 0 4 4\\
-2 1 5 5\\
-2 2 8 8\\
-2 3 13 13\\
-2 4 20 20\\
-2 5 29 29\\
-2 6 40 40\\
-2 7 53 53\\
-2 8 68 68\\
-2 9 85 85\\
-2 10 104 104\\
-1 -10 101 101\\
-1 -9 82 82\\
-1 -8 65 65\\
-1 -7 50 50\\
-1 -6 37 37\\
-1 -5 26 26\\
-1 -4 17 17\\
-1 -3 10 10\\
-1 -2 5 5\\
-1 -1 2 2\\
-1 0 1 1\\
-1 1 2 2\\
-1 2 5 5\\
-1 3 10 10\\
-1 4 17 17\\
-1 5 26 26\\
-1 6 37 37\\
-1 7 50 50\\
-1 8 65 65\\
-1 9 82 82\\
-1 10 101 101\\
0 -10 100 100\\
0 -9 81 81\\
0 -8 64 64\\
0 -7 49 49\\
0 -6 36 36\\
0 -5 25 25\\
0 -4 16 16\\
0 -3 9 9\\
0 -2 4 4\\
0 -1 1 1\\
0 0 0 0\\
0 1 1 1\\
0 2 4 4\\
0 3 9 9\\
0 4 16 16\\
0 5 25 25\\
0 6 36 36\\
0 7 49 49\\
0 8 64 64\\
0 9 81 81\\
0 10 100 100\\
1 -10 101 101\\
1 -9 82 82\\
1 -8 65 65\\
1 -7 50 50\\
1 -6 37 37\\
1 -5 26 26\\
1 -4 17 17\\
1 -3 10 10\\
1 -2 5 5\\
1 -1 2 2\\
1 0 1 1\\
1 1 2 2\\
1 2 5 5\\
1 3 10 10\\
1 4 17 17\\
1 5 26 26\\
1 6 37 37\\
1 7 50 50\\
1 8 65 65\\
1 9 82 82\\
1 10 101 101\\
2 -10 104 104\\
2 -9 85 85\\
2 -8 68 68\\
2 -7 53 53\\
2 -6 40 40\\
2 -5 29 29\\
2 -4 20 20\\
2 -3 13 13\\
2 -2 8 8\\
2 -1 5 5\\
2 0 4 4\\
2 1 5 5\\
2 2 8 8\\
2 3 13 13\\
2 4 20 20\\
2 5 29 29\\
2 6 40 40\\
2 7 53 53\\
2 8 68 68\\
2 9 85 85\\
2 10 104 104\\
3 -10 109 109\\
3 -9 90 90\\
3 -8 73 73\\
3 -7 58 58\\
3 -6 45 45\\
3 -5 34 34\\
3 -4 25 25\\
3 -3 18 18\\
3 -2 13 13\\
3 -1 10 10\\
3 0 9 9\\
3 1 10 10\\
3 2 13 13\\
3 3 18 18\\
3 4 25 25\\
3 5 34 34\\
3 6 45 45\\
3 7 58 58\\
3 8 73 73\\
3 9 90 90\\
3 10 109 109\\
4 -10 116 116\\
4 -9 97 97\\
4 -8 80 80\\
4 -7 65 65\\
4 -6 52 52\\
4 -5 41 41\\
4 -4 32 32\\
4 -3 25 25\\
4 -2 20 20\\
4 -1 17 17\\
4 0 16 16\\
4 1 17 17\\
4 2 20 20\\
4 3 25 25\\
4 4 32 32\\
4 5 41 41\\
4 6 52 52\\
4 7 65 65\\
4 8 80 80\\
4 9 97 97\\
4 10 116 116\\
5 -10 125 125\\
5 -9 106 106\\
5 -8 89 89\\
5 -7 74 74\\
5 -6 61 61\\
5 -5 50 50\\
5 -4 41 41\\
5 -3 34 34\\
5 -2 29 29\\
5 -1 26 26\\
5 0 25 25\\
5 1 26 26\\
5 2 29 29\\
5 3 34 34\\
5 4 41 41\\
5 5 50 50\\
5 6 61 61\\
5 7 74 74\\
5 8 89 89\\
5 9 106 106\\
5 10 125 125\\
6 -10 136 136\\
6 -9 117 117\\
6 -8 100 100\\
6 -7 85 85\\
6 -6 72 72\\
6 -5 61 61\\
6 -4 52 52\\
6 -3 45 45\\
6 -2 40 40\\
6 -1 37 37\\
6 0 36 36\\
6 1 37 37\\
6 2 40 40\\
6 3 45 45\\
6 4 52 52\\
6 5 61 61\\
6 6 72 72\\
6 7 85 85\\
6 8 100 100\\
6 9 117 117\\
6 10 136 136\\
7 -10 149 149\\
7 -9 130 130\\
7 -8 113 113\\
7 -7 98 98\\
7 -6 85 85\\
7 -5 74 74\\
7 -4 65 65\\
7 -3 58 58\\
7 -2 53 53\\
7 -1 50 50\\
7 0 49 49\\
7 1 50 50\\
7 2 53 53\\
7 3 58 58\\
7 4 65 65\\
7 5 74 74\\
7 6 85 85\\
7 7 98 98\\
7 8 113 113\\
7 9 130 130\\
7 10 149 149\\
8 -10 164 164\\
8 -9 145 145\\
8 -8 128 128\\
8 -7 113 113\\
8 -6 100 100\\
8 -5 89 89\\
8 -4 80 80\\
8 -3 73 73\\
8 -2 68 68\\
8 -1 65 65\\
8 0 64 64\\
8 1 65 65\\
8 2 68 68\\
8 3 73 73\\
8 4 80 80\\
8 5 89 89\\
8 6 100 100\\
8 7 113 113\\
8 8 128 128\\
8 9 145 145\\
8 10 164 164\\
9 -10 181 181\\
9 -9 162 162\\
9 -8 145 145\\
9 -7 130 130\\
9 -6 117 117\\
9 -5 106 106\\
9 -4 97 97\\
9 -3 90 90\\
9 -2 85 85\\
9 -1 82 82\\
9 0 81 81\\
9 1 82 82\\
9 2 85 85\\
9 3 90 90\\
9 4 97 97\\
9 5 106 106\\
9 6 117 117\\
9 7 130 130\\
9 8 145 145\\
9 9 162 162\\
9 10 181 181\\
10 -10 200 200\\
10 -9 181 181\\
10 -8 164 164\\
10 -7 149 149\\
10 -6 136 136\\
10 -5 125 125\\
10 -4 116 116\\
10 -3 109 109\\
10 -2 104 104\\
10 -1 101 101\\
10 0 100 100\\
10 1 101 101\\
10 2 104 104\\
10 3 109 109\\
10 4 116 116\\
10 5 125 125\\
10 6 136 136\\
10 7 149 149\\
10 8 164 164\\
10 9 181 181\\
10 10 200 200\\
};
\end{axis}
\begin{axis}[%
width=0.737in,
height=1.524in,
at={(1.744in,2.609in)},
scale only axis,
xmin=-10,
xmax=10,
tick align=outside,
ymin=-10,
ymax=10,
zmin=0,
zmax=300,
view={-37.5}{30},
axis background/.style={fill=white},
title style={yshift=1ex, font=\tiny\bfseries},
title={u=2},
axis x line*=bottom,
axis y line*=left,
axis z line*=left,
xmajorgrids,
ymajorgrids,
zmajorgrids
]
\addplot3[%
surf,
shader=flat, z buffer=sort, colormap={mymap}{[1pt] rgb(0pt)=(0.2422,0.1504,0.6603); rgb(1pt)=(0.2444,0.1534,0.6728); rgb(2pt)=(0.2464,0.1569,0.6847); rgb(3pt)=(0.2484,0.1607,0.6961); rgb(4pt)=(0.2503,0.1648,0.7071); rgb(5pt)=(0.2522,0.1689,0.7179); rgb(6pt)=(0.254,0.1732,0.7286); rgb(7pt)=(0.2558,0.1773,0.7393); rgb(8pt)=(0.2576,0.1814,0.7501); rgb(9pt)=(0.2594,0.1854,0.761); rgb(11pt)=(0.2628,0.1932,0.7828); rgb(12pt)=(0.2645,0.1972,0.7937); rgb(13pt)=(0.2661,0.2011,0.8043); rgb(14pt)=(0.2676,0.2052,0.8148); rgb(15pt)=(0.2691,0.2094,0.8249); rgb(16pt)=(0.2704,0.2138,0.8346); rgb(17pt)=(0.2717,0.2184,0.8439); rgb(18pt)=(0.2729,0.2231,0.8528); rgb(19pt)=(0.274,0.228,0.8612); rgb(20pt)=(0.2749,0.233,0.8692); rgb(21pt)=(0.2758,0.2382,0.8767); rgb(22pt)=(0.2766,0.2435,0.884); rgb(23pt)=(0.2774,0.2489,0.8908); rgb(24pt)=(0.2781,0.2543,0.8973); rgb(25pt)=(0.2788,0.2598,0.9035); rgb(26pt)=(0.2794,0.2653,0.9094); rgb(27pt)=(0.2798,0.2708,0.915); rgb(28pt)=(0.2802,0.2764,0.9204); rgb(29pt)=(0.2806,0.2819,0.9255); rgb(30pt)=(0.2809,0.2875,0.9305); rgb(31pt)=(0.2811,0.293,0.9352); rgb(32pt)=(0.2813,0.2985,0.9397); rgb(33pt)=(0.2814,0.304,0.9441); rgb(34pt)=(0.2814,0.3095,0.9483); rgb(35pt)=(0.2813,0.315,0.9524); rgb(36pt)=(0.2811,0.3204,0.9563); rgb(37pt)=(0.2809,0.3259,0.96); rgb(38pt)=(0.2807,0.3313,0.9636); rgb(39pt)=(0.2803,0.3367,0.967); rgb(40pt)=(0.2798,0.3421,0.9702); rgb(41pt)=(0.2791,0.3475,0.9733); rgb(42pt)=(0.2784,0.3529,0.9763); rgb(43pt)=(0.2776,0.3583,0.9791); rgb(44pt)=(0.2766,0.3638,0.9817); rgb(45pt)=(0.2754,0.3693,0.984); rgb(46pt)=(0.2741,0.3748,0.9862); rgb(47pt)=(0.2726,0.3804,0.9881); rgb(48pt)=(0.271,0.386,0.9898); rgb(49pt)=(0.2691,0.3916,0.9912); rgb(50pt)=(0.267,0.3973,0.9924); rgb(51pt)=(0.2647,0.403,0.9935); rgb(52pt)=(0.2621,0.4088,0.9946); rgb(53pt)=(0.2591,0.4145,0.9955); rgb(54pt)=(0.2556,0.4203,0.9965); rgb(55pt)=(0.2517,0.4261,0.9974); rgb(56pt)=(0.2473,0.4319,0.9983); rgb(57pt)=(0.2424,0.4378,0.9991); rgb(58pt)=(0.2369,0.4437,0.9996); rgb(59pt)=(0.2311,0.4497,0.9995); rgb(60pt)=(0.225,0.4559,0.9985); rgb(61pt)=(0.2189,0.462,0.9968); rgb(62pt)=(0.2128,0.4682,0.9948); rgb(63pt)=(0.2066,0.4743,0.9926); rgb(64pt)=(0.2006,0.4803,0.9906); rgb(65pt)=(0.195,0.4861,0.9887); rgb(66pt)=(0.1903,0.4919,0.9867); rgb(67pt)=(0.1869,0.4975,0.9844); rgb(68pt)=(0.1847,0.503,0.9819); rgb(69pt)=(0.1831,0.5084,0.9793); rgb(70pt)=(0.1818,0.5138,0.9766); rgb(71pt)=(0.1806,0.5191,0.9738); rgb(72pt)=(0.1795,0.5244,0.9709); rgb(73pt)=(0.1785,0.5296,0.9677); rgb(74pt)=(0.1778,0.5349,0.9641); rgb(75pt)=(0.1773,0.5401,0.9602); rgb(76pt)=(0.1768,0.5452,0.956); rgb(77pt)=(0.1764,0.5504,0.9516); rgb(78pt)=(0.1755,0.5554,0.9473); rgb(79pt)=(0.174,0.5605,0.9432); rgb(80pt)=(0.1716,0.5655,0.9393); rgb(81pt)=(0.1686,0.5705,0.9357); rgb(82pt)=(0.1649,0.5755,0.9323); rgb(83pt)=(0.161,0.5805,0.9289); rgb(84pt)=(0.1573,0.5854,0.9254); rgb(85pt)=(0.154,0.5902,0.9218); rgb(86pt)=(0.1513,0.595,0.9182); rgb(87pt)=(0.1492,0.5997,0.9147); rgb(88pt)=(0.1475,0.6043,0.9113); rgb(89pt)=(0.1461,0.6089,0.908); rgb(90pt)=(0.1446,0.6135,0.905); rgb(91pt)=(0.1429,0.618,0.9022); rgb(92pt)=(0.1408,0.6226,0.8998); rgb(93pt)=(0.1383,0.6272,0.8975); rgb(94pt)=(0.1354,0.6317,0.8953); rgb(95pt)=(0.1321,0.6363,0.8932); rgb(96pt)=(0.1288,0.6408,0.891); rgb(97pt)=(0.1253,0.6453,0.8887); rgb(98pt)=(0.1219,0.6497,0.8862); rgb(99pt)=(0.1185,0.6541,0.8834); rgb(100pt)=(0.1152,0.6584,0.8804); rgb(101pt)=(0.1119,0.6627,0.877); rgb(102pt)=(0.1085,0.6669,0.8734); rgb(103pt)=(0.1048,0.671,0.8695); rgb(104pt)=(0.1009,0.675,0.8653); rgb(105pt)=(0.0964,0.6789,0.8609); rgb(106pt)=(0.0914,0.6828,0.8562); rgb(107pt)=(0.0855,0.6865,0.8513); rgb(108pt)=(0.0789,0.6902,0.8462); rgb(109pt)=(0.0713,0.6938,0.8409); rgb(110pt)=(0.0628,0.6972,0.8355); rgb(111pt)=(0.0535,0.7006,0.8299); rgb(112pt)=(0.0433,0.7039,0.8242); rgb(113pt)=(0.0328,0.7071,0.8183); rgb(114pt)=(0.0234,0.7103,0.8124); rgb(115pt)=(0.0155,0.7133,0.8064); rgb(116pt)=(0.0091,0.7163,0.8003); rgb(117pt)=(0.0046,0.7192,0.7941); rgb(118pt)=(0.0019,0.722,0.7878); rgb(119pt)=(0.0009,0.7248,0.7815); rgb(120pt)=(0.0018,0.7275,0.7752); rgb(121pt)=(0.0046,0.7301,0.7688); rgb(122pt)=(0.0094,0.7327,0.7623); rgb(123pt)=(0.0162,0.7352,0.7558); rgb(124pt)=(0.0253,0.7376,0.7492); rgb(125pt)=(0.0369,0.74,0.7426); rgb(126pt)=(0.0504,0.7423,0.7359); rgb(127pt)=(0.0638,0.7446,0.7292); rgb(128pt)=(0.077,0.7468,0.7224); rgb(129pt)=(0.0899,0.7489,0.7156); rgb(130pt)=(0.1023,0.751,0.7088); rgb(131pt)=(0.1141,0.7531,0.7019); rgb(132pt)=(0.1252,0.7552,0.695); rgb(133pt)=(0.1354,0.7572,0.6881); rgb(134pt)=(0.1448,0.7593,0.6812); rgb(135pt)=(0.1532,0.7614,0.6741); rgb(136pt)=(0.1609,0.7635,0.6671); rgb(137pt)=(0.1678,0.7656,0.6599); rgb(138pt)=(0.1741,0.7678,0.6527); rgb(139pt)=(0.1799,0.7699,0.6454); rgb(140pt)=(0.1853,0.7721,0.6379); rgb(141pt)=(0.1905,0.7743,0.6303); rgb(142pt)=(0.1954,0.7765,0.6225); rgb(143pt)=(0.2003,0.7787,0.6146); rgb(144pt)=(0.2061,0.7808,0.6065); rgb(145pt)=(0.2118,0.7828,0.5983); rgb(146pt)=(0.2178,0.7849,0.5899); rgb(147pt)=(0.2244,0.7869,0.5813); rgb(148pt)=(0.2318,0.7887,0.5725); rgb(149pt)=(0.2401,0.7905,0.5636); rgb(150pt)=(0.2491,0.7922,0.5546); rgb(151pt)=(0.2589,0.7937,0.5454); rgb(152pt)=(0.2695,0.7951,0.536); rgb(153pt)=(0.2809,0.7964,0.5266); rgb(154pt)=(0.2929,0.7975,0.517); rgb(155pt)=(0.3052,0.7985,0.5074); rgb(156pt)=(0.3176,0.7994,0.4975); rgb(157pt)=(0.3301,0.8002,0.4876); rgb(158pt)=(0.3424,0.8009,0.4774); rgb(159pt)=(0.3548,0.8016,0.4669); rgb(160pt)=(0.3671,0.8021,0.4563); rgb(161pt)=(0.3795,0.8026,0.4454); rgb(162pt)=(0.3921,0.8029,0.4344); rgb(163pt)=(0.405,0.8031,0.4233); rgb(164pt)=(0.4184,0.803,0.4122); rgb(165pt)=(0.4322,0.8028,0.4013); rgb(166pt)=(0.4463,0.8024,0.3904); rgb(167pt)=(0.4608,0.8018,0.3797); rgb(168pt)=(0.4753,0.8011,0.3691); rgb(169pt)=(0.4899,0.8002,0.3586); rgb(170pt)=(0.5044,0.7993,0.348); rgb(171pt)=(0.5187,0.7982,0.3374); rgb(172pt)=(0.5329,0.797,0.3267); rgb(173pt)=(0.547,0.7957,0.3159); rgb(175pt)=(0.5748,0.7929,0.2941); rgb(176pt)=(0.5886,0.7913,0.2833); rgb(177pt)=(0.6024,0.7896,0.2726); rgb(178pt)=(0.6161,0.7878,0.2622); rgb(179pt)=(0.6297,0.7859,0.2521); rgb(180pt)=(0.6433,0.7839,0.2423); rgb(181pt)=(0.6567,0.7818,0.2329); rgb(182pt)=(0.6701,0.7796,0.2239); rgb(183pt)=(0.6833,0.7773,0.2155); rgb(184pt)=(0.6963,0.775,0.2075); rgb(185pt)=(0.7091,0.7727,0.1998); rgb(186pt)=(0.7218,0.7703,0.1924); rgb(187pt)=(0.7344,0.7679,0.1852); rgb(188pt)=(0.7468,0.7654,0.1782); rgb(189pt)=(0.759,0.7629,0.1717); rgb(190pt)=(0.771,0.7604,0.1658); rgb(191pt)=(0.7829,0.7579,0.1608); rgb(192pt)=(0.7945,0.7554,0.157); rgb(193pt)=(0.806,0.7529,0.1546); rgb(194pt)=(0.8172,0.7505,0.1535); rgb(195pt)=(0.8281,0.7481,0.1536); rgb(196pt)=(0.8389,0.7457,0.1546); rgb(197pt)=(0.8495,0.7435,0.1564); rgb(198pt)=(0.86,0.7413,0.1587); rgb(199pt)=(0.8703,0.7392,0.1615); rgb(200pt)=(0.8804,0.7372,0.165); rgb(201pt)=(0.8903,0.7353,0.1695); rgb(202pt)=(0.9,0.7336,0.1749); rgb(203pt)=(0.9093,0.7321,0.1815); rgb(204pt)=(0.9184,0.7308,0.189); rgb(205pt)=(0.9272,0.7298,0.1973); rgb(206pt)=(0.9357,0.729,0.2061); rgb(207pt)=(0.944,0.7285,0.2151); rgb(208pt)=(0.9523,0.7284,0.2237); rgb(209pt)=(0.9606,0.7285,0.2312); rgb(210pt)=(0.9689,0.7292,0.2373); rgb(211pt)=(0.977,0.7304,0.2418); rgb(212pt)=(0.9842,0.733,0.2446); rgb(213pt)=(0.99,0.7365,0.2429); rgb(214pt)=(0.9946,0.7407,0.2394); rgb(215pt)=(0.9966,0.7458,0.2351); rgb(216pt)=(0.9971,0.7513,0.2309); rgb(217pt)=(0.9972,0.7569,0.2267); rgb(218pt)=(0.9971,0.7626,0.2224); rgb(219pt)=(0.9969,0.7683,0.2181); rgb(220pt)=(0.9966,0.774,0.2138); rgb(221pt)=(0.9962,0.7798,0.2095); rgb(222pt)=(0.9957,0.7856,0.2053); rgb(223pt)=(0.9949,0.7915,0.2012); rgb(224pt)=(0.9938,0.7974,0.1974); rgb(225pt)=(0.9923,0.8034,0.1939); rgb(226pt)=(0.9906,0.8095,0.1906); rgb(227pt)=(0.9885,0.8156,0.1875); rgb(228pt)=(0.9861,0.8218,0.1846); rgb(229pt)=(0.9835,0.828,0.1817); rgb(230pt)=(0.9807,0.8342,0.1787); rgb(231pt)=(0.9778,0.8404,0.1757); rgb(232pt)=(0.9748,0.8467,0.1726); rgb(233pt)=(0.972,0.8529,0.1695); rgb(234pt)=(0.9694,0.8591,0.1665); rgb(235pt)=(0.9671,0.8654,0.1636); rgb(236pt)=(0.9651,0.8716,0.1608); rgb(237pt)=(0.9634,0.8778,0.1582); rgb(238pt)=(0.9619,0.884,0.1557); rgb(239pt)=(0.9608,0.8902,0.1532); rgb(240pt)=(0.9601,0.8963,0.1507); rgb(241pt)=(0.9596,0.9023,0.148); rgb(242pt)=(0.9595,0.9084,0.145); rgb(243pt)=(0.9597,0.9143,0.1418); rgb(244pt)=(0.9601,0.9203,0.1382); rgb(245pt)=(0.9608,0.9262,0.1344); rgb(246pt)=(0.9618,0.932,0.1304); rgb(247pt)=(0.9629,0.9379,0.1261); rgb(248pt)=(0.9642,0.9437,0.1216); rgb(249pt)=(0.9657,0.9494,0.1168); rgb(250pt)=(0.9674,0.9552,0.1116); rgb(251pt)=(0.9692,0.9609,0.1061); rgb(252pt)=(0.9711,0.9667,0.1001); rgb(253pt)=(0.973,0.9724,0.0938); rgb(254pt)=(0.9749,0.9782,0.0872); rgb(255pt)=(0.9769,0.9839,0.0805)}, mesh/rows=21]
table[row sep=crcr, point meta=\thisrow{c}] {%
%
x y z c\\
-10 -10 300 300\\
-10 -9 281 281\\
-10 -8 264 264\\
-10 -7 249 249\\
-10 -6 236 236\\
-10 -5 225 225\\
-10 -4 216 216\\
-10 -3 209 209\\
-10 -2 204 204\\
-10 -1 201 201\\
-10 0 200 200\\
-10 1 201 201\\
-10 2 204 204\\
-10 3 209 209\\
-10 4 216 216\\
-10 5 225 225\\
-10 6 236 236\\
-10 7 249 249\\
-10 8 264 264\\
-10 9 281 281\\
-10 10 300 300\\
-9 -10 262 262\\
-9 -9 243 243\\
-9 -8 226 226\\
-9 -7 211 211\\
-9 -6 198 198\\
-9 -5 187 187\\
-9 -4 178 178\\
-9 -3 171 171\\
-9 -2 166 166\\
-9 -1 163 163\\
-9 0 162 162\\
-9 1 163 163\\
-9 2 166 166\\
-9 3 171 171\\
-9 4 178 178\\
-9 5 187 187\\
-9 6 198 198\\
-9 7 211 211\\
-9 8 226 226\\
-9 9 243 243\\
-9 10 262 262\\
-8 -10 228 228\\
-8 -9 209 209\\
-8 -8 192 192\\
-8 -7 177 177\\
-8 -6 164 164\\
-8 -5 153 153\\
-8 -4 144 144\\
-8 -3 137 137\\
-8 -2 132 132\\
-8 -1 129 129\\
-8 0 128 128\\
-8 1 129 129\\
-8 2 132 132\\
-8 3 137 137\\
-8 4 144 144\\
-8 5 153 153\\
-8 6 164 164\\
-8 7 177 177\\
-8 8 192 192\\
-8 9 209 209\\
-8 10 228 228\\
-7 -10 198 198\\
-7 -9 179 179\\
-7 -8 162 162\\
-7 -7 147 147\\
-7 -6 134 134\\
-7 -5 123 123\\
-7 -4 114 114\\
-7 -3 107 107\\
-7 -2 102 102\\
-7 -1 99 99\\
-7 0 98 98\\
-7 1 99 99\\
-7 2 102 102\\
-7 3 107 107\\
-7 4 114 114\\
-7 5 123 123\\
-7 6 134 134\\
-7 7 147 147\\
-7 8 162 162\\
-7 9 179 179\\
-7 10 198 198\\
-6 -10 172 172\\
-6 -9 153 153\\
-6 -8 136 136\\
-6 -7 121 121\\
-6 -6 108 108\\
-6 -5 97 97\\
-6 -4 88 88\\
-6 -3 81 81\\
-6 -2 76 76\\
-6 -1 73 73\\
-6 0 72 72\\
-6 1 73 73\\
-6 2 76 76\\
-6 3 81 81\\
-6 4 88 88\\
-6 5 97 97\\
-6 6 108 108\\
-6 7 121 121\\
-6 8 136 136\\
-6 9 153 153\\
-6 10 172 172\\
-5 -10 150 150\\
-5 -9 131 131\\
-5 -8 114 114\\
-5 -7 99 99\\
-5 -6 86 86\\
-5 -5 75 75\\
-5 -4 66 66\\
-5 -3 59 59\\
-5 -2 54 54\\
-5 -1 51 51\\
-5 0 50 50\\
-5 1 51 51\\
-5 2 54 54\\
-5 3 59 59\\
-5 4 66 66\\
-5 5 75 75\\
-5 6 86 86\\
-5 7 99 99\\
-5 8 114 114\\
-5 9 131 131\\
-5 10 150 150\\
-4 -10 132 132\\
-4 -9 113 113\\
-4 -8 96 96\\
-4 -7 81 81\\
-4 -6 68 68\\
-4 -5 57 57\\
-4 -4 48 48\\
-4 -3 41 41\\
-4 -2 36 36\\
-4 -1 33 33\\
-4 0 32 32\\
-4 1 33 33\\
-4 2 36 36\\
-4 3 41 41\\
-4 4 48 48\\
-4 5 57 57\\
-4 6 68 68\\
-4 7 81 81\\
-4 8 96 96\\
-4 9 113 113\\
-4 10 132 132\\
-3 -10 118 118\\
-3 -9 99 99\\
-3 -8 82 82\\
-3 -7 67 67\\
-3 -6 54 54\\
-3 -5 43 43\\
-3 -4 34 34\\
-3 -3 27 27\\
-3 -2 22 22\\
-3 -1 19 19\\
-3 0 18 18\\
-3 1 19 19\\
-3 2 22 22\\
-3 3 27 27\\
-3 4 34 34\\
-3 5 43 43\\
-3 6 54 54\\
-3 7 67 67\\
-3 8 82 82\\
-3 9 99 99\\
-3 10 118 118\\
-2 -10 108 108\\
-2 -9 89 89\\
-2 -8 72 72\\
-2 -7 57 57\\
-2 -6 44 44\\
-2 -5 33 33\\
-2 -4 24 24\\
-2 -3 17 17\\
-2 -2 12 12\\
-2 -1 9 9\\
-2 0 8 8\\
-2 1 9 9\\
-2 2 12 12\\
-2 3 17 17\\
-2 4 24 24\\
-2 5 33 33\\
-2 6 44 44\\
-2 7 57 57\\
-2 8 72 72\\
-2 9 89 89\\
-2 10 108 108\\
-1 -10 102 102\\
-1 -9 83 83\\
-1 -8 66 66\\
-1 -7 51 51\\
-1 -6 38 38\\
-1 -5 27 27\\
-1 -4 18 18\\
-1 -3 11 11\\
-1 -2 6 6\\
-1 -1 3 3\\
-1 0 2 2\\
-1 1 3 3\\
-1 2 6 6\\
-1 3 11 11\\
-1 4 18 18\\
-1 5 27 27\\
-1 6 38 38\\
-1 7 51 51\\
-1 8 66 66\\
-1 9 83 83\\
-1 10 102 102\\
0 -10 100 100\\
0 -9 81 81\\
0 -8 64 64\\
0 -7 49 49\\
0 -6 36 36\\
0 -5 25 25\\
0 -4 16 16\\
0 -3 9 9\\
0 -2 4 4\\
0 -1 1 1\\
0 0 0 0\\
0 1 1 1\\
0 2 4 4\\
0 3 9 9\\
0 4 16 16\\
0 5 25 25\\
0 6 36 36\\
0 7 49 49\\
0 8 64 64\\
0 9 81 81\\
0 10 100 100\\
1 -10 102 102\\
1 -9 83 83\\
1 -8 66 66\\
1 -7 51 51\\
1 -6 38 38\\
1 -5 27 27\\
1 -4 18 18\\
1 -3 11 11\\
1 -2 6 6\\
1 -1 3 3\\
1 0 2 2\\
1 1 3 3\\
1 2 6 6\\
1 3 11 11\\
1 4 18 18\\
1 5 27 27\\
1 6 38 38\\
1 7 51 51\\
1 8 66 66\\
1 9 83 83\\
1 10 102 102\\
2 -10 108 108\\
2 -9 89 89\\
2 -8 72 72\\
2 -7 57 57\\
2 -6 44 44\\
2 -5 33 33\\
2 -4 24 24\\
2 -3 17 17\\
2 -2 12 12\\
2 -1 9 9\\
2 0 8 8\\
2 1 9 9\\
2 2 12 12\\
2 3 17 17\\
2 4 24 24\\
2 5 33 33\\
2 6 44 44\\
2 7 57 57\\
2 8 72 72\\
2 9 89 89\\
2 10 108 108\\
3 -10 118 118\\
3 -9 99 99\\
3 -8 82 82\\
3 -7 67 67\\
3 -6 54 54\\
3 -5 43 43\\
3 -4 34 34\\
3 -3 27 27\\
3 -2 22 22\\
3 -1 19 19\\
3 0 18 18\\
3 1 19 19\\
3 2 22 22\\
3 3 27 27\\
3 4 34 34\\
3 5 43 43\\
3 6 54 54\\
3 7 67 67\\
3 8 82 82\\
3 9 99 99\\
3 10 118 118\\
4 -10 132 132\\
4 -9 113 113\\
4 -8 96 96\\
4 -7 81 81\\
4 -6 68 68\\
4 -5 57 57\\
4 -4 48 48\\
4 -3 41 41\\
4 -2 36 36\\
4 -1 33 33\\
4 0 32 32\\
4 1 33 33\\
4 2 36 36\\
4 3 41 41\\
4 4 48 48\\
4 5 57 57\\
4 6 68 68\\
4 7 81 81\\
4 8 96 96\\
4 9 113 113\\
4 10 132 132\\
5 -10 150 150\\
5 -9 131 131\\
5 -8 114 114\\
5 -7 99 99\\
5 -6 86 86\\
5 -5 75 75\\
5 -4 66 66\\
5 -3 59 59\\
5 -2 54 54\\
5 -1 51 51\\
5 0 50 50\\
5 1 51 51\\
5 2 54 54\\
5 3 59 59\\
5 4 66 66\\
5 5 75 75\\
5 6 86 86\\
5 7 99 99\\
5 8 114 114\\
5 9 131 131\\
5 10 150 150\\
6 -10 172 172\\
6 -9 153 153\\
6 -8 136 136\\
6 -7 121 121\\
6 -6 108 108\\
6 -5 97 97\\
6 -4 88 88\\
6 -3 81 81\\
6 -2 76 76\\
6 -1 73 73\\
6 0 72 72\\
6 1 73 73\\
6 2 76 76\\
6 3 81 81\\
6 4 88 88\\
6 5 97 97\\
6 6 108 108\\
6 7 121 121\\
6 8 136 136\\
6 9 153 153\\
6 10 172 172\\
7 -10 198 198\\
7 -9 179 179\\
7 -8 162 162\\
7 -7 147 147\\
7 -6 134 134\\
7 -5 123 123\\
7 -4 114 114\\
7 -3 107 107\\
7 -2 102 102\\
7 -1 99 99\\
7 0 98 98\\
7 1 99 99\\
7 2 102 102\\
7 3 107 107\\
7 4 114 114\\
7 5 123 123\\
7 6 134 134\\
7 7 147 147\\
7 8 162 162\\
7 9 179 179\\
7 10 198 198\\
8 -10 228 228\\
8 -9 209 209\\
8 -8 192 192\\
8 -7 177 177\\
8 -6 164 164\\
8 -5 153 153\\
8 -4 144 144\\
8 -3 137 137\\
8 -2 132 132\\
8 -1 129 129\\
8 0 128 128\\
8 1 129 129\\
8 2 132 132\\
8 3 137 137\\
8 4 144 144\\
8 5 153 153\\
8 6 164 164\\
8 7 177 177\\
8 8 192 192\\
8 9 209 209\\
8 10 228 228\\
9 -10 262 262\\
9 -9 243 243\\
9 -8 226 226\\
9 -7 211 211\\
9 -6 198 198\\
9 -5 187 187\\
9 -4 178 178\\
9 -3 171 171\\
9 -2 166 166\\
9 -1 163 163\\
9 0 162 162\\
9 1 163 163\\
9 2 166 166\\
9 3 171 171\\
9 4 178 178\\
9 5 187 187\\
9 6 198 198\\
9 7 211 211\\
9 8 226 226\\
9 9 243 243\\
9 10 262 262\\
10 -10 300 300\\
10 -9 281 281\\
10 -8 264 264\\
10 -7 249 249\\
10 -6 236 236\\
10 -5 225 225\\
10 -4 216 216\\
10 -3 209 209\\
10 -2 204 204\\
10 -1 201 201\\
10 0 200 200\\
10 1 201 201\\
10 2 204 204\\
10 3 209 209\\
10 4 216 216\\
10 5 225 225\\
10 6 236 236\\
10 7 249 249\\
10 8 264 264\\
10 9 281 281\\
10 10 300 300\\
};
\end{axis}
\begin{axis}[%
width=0.737in,
height=1.524in,
at={(2.714in,2.609in)},
scale only axis,
xmin=-10,
xmax=10,
tick align=outside,
ymin=-10,
ymax=10,
zmin=0,
zmax=400,
view={-37.5}{30},
axis background/.style={fill=white},
title style={yshift=1ex, font=\tiny\bfseries},
title={u=3},
axis x line*=bottom,
axis y line*=left,
axis z line*=left,
xmajorgrids,
ymajorgrids,
zmajorgrids
]
\addplot3[%
surf,
shader=flat, z buffer=sort, colormap={mymap}{[1pt] rgb(0pt)=(0.2422,0.1504,0.6603); rgb(1pt)=(0.2444,0.1534,0.6728); rgb(2pt)=(0.2464,0.1569,0.6847); rgb(3pt)=(0.2484,0.1607,0.6961); rgb(4pt)=(0.2503,0.1648,0.7071); rgb(5pt)=(0.2522,0.1689,0.7179); rgb(6pt)=(0.254,0.1732,0.7286); rgb(7pt)=(0.2558,0.1773,0.7393); rgb(8pt)=(0.2576,0.1814,0.7501); rgb(9pt)=(0.2594,0.1854,0.761); rgb(11pt)=(0.2628,0.1932,0.7828); rgb(12pt)=(0.2645,0.1972,0.7937); rgb(13pt)=(0.2661,0.2011,0.8043); rgb(14pt)=(0.2676,0.2052,0.8148); rgb(15pt)=(0.2691,0.2094,0.8249); rgb(16pt)=(0.2704,0.2138,0.8346); rgb(17pt)=(0.2717,0.2184,0.8439); rgb(18pt)=(0.2729,0.2231,0.8528); rgb(19pt)=(0.274,0.228,0.8612); rgb(20pt)=(0.2749,0.233,0.8692); rgb(21pt)=(0.2758,0.2382,0.8767); rgb(22pt)=(0.2766,0.2435,0.884); rgb(23pt)=(0.2774,0.2489,0.8908); rgb(24pt)=(0.2781,0.2543,0.8973); rgb(25pt)=(0.2788,0.2598,0.9035); rgb(26pt)=(0.2794,0.2653,0.9094); rgb(27pt)=(0.2798,0.2708,0.915); rgb(28pt)=(0.2802,0.2764,0.9204); rgb(29pt)=(0.2806,0.2819,0.9255); rgb(30pt)=(0.2809,0.2875,0.9305); rgb(31pt)=(0.2811,0.293,0.9352); rgb(32pt)=(0.2813,0.2985,0.9397); rgb(33pt)=(0.2814,0.304,0.9441); rgb(34pt)=(0.2814,0.3095,0.9483); rgb(35pt)=(0.2813,0.315,0.9524); rgb(36pt)=(0.2811,0.3204,0.9563); rgb(37pt)=(0.2809,0.3259,0.96); rgb(38pt)=(0.2807,0.3313,0.9636); rgb(39pt)=(0.2803,0.3367,0.967); rgb(40pt)=(0.2798,0.3421,0.9702); rgb(41pt)=(0.2791,0.3475,0.9733); rgb(42pt)=(0.2784,0.3529,0.9763); rgb(43pt)=(0.2776,0.3583,0.9791); rgb(44pt)=(0.2766,0.3638,0.9817); rgb(45pt)=(0.2754,0.3693,0.984); rgb(46pt)=(0.2741,0.3748,0.9862); rgb(47pt)=(0.2726,0.3804,0.9881); rgb(48pt)=(0.271,0.386,0.9898); rgb(49pt)=(0.2691,0.3916,0.9912); rgb(50pt)=(0.267,0.3973,0.9924); rgb(51pt)=(0.2647,0.403,0.9935); rgb(52pt)=(0.2621,0.4088,0.9946); rgb(53pt)=(0.2591,0.4145,0.9955); rgb(54pt)=(0.2556,0.4203,0.9965); rgb(55pt)=(0.2517,0.4261,0.9974); rgb(56pt)=(0.2473,0.4319,0.9983); rgb(57pt)=(0.2424,0.4378,0.9991); rgb(58pt)=(0.2369,0.4437,0.9996); rgb(59pt)=(0.2311,0.4497,0.9995); rgb(60pt)=(0.225,0.4559,0.9985); rgb(61pt)=(0.2189,0.462,0.9968); rgb(62pt)=(0.2128,0.4682,0.9948); rgb(63pt)=(0.2066,0.4743,0.9926); rgb(64pt)=(0.2006,0.4803,0.9906); rgb(65pt)=(0.195,0.4861,0.9887); rgb(66pt)=(0.1903,0.4919,0.9867); rgb(67pt)=(0.1869,0.4975,0.9844); rgb(68pt)=(0.1847,0.503,0.9819); rgb(69pt)=(0.1831,0.5084,0.9793); rgb(70pt)=(0.1818,0.5138,0.9766); rgb(71pt)=(0.1806,0.5191,0.9738); rgb(72pt)=(0.1795,0.5244,0.9709); rgb(73pt)=(0.1785,0.5296,0.9677); rgb(74pt)=(0.1778,0.5349,0.9641); rgb(75pt)=(0.1773,0.5401,0.9602); rgb(76pt)=(0.1768,0.5452,0.956); rgb(77pt)=(0.1764,0.5504,0.9516); rgb(78pt)=(0.1755,0.5554,0.9473); rgb(79pt)=(0.174,0.5605,0.9432); rgb(80pt)=(0.1716,0.5655,0.9393); rgb(81pt)=(0.1686,0.5705,0.9357); rgb(82pt)=(0.1649,0.5755,0.9323); rgb(83pt)=(0.161,0.5805,0.9289); rgb(84pt)=(0.1573,0.5854,0.9254); rgb(85pt)=(0.154,0.5902,0.9218); rgb(86pt)=(0.1513,0.595,0.9182); rgb(87pt)=(0.1492,0.5997,0.9147); rgb(88pt)=(0.1475,0.6043,0.9113); rgb(89pt)=(0.1461,0.6089,0.908); rgb(90pt)=(0.1446,0.6135,0.905); rgb(91pt)=(0.1429,0.618,0.9022); rgb(92pt)=(0.1408,0.6226,0.8998); rgb(93pt)=(0.1383,0.6272,0.8975); rgb(94pt)=(0.1354,0.6317,0.8953); rgb(95pt)=(0.1321,0.6363,0.8932); rgb(96pt)=(0.1288,0.6408,0.891); rgb(97pt)=(0.1253,0.6453,0.8887); rgb(98pt)=(0.1219,0.6497,0.8862); rgb(99pt)=(0.1185,0.6541,0.8834); rgb(100pt)=(0.1152,0.6584,0.8804); rgb(101pt)=(0.1119,0.6627,0.877); rgb(102pt)=(0.1085,0.6669,0.8734); rgb(103pt)=(0.1048,0.671,0.8695); rgb(104pt)=(0.1009,0.675,0.8653); rgb(105pt)=(0.0964,0.6789,0.8609); rgb(106pt)=(0.0914,0.6828,0.8562); rgb(107pt)=(0.0855,0.6865,0.8513); rgb(108pt)=(0.0789,0.6902,0.8462); rgb(109pt)=(0.0713,0.6938,0.8409); rgb(110pt)=(0.0628,0.6972,0.8355); rgb(111pt)=(0.0535,0.7006,0.8299); rgb(112pt)=(0.0433,0.7039,0.8242); rgb(113pt)=(0.0328,0.7071,0.8183); rgb(114pt)=(0.0234,0.7103,0.8124); rgb(115pt)=(0.0155,0.7133,0.8064); rgb(116pt)=(0.0091,0.7163,0.8003); rgb(117pt)=(0.0046,0.7192,0.7941); rgb(118pt)=(0.0019,0.722,0.7878); rgb(119pt)=(0.0009,0.7248,0.7815); rgb(120pt)=(0.0018,0.7275,0.7752); rgb(121pt)=(0.0046,0.7301,0.7688); rgb(122pt)=(0.0094,0.7327,0.7623); rgb(123pt)=(0.0162,0.7352,0.7558); rgb(124pt)=(0.0253,0.7376,0.7492); rgb(125pt)=(0.0369,0.74,0.7426); rgb(126pt)=(0.0504,0.7423,0.7359); rgb(127pt)=(0.0638,0.7446,0.7292); rgb(128pt)=(0.077,0.7468,0.7224); rgb(129pt)=(0.0899,0.7489,0.7156); rgb(130pt)=(0.1023,0.751,0.7088); rgb(131pt)=(0.1141,0.7531,0.7019); rgb(132pt)=(0.1252,0.7552,0.695); rgb(133pt)=(0.1354,0.7572,0.6881); rgb(134pt)=(0.1448,0.7593,0.6812); rgb(135pt)=(0.1532,0.7614,0.6741); rgb(136pt)=(0.1609,0.7635,0.6671); rgb(137pt)=(0.1678,0.7656,0.6599); rgb(138pt)=(0.1741,0.7678,0.6527); rgb(139pt)=(0.1799,0.7699,0.6454); rgb(140pt)=(0.1853,0.7721,0.6379); rgb(141pt)=(0.1905,0.7743,0.6303); rgb(142pt)=(0.1954,0.7765,0.6225); rgb(143pt)=(0.2003,0.7787,0.6146); rgb(144pt)=(0.2061,0.7808,0.6065); rgb(145pt)=(0.2118,0.7828,0.5983); rgb(146pt)=(0.2178,0.7849,0.5899); rgb(147pt)=(0.2244,0.7869,0.5813); rgb(148pt)=(0.2318,0.7887,0.5725); rgb(149pt)=(0.2401,0.7905,0.5636); rgb(150pt)=(0.2491,0.7922,0.5546); rgb(151pt)=(0.2589,0.7937,0.5454); rgb(152pt)=(0.2695,0.7951,0.536); rgb(153pt)=(0.2809,0.7964,0.5266); rgb(154pt)=(0.2929,0.7975,0.517); rgb(155pt)=(0.3052,0.7985,0.5074); rgb(156pt)=(0.3176,0.7994,0.4975); rgb(157pt)=(0.3301,0.8002,0.4876); rgb(158pt)=(0.3424,0.8009,0.4774); rgb(159pt)=(0.3548,0.8016,0.4669); rgb(160pt)=(0.3671,0.8021,0.4563); rgb(161pt)=(0.3795,0.8026,0.4454); rgb(162pt)=(0.3921,0.8029,0.4344); rgb(163pt)=(0.405,0.8031,0.4233); rgb(164pt)=(0.4184,0.803,0.4122); rgb(165pt)=(0.4322,0.8028,0.4013); rgb(166pt)=(0.4463,0.8024,0.3904); rgb(167pt)=(0.4608,0.8018,0.3797); rgb(168pt)=(0.4753,0.8011,0.3691); rgb(169pt)=(0.4899,0.8002,0.3586); rgb(170pt)=(0.5044,0.7993,0.348); rgb(171pt)=(0.5187,0.7982,0.3374); rgb(172pt)=(0.5329,0.797,0.3267); rgb(173pt)=(0.547,0.7957,0.3159); rgb(175pt)=(0.5748,0.7929,0.2941); rgb(176pt)=(0.5886,0.7913,0.2833); rgb(177pt)=(0.6024,0.7896,0.2726); rgb(178pt)=(0.6161,0.7878,0.2622); rgb(179pt)=(0.6297,0.7859,0.2521); rgb(180pt)=(0.6433,0.7839,0.2423); rgb(181pt)=(0.6567,0.7818,0.2329); rgb(182pt)=(0.6701,0.7796,0.2239); rgb(183pt)=(0.6833,0.7773,0.2155); rgb(184pt)=(0.6963,0.775,0.2075); rgb(185pt)=(0.7091,0.7727,0.1998); rgb(186pt)=(0.7218,0.7703,0.1924); rgb(187pt)=(0.7344,0.7679,0.1852); rgb(188pt)=(0.7468,0.7654,0.1782); rgb(189pt)=(0.759,0.7629,0.1717); rgb(190pt)=(0.771,0.7604,0.1658); rgb(191pt)=(0.7829,0.7579,0.1608); rgb(192pt)=(0.7945,0.7554,0.157); rgb(193pt)=(0.806,0.7529,0.1546); rgb(194pt)=(0.8172,0.7505,0.1535); rgb(195pt)=(0.8281,0.7481,0.1536); rgb(196pt)=(0.8389,0.7457,0.1546); rgb(197pt)=(0.8495,0.7435,0.1564); rgb(198pt)=(0.86,0.7413,0.1587); rgb(199pt)=(0.8703,0.7392,0.1615); rgb(200pt)=(0.8804,0.7372,0.165); rgb(201pt)=(0.8903,0.7353,0.1695); rgb(202pt)=(0.9,0.7336,0.1749); rgb(203pt)=(0.9093,0.7321,0.1815); rgb(204pt)=(0.9184,0.7308,0.189); rgb(205pt)=(0.9272,0.7298,0.1973); rgb(206pt)=(0.9357,0.729,0.2061); rgb(207pt)=(0.944,0.7285,0.2151); rgb(208pt)=(0.9523,0.7284,0.2237); rgb(209pt)=(0.9606,0.7285,0.2312); rgb(210pt)=(0.9689,0.7292,0.2373); rgb(211pt)=(0.977,0.7304,0.2418); rgb(212pt)=(0.9842,0.733,0.2446); rgb(213pt)=(0.99,0.7365,0.2429); rgb(214pt)=(0.9946,0.7407,0.2394); rgb(215pt)=(0.9966,0.7458,0.2351); rgb(216pt)=(0.9971,0.7513,0.2309); rgb(217pt)=(0.9972,0.7569,0.2267); rgb(218pt)=(0.9971,0.7626,0.2224); rgb(219pt)=(0.9969,0.7683,0.2181); rgb(220pt)=(0.9966,0.774,0.2138); rgb(221pt)=(0.9962,0.7798,0.2095); rgb(222pt)=(0.9957,0.7856,0.2053); rgb(223pt)=(0.9949,0.7915,0.2012); rgb(224pt)=(0.9938,0.7974,0.1974); rgb(225pt)=(0.9923,0.8034,0.1939); rgb(226pt)=(0.9906,0.8095,0.1906); rgb(227pt)=(0.9885,0.8156,0.1875); rgb(228pt)=(0.9861,0.8218,0.1846); rgb(229pt)=(0.9835,0.828,0.1817); rgb(230pt)=(0.9807,0.8342,0.1787); rgb(231pt)=(0.9778,0.8404,0.1757); rgb(232pt)=(0.9748,0.8467,0.1726); rgb(233pt)=(0.972,0.8529,0.1695); rgb(234pt)=(0.9694,0.8591,0.1665); rgb(235pt)=(0.9671,0.8654,0.1636); rgb(236pt)=(0.9651,0.8716,0.1608); rgb(237pt)=(0.9634,0.8778,0.1582); rgb(238pt)=(0.9619,0.884,0.1557); rgb(239pt)=(0.9608,0.8902,0.1532); rgb(240pt)=(0.9601,0.8963,0.1507); rgb(241pt)=(0.9596,0.9023,0.148); rgb(242pt)=(0.9595,0.9084,0.145); rgb(243pt)=(0.9597,0.9143,0.1418); rgb(244pt)=(0.9601,0.9203,0.1382); rgb(245pt)=(0.9608,0.9262,0.1344); rgb(246pt)=(0.9618,0.932,0.1304); rgb(247pt)=(0.9629,0.9379,0.1261); rgb(248pt)=(0.9642,0.9437,0.1216); rgb(249pt)=(0.9657,0.9494,0.1168); rgb(250pt)=(0.9674,0.9552,0.1116); rgb(251pt)=(0.9692,0.9609,0.1061); rgb(252pt)=(0.9711,0.9667,0.1001); rgb(253pt)=(0.973,0.9724,0.0938); rgb(254pt)=(0.9749,0.9782,0.0872); rgb(255pt)=(0.9769,0.9839,0.0805)}, mesh/rows=21]
table[row sep=crcr, point meta=\thisrow{c}] {%
%
x y z c\\
-10 -10 400 400\\
-10 -9 381 381\\
-10 -8 364 364\\
-10 -7 349 349\\
-10 -6 336 336\\
-10 -5 325 325\\
-10 -4 316 316\\
-10 -3 309 309\\
-10 -2 304 304\\
-10 -1 301 301\\
-10 0 300 300\\
-10 1 301 301\\
-10 2 304 304\\
-10 3 309 309\\
-10 4 316 316\\
-10 5 325 325\\
-10 6 336 336\\
-10 7 349 349\\
-10 8 364 364\\
-10 9 381 381\\
-10 10 400 400\\
-9 -10 343 343\\
-9 -9 324 324\\
-9 -8 307 307\\
-9 -7 292 292\\
-9 -6 279 279\\
-9 -5 268 268\\
-9 -4 259 259\\
-9 -3 252 252\\
-9 -2 247 247\\
-9 -1 244 244\\
-9 0 243 243\\
-9 1 244 244\\
-9 2 247 247\\
-9 3 252 252\\
-9 4 259 259\\
-9 5 268 268\\
-9 6 279 279\\
-9 7 292 292\\
-9 8 307 307\\
-9 9 324 324\\
-9 10 343 343\\
-8 -10 292 292\\
-8 -9 273 273\\
-8 -8 256 256\\
-8 -7 241 241\\
-8 -6 228 228\\
-8 -5 217 217\\
-8 -4 208 208\\
-8 -3 201 201\\
-8 -2 196 196\\
-8 -1 193 193\\
-8 0 192 192\\
-8 1 193 193\\
-8 2 196 196\\
-8 3 201 201\\
-8 4 208 208\\
-8 5 217 217\\
-8 6 228 228\\
-8 7 241 241\\
-8 8 256 256\\
-8 9 273 273\\
-8 10 292 292\\
-7 -10 247 247\\
-7 -9 228 228\\
-7 -8 211 211\\
-7 -7 196 196\\
-7 -6 183 183\\
-7 -5 172 172\\
-7 -4 163 163\\
-7 -3 156 156\\
-7 -2 151 151\\
-7 -1 148 148\\
-7 0 147 147\\
-7 1 148 148\\
-7 2 151 151\\
-7 3 156 156\\
-7 4 163 163\\
-7 5 172 172\\
-7 6 183 183\\
-7 7 196 196\\
-7 8 211 211\\
-7 9 228 228\\
-7 10 247 247\\
-6 -10 208 208\\
-6 -9 189 189\\
-6 -8 172 172\\
-6 -7 157 157\\
-6 -6 144 144\\
-6 -5 133 133\\
-6 -4 124 124\\
-6 -3 117 117\\
-6 -2 112 112\\
-6 -1 109 109\\
-6 0 108 108\\
-6 1 109 109\\
-6 2 112 112\\
-6 3 117 117\\
-6 4 124 124\\
-6 5 133 133\\
-6 6 144 144\\
-6 7 157 157\\
-6 8 172 172\\
-6 9 189 189\\
-6 10 208 208\\
-5 -10 175 175\\
-5 -9 156 156\\
-5 -8 139 139\\
-5 -7 124 124\\
-5 -6 111 111\\
-5 -5 100 100\\
-5 -4 91 91\\
-5 -3 84 84\\
-5 -2 79 79\\
-5 -1 76 76\\
-5 0 75 75\\
-5 1 76 76\\
-5 2 79 79\\
-5 3 84 84\\
-5 4 91 91\\
-5 5 100 100\\
-5 6 111 111\\
-5 7 124 124\\
-5 8 139 139\\
-5 9 156 156\\
-5 10 175 175\\
-4 -10 148 148\\
-4 -9 129 129\\
-4 -8 112 112\\
-4 -7 97 97\\
-4 -6 84 84\\
-4 -5 73 73\\
-4 -4 64 64\\
-4 -3 57 57\\
-4 -2 52 52\\
-4 -1 49 49\\
-4 0 48 48\\
-4 1 49 49\\
-4 2 52 52\\
-4 3 57 57\\
-4 4 64 64\\
-4 5 73 73\\
-4 6 84 84\\
-4 7 97 97\\
-4 8 112 112\\
-4 9 129 129\\
-4 10 148 148\\
-3 -10 127 127\\
-3 -9 108 108\\
-3 -8 91 91\\
-3 -7 76 76\\
-3 -6 63 63\\
-3 -5 52 52\\
-3 -4 43 43\\
-3 -3 36 36\\
-3 -2 31 31\\
-3 -1 28 28\\
-3 0 27 27\\
-3 1 28 28\\
-3 2 31 31\\
-3 3 36 36\\
-3 4 43 43\\
-3 5 52 52\\
-3 6 63 63\\
-3 7 76 76\\
-3 8 91 91\\
-3 9 108 108\\
-3 10 127 127\\
-2 -10 112 112\\
-2 -9 93 93\\
-2 -8 76 76\\
-2 -7 61 61\\
-2 -6 48 48\\
-2 -5 37 37\\
-2 -4 28 28\\
-2 -3 21 21\\
-2 -2 16 16\\
-2 -1 13 13\\
-2 0 12 12\\
-2 1 13 13\\
-2 2 16 16\\
-2 3 21 21\\
-2 4 28 28\\
-2 5 37 37\\
-2 6 48 48\\
-2 7 61 61\\
-2 8 76 76\\
-2 9 93 93\\
-2 10 112 112\\
-1 -10 103 103\\
-1 -9 84 84\\
-1 -8 67 67\\
-1 -7 52 52\\
-1 -6 39 39\\
-1 -5 28 28\\
-1 -4 19 19\\
-1 -3 12 12\\
-1 -2 7 7\\
-1 -1 4 4\\
-1 0 3 3\\
-1 1 4 4\\
-1 2 7 7\\
-1 3 12 12\\
-1 4 19 19\\
-1 5 28 28\\
-1 6 39 39\\
-1 7 52 52\\
-1 8 67 67\\
-1 9 84 84\\
-1 10 103 103\\
0 -10 100 100\\
0 -9 81 81\\
0 -8 64 64\\
0 -7 49 49\\
0 -6 36 36\\
0 -5 25 25\\
0 -4 16 16\\
0 -3 9 9\\
0 -2 4 4\\
0 -1 1 1\\
0 0 0 0\\
0 1 1 1\\
0 2 4 4\\
0 3 9 9\\
0 4 16 16\\
0 5 25 25\\
0 6 36 36\\
0 7 49 49\\
0 8 64 64\\
0 9 81 81\\
0 10 100 100\\
1 -10 103 103\\
1 -9 84 84\\
1 -8 67 67\\
1 -7 52 52\\
1 -6 39 39\\
1 -5 28 28\\
1 -4 19 19\\
1 -3 12 12\\
1 -2 7 7\\
1 -1 4 4\\
1 0 3 3\\
1 1 4 4\\
1 2 7 7\\
1 3 12 12\\
1 4 19 19\\
1 5 28 28\\
1 6 39 39\\
1 7 52 52\\
1 8 67 67\\
1 9 84 84\\
1 10 103 103\\
2 -10 112 112\\
2 -9 93 93\\
2 -8 76 76\\
2 -7 61 61\\
2 -6 48 48\\
2 -5 37 37\\
2 -4 28 28\\
2 -3 21 21\\
2 -2 16 16\\
2 -1 13 13\\
2 0 12 12\\
2 1 13 13\\
2 2 16 16\\
2 3 21 21\\
2 4 28 28\\
2 5 37 37\\
2 6 48 48\\
2 7 61 61\\
2 8 76 76\\
2 9 93 93\\
2 10 112 112\\
3 -10 127 127\\
3 -9 108 108\\
3 -8 91 91\\
3 -7 76 76\\
3 -6 63 63\\
3 -5 52 52\\
3 -4 43 43\\
3 -3 36 36\\
3 -2 31 31\\
3 -1 28 28\\
3 0 27 27\\
3 1 28 28\\
3 2 31 31\\
3 3 36 36\\
3 4 43 43\\
3 5 52 52\\
3 6 63 63\\
3 7 76 76\\
3 8 91 91\\
3 9 108 108\\
3 10 127 127\\
4 -10 148 148\\
4 -9 129 129\\
4 -8 112 112\\
4 -7 97 97\\
4 -6 84 84\\
4 -5 73 73\\
4 -4 64 64\\
4 -3 57 57\\
4 -2 52 52\\
4 -1 49 49\\
4 0 48 48\\
4 1 49 49\\
4 2 52 52\\
4 3 57 57\\
4 4 64 64\\
4 5 73 73\\
4 6 84 84\\
4 7 97 97\\
4 8 112 112\\
4 9 129 129\\
4 10 148 148\\
5 -10 175 175\\
5 -9 156 156\\
5 -8 139 139\\
5 -7 124 124\\
5 -6 111 111\\
5 -5 100 100\\
5 -4 91 91\\
5 -3 84 84\\
5 -2 79 79\\
5 -1 76 76\\
5 0 75 75\\
5 1 76 76\\
5 2 79 79\\
5 3 84 84\\
5 4 91 91\\
5 5 100 100\\
5 6 111 111\\
5 7 124 124\\
5 8 139 139\\
5 9 156 156\\
5 10 175 175\\
6 -10 208 208\\
6 -9 189 189\\
6 -8 172 172\\
6 -7 157 157\\
6 -6 144 144\\
6 -5 133 133\\
6 -4 124 124\\
6 -3 117 117\\
6 -2 112 112\\
6 -1 109 109\\
6 0 108 108\\
6 1 109 109\\
6 2 112 112\\
6 3 117 117\\
6 4 124 124\\
6 5 133 133\\
6 6 144 144\\
6 7 157 157\\
6 8 172 172\\
6 9 189 189\\
6 10 208 208\\
7 -10 247 247\\
7 -9 228 228\\
7 -8 211 211\\
7 -7 196 196\\
7 -6 183 183\\
7 -5 172 172\\
7 -4 163 163\\
7 -3 156 156\\
7 -2 151 151\\
7 -1 148 148\\
7 0 147 147\\
7 1 148 148\\
7 2 151 151\\
7 3 156 156\\
7 4 163 163\\
7 5 172 172\\
7 6 183 183\\
7 7 196 196\\
7 8 211 211\\
7 9 228 228\\
7 10 247 247\\
8 -10 292 292\\
8 -9 273 273\\
8 -8 256 256\\
8 -7 241 241\\
8 -6 228 228\\
8 -5 217 217\\
8 -4 208 208\\
8 -3 201 201\\
8 -2 196 196\\
8 -1 193 193\\
8 0 192 192\\
8 1 193 193\\
8 2 196 196\\
8 3 201 201\\
8 4 208 208\\
8 5 217 217\\
8 6 228 228\\
8 7 241 241\\
8 8 256 256\\
8 9 273 273\\
8 10 292 292\\
9 -10 343 343\\
9 -9 324 324\\
9 -8 307 307\\
9 -7 292 292\\
9 -6 279 279\\
9 -5 268 268\\
9 -4 259 259\\
9 -3 252 252\\
9 -2 247 247\\
9 -1 244 244\\
9 0 243 243\\
9 1 244 244\\
9 2 247 247\\
9 3 252 252\\
9 4 259 259\\
9 5 268 268\\
9 6 279 279\\
9 7 292 292\\
9 8 307 307\\
9 9 324 324\\
9 10 343 343\\
10 -10 400 400\\
10 -9 381 381\\
10 -8 364 364\\
10 -7 349 349\\
10 -6 336 336\\
10 -5 325 325\\
10 -4 316 316\\
10 -3 309 309\\
10 -2 304 304\\
10 -1 301 301\\
10 0 300 300\\
10 1 301 301\\
10 2 304 304\\
10 3 309 309\\
10 4 316 316\\
10 5 325 325\\
10 6 336 336\\
10 7 349 349\\
10 8 364 364\\
10 9 381 381\\
10 10 400 400\\
};
\end{axis}
\begin{axis}[%
width=0.737in,
height=1.524in,
at={(3.684in,2.609in)},
scale only axis,
xmin=-10,
xmax=10,
tick align=outside,
ymin=-10,
ymax=10,
zmin=0,
zmax=600,
view={-37.5}{30},
axis background/.style={fill=white},
title style={yshift=1ex, font=\tiny\bfseries},
title={u=4},
axis x line*=bottom,
axis y line*=left,
axis z line*=left,
xmajorgrids,
ymajorgrids,
zmajorgrids
]
\addplot3[%
surf,
shader=flat, z buffer=sort, colormap={mymap}{[1pt] rgb(0pt)=(0.2422,0.1504,0.6603); rgb(1pt)=(0.2444,0.1534,0.6728); rgb(2pt)=(0.2464,0.1569,0.6847); rgb(3pt)=(0.2484,0.1607,0.6961); rgb(4pt)=(0.2503,0.1648,0.7071); rgb(5pt)=(0.2522,0.1689,0.7179); rgb(6pt)=(0.254,0.1732,0.7286); rgb(7pt)=(0.2558,0.1773,0.7393); rgb(8pt)=(0.2576,0.1814,0.7501); rgb(9pt)=(0.2594,0.1854,0.761); rgb(11pt)=(0.2628,0.1932,0.7828); rgb(12pt)=(0.2645,0.1972,0.7937); rgb(13pt)=(0.2661,0.2011,0.8043); rgb(14pt)=(0.2676,0.2052,0.8148); rgb(15pt)=(0.2691,0.2094,0.8249); rgb(16pt)=(0.2704,0.2138,0.8346); rgb(17pt)=(0.2717,0.2184,0.8439); rgb(18pt)=(0.2729,0.2231,0.8528); rgb(19pt)=(0.274,0.228,0.8612); rgb(20pt)=(0.2749,0.233,0.8692); rgb(21pt)=(0.2758,0.2382,0.8767); rgb(22pt)=(0.2766,0.2435,0.884); rgb(23pt)=(0.2774,0.2489,0.8908); rgb(24pt)=(0.2781,0.2543,0.8973); rgb(25pt)=(0.2788,0.2598,0.9035); rgb(26pt)=(0.2794,0.2653,0.9094); rgb(27pt)=(0.2798,0.2708,0.915); rgb(28pt)=(0.2802,0.2764,0.9204); rgb(29pt)=(0.2806,0.2819,0.9255); rgb(30pt)=(0.2809,0.2875,0.9305); rgb(31pt)=(0.2811,0.293,0.9352); rgb(32pt)=(0.2813,0.2985,0.9397); rgb(33pt)=(0.2814,0.304,0.9441); rgb(34pt)=(0.2814,0.3095,0.9483); rgb(35pt)=(0.2813,0.315,0.9524); rgb(36pt)=(0.2811,0.3204,0.9563); rgb(37pt)=(0.2809,0.3259,0.96); rgb(38pt)=(0.2807,0.3313,0.9636); rgb(39pt)=(0.2803,0.3367,0.967); rgb(40pt)=(0.2798,0.3421,0.9702); rgb(41pt)=(0.2791,0.3475,0.9733); rgb(42pt)=(0.2784,0.3529,0.9763); rgb(43pt)=(0.2776,0.3583,0.9791); rgb(44pt)=(0.2766,0.3638,0.9817); rgb(45pt)=(0.2754,0.3693,0.984); rgb(46pt)=(0.2741,0.3748,0.9862); rgb(47pt)=(0.2726,0.3804,0.9881); rgb(48pt)=(0.271,0.386,0.9898); rgb(49pt)=(0.2691,0.3916,0.9912); rgb(50pt)=(0.267,0.3973,0.9924); rgb(51pt)=(0.2647,0.403,0.9935); rgb(52pt)=(0.2621,0.4088,0.9946); rgb(53pt)=(0.2591,0.4145,0.9955); rgb(54pt)=(0.2556,0.4203,0.9965); rgb(55pt)=(0.2517,0.4261,0.9974); rgb(56pt)=(0.2473,0.4319,0.9983); rgb(57pt)=(0.2424,0.4378,0.9991); rgb(58pt)=(0.2369,0.4437,0.9996); rgb(59pt)=(0.2311,0.4497,0.9995); rgb(60pt)=(0.225,0.4559,0.9985); rgb(61pt)=(0.2189,0.462,0.9968); rgb(62pt)=(0.2128,0.4682,0.9948); rgb(63pt)=(0.2066,0.4743,0.9926); rgb(64pt)=(0.2006,0.4803,0.9906); rgb(65pt)=(0.195,0.4861,0.9887); rgb(66pt)=(0.1903,0.4919,0.9867); rgb(67pt)=(0.1869,0.4975,0.9844); rgb(68pt)=(0.1847,0.503,0.9819); rgb(69pt)=(0.1831,0.5084,0.9793); rgb(70pt)=(0.1818,0.5138,0.9766); rgb(71pt)=(0.1806,0.5191,0.9738); rgb(72pt)=(0.1795,0.5244,0.9709); rgb(73pt)=(0.1785,0.5296,0.9677); rgb(74pt)=(0.1778,0.5349,0.9641); rgb(75pt)=(0.1773,0.5401,0.9602); rgb(76pt)=(0.1768,0.5452,0.956); rgb(77pt)=(0.1764,0.5504,0.9516); rgb(78pt)=(0.1755,0.5554,0.9473); rgb(79pt)=(0.174,0.5605,0.9432); rgb(80pt)=(0.1716,0.5655,0.9393); rgb(81pt)=(0.1686,0.5705,0.9357); rgb(82pt)=(0.1649,0.5755,0.9323); rgb(83pt)=(0.161,0.5805,0.9289); rgb(84pt)=(0.1573,0.5854,0.9254); rgb(85pt)=(0.154,0.5902,0.9218); rgb(86pt)=(0.1513,0.595,0.9182); rgb(87pt)=(0.1492,0.5997,0.9147); rgb(88pt)=(0.1475,0.6043,0.9113); rgb(89pt)=(0.1461,0.6089,0.908); rgb(90pt)=(0.1446,0.6135,0.905); rgb(91pt)=(0.1429,0.618,0.9022); rgb(92pt)=(0.1408,0.6226,0.8998); rgb(93pt)=(0.1383,0.6272,0.8975); rgb(94pt)=(0.1354,0.6317,0.8953); rgb(95pt)=(0.1321,0.6363,0.8932); rgb(96pt)=(0.1288,0.6408,0.891); rgb(97pt)=(0.1253,0.6453,0.8887); rgb(98pt)=(0.1219,0.6497,0.8862); rgb(99pt)=(0.1185,0.6541,0.8834); rgb(100pt)=(0.1152,0.6584,0.8804); rgb(101pt)=(0.1119,0.6627,0.877); rgb(102pt)=(0.1085,0.6669,0.8734); rgb(103pt)=(0.1048,0.671,0.8695); rgb(104pt)=(0.1009,0.675,0.8653); rgb(105pt)=(0.0964,0.6789,0.8609); rgb(106pt)=(0.0914,0.6828,0.8562); rgb(107pt)=(0.0855,0.6865,0.8513); rgb(108pt)=(0.0789,0.6902,0.8462); rgb(109pt)=(0.0713,0.6938,0.8409); rgb(110pt)=(0.0628,0.6972,0.8355); rgb(111pt)=(0.0535,0.7006,0.8299); rgb(112pt)=(0.0433,0.7039,0.8242); rgb(113pt)=(0.0328,0.7071,0.8183); rgb(114pt)=(0.0234,0.7103,0.8124); rgb(115pt)=(0.0155,0.7133,0.8064); rgb(116pt)=(0.0091,0.7163,0.8003); rgb(117pt)=(0.0046,0.7192,0.7941); rgb(118pt)=(0.0019,0.722,0.7878); rgb(119pt)=(0.0009,0.7248,0.7815); rgb(120pt)=(0.0018,0.7275,0.7752); rgb(121pt)=(0.0046,0.7301,0.7688); rgb(122pt)=(0.0094,0.7327,0.7623); rgb(123pt)=(0.0162,0.7352,0.7558); rgb(124pt)=(0.0253,0.7376,0.7492); rgb(125pt)=(0.0369,0.74,0.7426); rgb(126pt)=(0.0504,0.7423,0.7359); rgb(127pt)=(0.0638,0.7446,0.7292); rgb(128pt)=(0.077,0.7468,0.7224); rgb(129pt)=(0.0899,0.7489,0.7156); rgb(130pt)=(0.1023,0.751,0.7088); rgb(131pt)=(0.1141,0.7531,0.7019); rgb(132pt)=(0.1252,0.7552,0.695); rgb(133pt)=(0.1354,0.7572,0.6881); rgb(134pt)=(0.1448,0.7593,0.6812); rgb(135pt)=(0.1532,0.7614,0.6741); rgb(136pt)=(0.1609,0.7635,0.6671); rgb(137pt)=(0.1678,0.7656,0.6599); rgb(138pt)=(0.1741,0.7678,0.6527); rgb(139pt)=(0.1799,0.7699,0.6454); rgb(140pt)=(0.1853,0.7721,0.6379); rgb(141pt)=(0.1905,0.7743,0.6303); rgb(142pt)=(0.1954,0.7765,0.6225); rgb(143pt)=(0.2003,0.7787,0.6146); rgb(144pt)=(0.2061,0.7808,0.6065); rgb(145pt)=(0.2118,0.7828,0.5983); rgb(146pt)=(0.2178,0.7849,0.5899); rgb(147pt)=(0.2244,0.7869,0.5813); rgb(148pt)=(0.2318,0.7887,0.5725); rgb(149pt)=(0.2401,0.7905,0.5636); rgb(150pt)=(0.2491,0.7922,0.5546); rgb(151pt)=(0.2589,0.7937,0.5454); rgb(152pt)=(0.2695,0.7951,0.536); rgb(153pt)=(0.2809,0.7964,0.5266); rgb(154pt)=(0.2929,0.7975,0.517); rgb(155pt)=(0.3052,0.7985,0.5074); rgb(156pt)=(0.3176,0.7994,0.4975); rgb(157pt)=(0.3301,0.8002,0.4876); rgb(158pt)=(0.3424,0.8009,0.4774); rgb(159pt)=(0.3548,0.8016,0.4669); rgb(160pt)=(0.3671,0.8021,0.4563); rgb(161pt)=(0.3795,0.8026,0.4454); rgb(162pt)=(0.3921,0.8029,0.4344); rgb(163pt)=(0.405,0.8031,0.4233); rgb(164pt)=(0.4184,0.803,0.4122); rgb(165pt)=(0.4322,0.8028,0.4013); rgb(166pt)=(0.4463,0.8024,0.3904); rgb(167pt)=(0.4608,0.8018,0.3797); rgb(168pt)=(0.4753,0.8011,0.3691); rgb(169pt)=(0.4899,0.8002,0.3586); rgb(170pt)=(0.5044,0.7993,0.348); rgb(171pt)=(0.5187,0.7982,0.3374); rgb(172pt)=(0.5329,0.797,0.3267); rgb(173pt)=(0.547,0.7957,0.3159); rgb(175pt)=(0.5748,0.7929,0.2941); rgb(176pt)=(0.5886,0.7913,0.2833); rgb(177pt)=(0.6024,0.7896,0.2726); rgb(178pt)=(0.6161,0.7878,0.2622); rgb(179pt)=(0.6297,0.7859,0.2521); rgb(180pt)=(0.6433,0.7839,0.2423); rgb(181pt)=(0.6567,0.7818,0.2329); rgb(182pt)=(0.6701,0.7796,0.2239); rgb(183pt)=(0.6833,0.7773,0.2155); rgb(184pt)=(0.6963,0.775,0.2075); rgb(185pt)=(0.7091,0.7727,0.1998); rgb(186pt)=(0.7218,0.7703,0.1924); rgb(187pt)=(0.7344,0.7679,0.1852); rgb(188pt)=(0.7468,0.7654,0.1782); rgb(189pt)=(0.759,0.7629,0.1717); rgb(190pt)=(0.771,0.7604,0.1658); rgb(191pt)=(0.7829,0.7579,0.1608); rgb(192pt)=(0.7945,0.7554,0.157); rgb(193pt)=(0.806,0.7529,0.1546); rgb(194pt)=(0.8172,0.7505,0.1535); rgb(195pt)=(0.8281,0.7481,0.1536); rgb(196pt)=(0.8389,0.7457,0.1546); rgb(197pt)=(0.8495,0.7435,0.1564); rgb(198pt)=(0.86,0.7413,0.1587); rgb(199pt)=(0.8703,0.7392,0.1615); rgb(200pt)=(0.8804,0.7372,0.165); rgb(201pt)=(0.8903,0.7353,0.1695); rgb(202pt)=(0.9,0.7336,0.1749); rgb(203pt)=(0.9093,0.7321,0.1815); rgb(204pt)=(0.9184,0.7308,0.189); rgb(205pt)=(0.9272,0.7298,0.1973); rgb(206pt)=(0.9357,0.729,0.2061); rgb(207pt)=(0.944,0.7285,0.2151); rgb(208pt)=(0.9523,0.7284,0.2237); rgb(209pt)=(0.9606,0.7285,0.2312); rgb(210pt)=(0.9689,0.7292,0.2373); rgb(211pt)=(0.977,0.7304,0.2418); rgb(212pt)=(0.9842,0.733,0.2446); rgb(213pt)=(0.99,0.7365,0.2429); rgb(214pt)=(0.9946,0.7407,0.2394); rgb(215pt)=(0.9966,0.7458,0.2351); rgb(216pt)=(0.9971,0.7513,0.2309); rgb(217pt)=(0.9972,0.7569,0.2267); rgb(218pt)=(0.9971,0.7626,0.2224); rgb(219pt)=(0.9969,0.7683,0.2181); rgb(220pt)=(0.9966,0.774,0.2138); rgb(221pt)=(0.9962,0.7798,0.2095); rgb(222pt)=(0.9957,0.7856,0.2053); rgb(223pt)=(0.9949,0.7915,0.2012); rgb(224pt)=(0.9938,0.7974,0.1974); rgb(225pt)=(0.9923,0.8034,0.1939); rgb(226pt)=(0.9906,0.8095,0.1906); rgb(227pt)=(0.9885,0.8156,0.1875); rgb(228pt)=(0.9861,0.8218,0.1846); rgb(229pt)=(0.9835,0.828,0.1817); rgb(230pt)=(0.9807,0.8342,0.1787); rgb(231pt)=(0.9778,0.8404,0.1757); rgb(232pt)=(0.9748,0.8467,0.1726); rgb(233pt)=(0.972,0.8529,0.1695); rgb(234pt)=(0.9694,0.8591,0.1665); rgb(235pt)=(0.9671,0.8654,0.1636); rgb(236pt)=(0.9651,0.8716,0.1608); rgb(237pt)=(0.9634,0.8778,0.1582); rgb(238pt)=(0.9619,0.884,0.1557); rgb(239pt)=(0.9608,0.8902,0.1532); rgb(240pt)=(0.9601,0.8963,0.1507); rgb(241pt)=(0.9596,0.9023,0.148); rgb(242pt)=(0.9595,0.9084,0.145); rgb(243pt)=(0.9597,0.9143,0.1418); rgb(244pt)=(0.9601,0.9203,0.1382); rgb(245pt)=(0.9608,0.9262,0.1344); rgb(246pt)=(0.9618,0.932,0.1304); rgb(247pt)=(0.9629,0.9379,0.1261); rgb(248pt)=(0.9642,0.9437,0.1216); rgb(249pt)=(0.9657,0.9494,0.1168); rgb(250pt)=(0.9674,0.9552,0.1116); rgb(251pt)=(0.9692,0.9609,0.1061); rgb(252pt)=(0.9711,0.9667,0.1001); rgb(253pt)=(0.973,0.9724,0.0938); rgb(254pt)=(0.9749,0.9782,0.0872); rgb(255pt)=(0.9769,0.9839,0.0805)}, mesh/rows=21]
table[row sep=crcr, point meta=\thisrow{c}] {%
%
x y z c\\
-10 -10 500 500\\
-10 -9 481 481\\
-10 -8 464 464\\
-10 -7 449 449\\
-10 -6 436 436\\
-10 -5 425 425\\
-10 -4 416 416\\
-10 -3 409 409\\
-10 -2 404 404\\
-10 -1 401 401\\
-10 0 400 400\\
-10 1 401 401\\
-10 2 404 404\\
-10 3 409 409\\
-10 4 416 416\\
-10 5 425 425\\
-10 6 436 436\\
-10 7 449 449\\
-10 8 464 464\\
-10 9 481 481\\
-10 10 500 500\\
-9 -10 424 424\\
-9 -9 405 405\\
-9 -8 388 388\\
-9 -7 373 373\\
-9 -6 360 360\\
-9 -5 349 349\\
-9 -4 340 340\\
-9 -3 333 333\\
-9 -2 328 328\\
-9 -1 325 325\\
-9 0 324 324\\
-9 1 325 325\\
-9 2 328 328\\
-9 3 333 333\\
-9 4 340 340\\
-9 5 349 349\\
-9 6 360 360\\
-9 7 373 373\\
-9 8 388 388\\
-9 9 405 405\\
-9 10 424 424\\
-8 -10 356 356\\
-8 -9 337 337\\
-8 -8 320 320\\
-8 -7 305 305\\
-8 -6 292 292\\
-8 -5 281 281\\
-8 -4 272 272\\
-8 -3 265 265\\
-8 -2 260 260\\
-8 -1 257 257\\
-8 0 256 256\\
-8 1 257 257\\
-8 2 260 260\\
-8 3 265 265\\
-8 4 272 272\\
-8 5 281 281\\
-8 6 292 292\\
-8 7 305 305\\
-8 8 320 320\\
-8 9 337 337\\
-8 10 356 356\\
-7 -10 296 296\\
-7 -9 277 277\\
-7 -8 260 260\\
-7 -7 245 245\\
-7 -6 232 232\\
-7 -5 221 221\\
-7 -4 212 212\\
-7 -3 205 205\\
-7 -2 200 200\\
-7 -1 197 197\\
-7 0 196 196\\
-7 1 197 197\\
-7 2 200 200\\
-7 3 205 205\\
-7 4 212 212\\
-7 5 221 221\\
-7 6 232 232\\
-7 7 245 245\\
-7 8 260 260\\
-7 9 277 277\\
-7 10 296 296\\
-6 -10 244 244\\
-6 -9 225 225\\
-6 -8 208 208\\
-6 -7 193 193\\
-6 -6 180 180\\
-6 -5 169 169\\
-6 -4 160 160\\
-6 -3 153 153\\
-6 -2 148 148\\
-6 -1 145 145\\
-6 0 144 144\\
-6 1 145 145\\
-6 2 148 148\\
-6 3 153 153\\
-6 4 160 160\\
-6 5 169 169\\
-6 6 180 180\\
-6 7 193 193\\
-6 8 208 208\\
-6 9 225 225\\
-6 10 244 244\\
-5 -10 200 200\\
-5 -9 181 181\\
-5 -8 164 164\\
-5 -7 149 149\\
-5 -6 136 136\\
-5 -5 125 125\\
-5 -4 116 116\\
-5 -3 109 109\\
-5 -2 104 104\\
-5 -1 101 101\\
-5 0 100 100\\
-5 1 101 101\\
-5 2 104 104\\
-5 3 109 109\\
-5 4 116 116\\
-5 5 125 125\\
-5 6 136 136\\
-5 7 149 149\\
-5 8 164 164\\
-5 9 181 181\\
-5 10 200 200\\
-4 -10 164 164\\
-4 -9 145 145\\
-4 -8 128 128\\
-4 -7 113 113\\
-4 -6 100 100\\
-4 -5 89 89\\
-4 -4 80 80\\
-4 -3 73 73\\
-4 -2 68 68\\
-4 -1 65 65\\
-4 0 64 64\\
-4 1 65 65\\
-4 2 68 68\\
-4 3 73 73\\
-4 4 80 80\\
-4 5 89 89\\
-4 6 100 100\\
-4 7 113 113\\
-4 8 128 128\\
-4 9 145 145\\
-4 10 164 164\\
-3 -10 136 136\\
-3 -9 117 117\\
-3 -8 100 100\\
-3 -7 85 85\\
-3 -6 72 72\\
-3 -5 61 61\\
-3 -4 52 52\\
-3 -3 45 45\\
-3 -2 40 40\\
-3 -1 37 37\\
-3 0 36 36\\
-3 1 37 37\\
-3 2 40 40\\
-3 3 45 45\\
-3 4 52 52\\
-3 5 61 61\\
-3 6 72 72\\
-3 7 85 85\\
-3 8 100 100\\
-3 9 117 117\\
-3 10 136 136\\
-2 -10 116 116\\
-2 -9 97 97\\
-2 -8 80 80\\
-2 -7 65 65\\
-2 -6 52 52\\
-2 -5 41 41\\
-2 -4 32 32\\
-2 -3 25 25\\
-2 -2 20 20\\
-2 -1 17 17\\
-2 0 16 16\\
-2 1 17 17\\
-2 2 20 20\\
-2 3 25 25\\
-2 4 32 32\\
-2 5 41 41\\
-2 6 52 52\\
-2 7 65 65\\
-2 8 80 80\\
-2 9 97 97\\
-2 10 116 116\\
-1 -10 104 104\\
-1 -9 85 85\\
-1 -8 68 68\\
-1 -7 53 53\\
-1 -6 40 40\\
-1 -5 29 29\\
-1 -4 20 20\\
-1 -3 13 13\\
-1 -2 8 8\\
-1 -1 5 5\\
-1 0 4 4\\
-1 1 5 5\\
-1 2 8 8\\
-1 3 13 13\\
-1 4 20 20\\
-1 5 29 29\\
-1 6 40 40\\
-1 7 53 53\\
-1 8 68 68\\
-1 9 85 85\\
-1 10 104 104\\
0 -10 100 100\\
0 -9 81 81\\
0 -8 64 64\\
0 -7 49 49\\
0 -6 36 36\\
0 -5 25 25\\
0 -4 16 16\\
0 -3 9 9\\
0 -2 4 4\\
0 -1 1 1\\
0 0 0 0\\
0 1 1 1\\
0 2 4 4\\
0 3 9 9\\
0 4 16 16\\
0 5 25 25\\
0 6 36 36\\
0 7 49 49\\
0 8 64 64\\
0 9 81 81\\
0 10 100 100\\
1 -10 104 104\\
1 -9 85 85\\
1 -8 68 68\\
1 -7 53 53\\
1 -6 40 40\\
1 -5 29 29\\
1 -4 20 20\\
1 -3 13 13\\
1 -2 8 8\\
1 -1 5 5\\
1 0 4 4\\
1 1 5 5\\
1 2 8 8\\
1 3 13 13\\
1 4 20 20\\
1 5 29 29\\
1 6 40 40\\
1 7 53 53\\
1 8 68 68\\
1 9 85 85\\
1 10 104 104\\
2 -10 116 116\\
2 -9 97 97\\
2 -8 80 80\\
2 -7 65 65\\
2 -6 52 52\\
2 -5 41 41\\
2 -4 32 32\\
2 -3 25 25\\
2 -2 20 20\\
2 -1 17 17\\
2 0 16 16\\
2 1 17 17\\
2 2 20 20\\
2 3 25 25\\
2 4 32 32\\
2 5 41 41\\
2 6 52 52\\
2 7 65 65\\
2 8 80 80\\
2 9 97 97\\
2 10 116 116\\
3 -10 136 136\\
3 -9 117 117\\
3 -8 100 100\\
3 -7 85 85\\
3 -6 72 72\\
3 -5 61 61\\
3 -4 52 52\\
3 -3 45 45\\
3 -2 40 40\\
3 -1 37 37\\
3 0 36 36\\
3 1 37 37\\
3 2 40 40\\
3 3 45 45\\
3 4 52 52\\
3 5 61 61\\
3 6 72 72\\
3 7 85 85\\
3 8 100 100\\
3 9 117 117\\
3 10 136 136\\
4 -10 164 164\\
4 -9 145 145\\
4 -8 128 128\\
4 -7 113 113\\
4 -6 100 100\\
4 -5 89 89\\
4 -4 80 80\\
4 -3 73 73\\
4 -2 68 68\\
4 -1 65 65\\
4 0 64 64\\
4 1 65 65\\
4 2 68 68\\
4 3 73 73\\
4 4 80 80\\
4 5 89 89\\
4 6 100 100\\
4 7 113 113\\
4 8 128 128\\
4 9 145 145\\
4 10 164 164\\
5 -10 200 200\\
5 -9 181 181\\
5 -8 164 164\\
5 -7 149 149\\
5 -6 136 136\\
5 -5 125 125\\
5 -4 116 116\\
5 -3 109 109\\
5 -2 104 104\\
5 -1 101 101\\
5 0 100 100\\
5 1 101 101\\
5 2 104 104\\
5 3 109 109\\
5 4 116 116\\
5 5 125 125\\
5 6 136 136\\
5 7 149 149\\
5 8 164 164\\
5 9 181 181\\
5 10 200 200\\
6 -10 244 244\\
6 -9 225 225\\
6 -8 208 208\\
6 -7 193 193\\
6 -6 180 180\\
6 -5 169 169\\
6 -4 160 160\\
6 -3 153 153\\
6 -2 148 148\\
6 -1 145 145\\
6 0 144 144\\
6 1 145 145\\
6 2 148 148\\
6 3 153 153\\
6 4 160 160\\
6 5 169 169\\
6 6 180 180\\
6 7 193 193\\
6 8 208 208\\
6 9 225 225\\
6 10 244 244\\
7 -10 296 296\\
7 -9 277 277\\
7 -8 260 260\\
7 -7 245 245\\
7 -6 232 232\\
7 -5 221 221\\
7 -4 212 212\\
7 -3 205 205\\
7 -2 200 200\\
7 -1 197 197\\
7 0 196 196\\
7 1 197 197\\
7 2 200 200\\
7 3 205 205\\
7 4 212 212\\
7 5 221 221\\
7 6 232 232\\
7 7 245 245\\
7 8 260 260\\
7 9 277 277\\
7 10 296 296\\
8 -10 356 356\\
8 -9 337 337\\
8 -8 320 320\\
8 -7 305 305\\
8 -6 292 292\\
8 -5 281 281\\
8 -4 272 272\\
8 -3 265 265\\
8 -2 260 260\\
8 -1 257 257\\
8 0 256 256\\
8 1 257 257\\
8 2 260 260\\
8 3 265 265\\
8 4 272 272\\
8 5 281 281\\
8 6 292 292\\
8 7 305 305\\
8 8 320 320\\
8 9 337 337\\
8 10 356 356\\
9 -10 424 424\\
9 -9 405 405\\
9 -8 388 388\\
9 -7 373 373\\
9 -6 360 360\\
9 -5 349 349\\
9 -4 340 340\\
9 -3 333 333\\
9 -2 328 328\\
9 -1 325 325\\
9 0 324 324\\
9 1 325 325\\
9 2 328 328\\
9 3 333 333\\
9 4 340 340\\
9 5 349 349\\
9 6 360 360\\
9 7 373 373\\
9 8 388 388\\
9 9 405 405\\
9 10 424 424\\
10 -10 500 500\\
10 -9 481 481\\
10 -8 464 464\\
10 -7 449 449\\
10 -6 436 436\\
10 -5 425 425\\
10 -4 416 416\\
10 -3 409 409\\
10 -2 404 404\\
10 -1 401 401\\
10 0 400 400\\
10 1 401 401\\
10 2 404 404\\
10 3 409 409\\
10 4 416 416\\
10 5 425 425\\
10 6 436 436\\
10 7 449 449\\
10 8 464 464\\
10 9 481 481\\
10 10 500 500\\
};
\end{axis}
\begin{axis}[%
width=0.737in,
height=1.524in,
at={(4.654in,2.609in)},
scale only axis,
xmin=-10,
xmax=10,
tick align=outside,
ymin=-10,
ymax=10,
zmin=0,
zmax=600,
view={-37.5}{30},
axis background/.style={fill=white},
title style={yshift=1ex, font=\tiny\bfseries},
title={u=5},
axis x line*=bottom,
axis y line*=left,
axis z line*=left,
xmajorgrids,
ymajorgrids,
zmajorgrids
]
\addplot3[%
surf,
shader=flat, z buffer=sort, colormap={mymap}{[1pt] rgb(0pt)=(0.2422,0.1504,0.6603); rgb(1pt)=(0.2444,0.1534,0.6728); rgb(2pt)=(0.2464,0.1569,0.6847); rgb(3pt)=(0.2484,0.1607,0.6961); rgb(4pt)=(0.2503,0.1648,0.7071); rgb(5pt)=(0.2522,0.1689,0.7179); rgb(6pt)=(0.254,0.1732,0.7286); rgb(7pt)=(0.2558,0.1773,0.7393); rgb(8pt)=(0.2576,0.1814,0.7501); rgb(9pt)=(0.2594,0.1854,0.761); rgb(11pt)=(0.2628,0.1932,0.7828); rgb(12pt)=(0.2645,0.1972,0.7937); rgb(13pt)=(0.2661,0.2011,0.8043); rgb(14pt)=(0.2676,0.2052,0.8148); rgb(15pt)=(0.2691,0.2094,0.8249); rgb(16pt)=(0.2704,0.2138,0.8346); rgb(17pt)=(0.2717,0.2184,0.8439); rgb(18pt)=(0.2729,0.2231,0.8528); rgb(19pt)=(0.274,0.228,0.8612); rgb(20pt)=(0.2749,0.233,0.8692); rgb(21pt)=(0.2758,0.2382,0.8767); rgb(22pt)=(0.2766,0.2435,0.884); rgb(23pt)=(0.2774,0.2489,0.8908); rgb(24pt)=(0.2781,0.2543,0.8973); rgb(25pt)=(0.2788,0.2598,0.9035); rgb(26pt)=(0.2794,0.2653,0.9094); rgb(27pt)=(0.2798,0.2708,0.915); rgb(28pt)=(0.2802,0.2764,0.9204); rgb(29pt)=(0.2806,0.2819,0.9255); rgb(30pt)=(0.2809,0.2875,0.9305); rgb(31pt)=(0.2811,0.293,0.9352); rgb(32pt)=(0.2813,0.2985,0.9397); rgb(33pt)=(0.2814,0.304,0.9441); rgb(34pt)=(0.2814,0.3095,0.9483); rgb(35pt)=(0.2813,0.315,0.9524); rgb(36pt)=(0.2811,0.3204,0.9563); rgb(37pt)=(0.2809,0.3259,0.96); rgb(38pt)=(0.2807,0.3313,0.9636); rgb(39pt)=(0.2803,0.3367,0.967); rgb(40pt)=(0.2798,0.3421,0.9702); rgb(41pt)=(0.2791,0.3475,0.9733); rgb(42pt)=(0.2784,0.3529,0.9763); rgb(43pt)=(0.2776,0.3583,0.9791); rgb(44pt)=(0.2766,0.3638,0.9817); rgb(45pt)=(0.2754,0.3693,0.984); rgb(46pt)=(0.2741,0.3748,0.9862); rgb(47pt)=(0.2726,0.3804,0.9881); rgb(48pt)=(0.271,0.386,0.9898); rgb(49pt)=(0.2691,0.3916,0.9912); rgb(50pt)=(0.267,0.3973,0.9924); rgb(51pt)=(0.2647,0.403,0.9935); rgb(52pt)=(0.2621,0.4088,0.9946); rgb(53pt)=(0.2591,0.4145,0.9955); rgb(54pt)=(0.2556,0.4203,0.9965); rgb(55pt)=(0.2517,0.4261,0.9974); rgb(56pt)=(0.2473,0.4319,0.9983); rgb(57pt)=(0.2424,0.4378,0.9991); rgb(58pt)=(0.2369,0.4437,0.9996); rgb(59pt)=(0.2311,0.4497,0.9995); rgb(60pt)=(0.225,0.4559,0.9985); rgb(61pt)=(0.2189,0.462,0.9968); rgb(62pt)=(0.2128,0.4682,0.9948); rgb(63pt)=(0.2066,0.4743,0.9926); rgb(64pt)=(0.2006,0.4803,0.9906); rgb(65pt)=(0.195,0.4861,0.9887); rgb(66pt)=(0.1903,0.4919,0.9867); rgb(67pt)=(0.1869,0.4975,0.9844); rgb(68pt)=(0.1847,0.503,0.9819); rgb(69pt)=(0.1831,0.5084,0.9793); rgb(70pt)=(0.1818,0.5138,0.9766); rgb(71pt)=(0.1806,0.5191,0.9738); rgb(72pt)=(0.1795,0.5244,0.9709); rgb(73pt)=(0.1785,0.5296,0.9677); rgb(74pt)=(0.1778,0.5349,0.9641); rgb(75pt)=(0.1773,0.5401,0.9602); rgb(76pt)=(0.1768,0.5452,0.956); rgb(77pt)=(0.1764,0.5504,0.9516); rgb(78pt)=(0.1755,0.5554,0.9473); rgb(79pt)=(0.174,0.5605,0.9432); rgb(80pt)=(0.1716,0.5655,0.9393); rgb(81pt)=(0.1686,0.5705,0.9357); rgb(82pt)=(0.1649,0.5755,0.9323); rgb(83pt)=(0.161,0.5805,0.9289); rgb(84pt)=(0.1573,0.5854,0.9254); rgb(85pt)=(0.154,0.5902,0.9218); rgb(86pt)=(0.1513,0.595,0.9182); rgb(87pt)=(0.1492,0.5997,0.9147); rgb(88pt)=(0.1475,0.6043,0.9113); rgb(89pt)=(0.1461,0.6089,0.908); rgb(90pt)=(0.1446,0.6135,0.905); rgb(91pt)=(0.1429,0.618,0.9022); rgb(92pt)=(0.1408,0.6226,0.8998); rgb(93pt)=(0.1383,0.6272,0.8975); rgb(94pt)=(0.1354,0.6317,0.8953); rgb(95pt)=(0.1321,0.6363,0.8932); rgb(96pt)=(0.1288,0.6408,0.891); rgb(97pt)=(0.1253,0.6453,0.8887); rgb(98pt)=(0.1219,0.6497,0.8862); rgb(99pt)=(0.1185,0.6541,0.8834); rgb(100pt)=(0.1152,0.6584,0.8804); rgb(101pt)=(0.1119,0.6627,0.877); rgb(102pt)=(0.1085,0.6669,0.8734); rgb(103pt)=(0.1048,0.671,0.8695); rgb(104pt)=(0.1009,0.675,0.8653); rgb(105pt)=(0.0964,0.6789,0.8609); rgb(106pt)=(0.0914,0.6828,0.8562); rgb(107pt)=(0.0855,0.6865,0.8513); rgb(108pt)=(0.0789,0.6902,0.8462); rgb(109pt)=(0.0713,0.6938,0.8409); rgb(110pt)=(0.0628,0.6972,0.8355); rgb(111pt)=(0.0535,0.7006,0.8299); rgb(112pt)=(0.0433,0.7039,0.8242); rgb(113pt)=(0.0328,0.7071,0.8183); rgb(114pt)=(0.0234,0.7103,0.8124); rgb(115pt)=(0.0155,0.7133,0.8064); rgb(116pt)=(0.0091,0.7163,0.8003); rgb(117pt)=(0.0046,0.7192,0.7941); rgb(118pt)=(0.0019,0.722,0.7878); rgb(119pt)=(0.0009,0.7248,0.7815); rgb(120pt)=(0.0018,0.7275,0.7752); rgb(121pt)=(0.0046,0.7301,0.7688); rgb(122pt)=(0.0094,0.7327,0.7623); rgb(123pt)=(0.0162,0.7352,0.7558); rgb(124pt)=(0.0253,0.7376,0.7492); rgb(125pt)=(0.0369,0.74,0.7426); rgb(126pt)=(0.0504,0.7423,0.7359); rgb(127pt)=(0.0638,0.7446,0.7292); rgb(128pt)=(0.077,0.7468,0.7224); rgb(129pt)=(0.0899,0.7489,0.7156); rgb(130pt)=(0.1023,0.751,0.7088); rgb(131pt)=(0.1141,0.7531,0.7019); rgb(132pt)=(0.1252,0.7552,0.695); rgb(133pt)=(0.1354,0.7572,0.6881); rgb(134pt)=(0.1448,0.7593,0.6812); rgb(135pt)=(0.1532,0.7614,0.6741); rgb(136pt)=(0.1609,0.7635,0.6671); rgb(137pt)=(0.1678,0.7656,0.6599); rgb(138pt)=(0.1741,0.7678,0.6527); rgb(139pt)=(0.1799,0.7699,0.6454); rgb(140pt)=(0.1853,0.7721,0.6379); rgb(141pt)=(0.1905,0.7743,0.6303); rgb(142pt)=(0.1954,0.7765,0.6225); rgb(143pt)=(0.2003,0.7787,0.6146); rgb(144pt)=(0.2061,0.7808,0.6065); rgb(145pt)=(0.2118,0.7828,0.5983); rgb(146pt)=(0.2178,0.7849,0.5899); rgb(147pt)=(0.2244,0.7869,0.5813); rgb(148pt)=(0.2318,0.7887,0.5725); rgb(149pt)=(0.2401,0.7905,0.5636); rgb(150pt)=(0.2491,0.7922,0.5546); rgb(151pt)=(0.2589,0.7937,0.5454); rgb(152pt)=(0.2695,0.7951,0.536); rgb(153pt)=(0.2809,0.7964,0.5266); rgb(154pt)=(0.2929,0.7975,0.517); rgb(155pt)=(0.3052,0.7985,0.5074); rgb(156pt)=(0.3176,0.7994,0.4975); rgb(157pt)=(0.3301,0.8002,0.4876); rgb(158pt)=(0.3424,0.8009,0.4774); rgb(159pt)=(0.3548,0.8016,0.4669); rgb(160pt)=(0.3671,0.8021,0.4563); rgb(161pt)=(0.3795,0.8026,0.4454); rgb(162pt)=(0.3921,0.8029,0.4344); rgb(163pt)=(0.405,0.8031,0.4233); rgb(164pt)=(0.4184,0.803,0.4122); rgb(165pt)=(0.4322,0.8028,0.4013); rgb(166pt)=(0.4463,0.8024,0.3904); rgb(167pt)=(0.4608,0.8018,0.3797); rgb(168pt)=(0.4753,0.8011,0.3691); rgb(169pt)=(0.4899,0.8002,0.3586); rgb(170pt)=(0.5044,0.7993,0.348); rgb(171pt)=(0.5187,0.7982,0.3374); rgb(172pt)=(0.5329,0.797,0.3267); rgb(173pt)=(0.547,0.7957,0.3159); rgb(175pt)=(0.5748,0.7929,0.2941); rgb(176pt)=(0.5886,0.7913,0.2833); rgb(177pt)=(0.6024,0.7896,0.2726); rgb(178pt)=(0.6161,0.7878,0.2622); rgb(179pt)=(0.6297,0.7859,0.2521); rgb(180pt)=(0.6433,0.7839,0.2423); rgb(181pt)=(0.6567,0.7818,0.2329); rgb(182pt)=(0.6701,0.7796,0.2239); rgb(183pt)=(0.6833,0.7773,0.2155); rgb(184pt)=(0.6963,0.775,0.2075); rgb(185pt)=(0.7091,0.7727,0.1998); rgb(186pt)=(0.7218,0.7703,0.1924); rgb(187pt)=(0.7344,0.7679,0.1852); rgb(188pt)=(0.7468,0.7654,0.1782); rgb(189pt)=(0.759,0.7629,0.1717); rgb(190pt)=(0.771,0.7604,0.1658); rgb(191pt)=(0.7829,0.7579,0.1608); rgb(192pt)=(0.7945,0.7554,0.157); rgb(193pt)=(0.806,0.7529,0.1546); rgb(194pt)=(0.8172,0.7505,0.1535); rgb(195pt)=(0.8281,0.7481,0.1536); rgb(196pt)=(0.8389,0.7457,0.1546); rgb(197pt)=(0.8495,0.7435,0.1564); rgb(198pt)=(0.86,0.7413,0.1587); rgb(199pt)=(0.8703,0.7392,0.1615); rgb(200pt)=(0.8804,0.7372,0.165); rgb(201pt)=(0.8903,0.7353,0.1695); rgb(202pt)=(0.9,0.7336,0.1749); rgb(203pt)=(0.9093,0.7321,0.1815); rgb(204pt)=(0.9184,0.7308,0.189); rgb(205pt)=(0.9272,0.7298,0.1973); rgb(206pt)=(0.9357,0.729,0.2061); rgb(207pt)=(0.944,0.7285,0.2151); rgb(208pt)=(0.9523,0.7284,0.2237); rgb(209pt)=(0.9606,0.7285,0.2312); rgb(210pt)=(0.9689,0.7292,0.2373); rgb(211pt)=(0.977,0.7304,0.2418); rgb(212pt)=(0.9842,0.733,0.2446); rgb(213pt)=(0.99,0.7365,0.2429); rgb(214pt)=(0.9946,0.7407,0.2394); rgb(215pt)=(0.9966,0.7458,0.2351); rgb(216pt)=(0.9971,0.7513,0.2309); rgb(217pt)=(0.9972,0.7569,0.2267); rgb(218pt)=(0.9971,0.7626,0.2224); rgb(219pt)=(0.9969,0.7683,0.2181); rgb(220pt)=(0.9966,0.774,0.2138); rgb(221pt)=(0.9962,0.7798,0.2095); rgb(222pt)=(0.9957,0.7856,0.2053); rgb(223pt)=(0.9949,0.7915,0.2012); rgb(224pt)=(0.9938,0.7974,0.1974); rgb(225pt)=(0.9923,0.8034,0.1939); rgb(226pt)=(0.9906,0.8095,0.1906); rgb(227pt)=(0.9885,0.8156,0.1875); rgb(228pt)=(0.9861,0.8218,0.1846); rgb(229pt)=(0.9835,0.828,0.1817); rgb(230pt)=(0.9807,0.8342,0.1787); rgb(231pt)=(0.9778,0.8404,0.1757); rgb(232pt)=(0.9748,0.8467,0.1726); rgb(233pt)=(0.972,0.8529,0.1695); rgb(234pt)=(0.9694,0.8591,0.1665); rgb(235pt)=(0.9671,0.8654,0.1636); rgb(236pt)=(0.9651,0.8716,0.1608); rgb(237pt)=(0.9634,0.8778,0.1582); rgb(238pt)=(0.9619,0.884,0.1557); rgb(239pt)=(0.9608,0.8902,0.1532); rgb(240pt)=(0.9601,0.8963,0.1507); rgb(241pt)=(0.9596,0.9023,0.148); rgb(242pt)=(0.9595,0.9084,0.145); rgb(243pt)=(0.9597,0.9143,0.1418); rgb(244pt)=(0.9601,0.9203,0.1382); rgb(245pt)=(0.9608,0.9262,0.1344); rgb(246pt)=(0.9618,0.932,0.1304); rgb(247pt)=(0.9629,0.9379,0.1261); rgb(248pt)=(0.9642,0.9437,0.1216); rgb(249pt)=(0.9657,0.9494,0.1168); rgb(250pt)=(0.9674,0.9552,0.1116); rgb(251pt)=(0.9692,0.9609,0.1061); rgb(252pt)=(0.9711,0.9667,0.1001); rgb(253pt)=(0.973,0.9724,0.0938); rgb(254pt)=(0.9749,0.9782,0.0872); rgb(255pt)=(0.9769,0.9839,0.0805)}, mesh/rows=21]
table[row sep=crcr, point meta=\thisrow{c}] {%
%
x y z c\\
-10 -10 600 600\\
-10 -9 581 581\\
-10 -8 564 564\\
-10 -7 549 549\\
-10 -6 536 536\\
-10 -5 525 525\\
-10 -4 516 516\\
-10 -3 509 509\\
-10 -2 504 504\\
-10 -1 501 501\\
-10 0 500 500\\
-10 1 501 501\\
-10 2 504 504\\
-10 3 509 509\\
-10 4 516 516\\
-10 5 525 525\\
-10 6 536 536\\
-10 7 549 549\\
-10 8 564 564\\
-10 9 581 581\\
-10 10 600 600\\
-9 -10 505 505\\
-9 -9 486 486\\
-9 -8 469 469\\
-9 -7 454 454\\
-9 -6 441 441\\
-9 -5 430 430\\
-9 -4 421 421\\
-9 -3 414 414\\
-9 -2 409 409\\
-9 -1 406 406\\
-9 0 405 405\\
-9 1 406 406\\
-9 2 409 409\\
-9 3 414 414\\
-9 4 421 421\\
-9 5 430 430\\
-9 6 441 441\\
-9 7 454 454\\
-9 8 469 469\\
-9 9 486 486\\
-9 10 505 505\\
-8 -10 420 420\\
-8 -9 401 401\\
-8 -8 384 384\\
-8 -7 369 369\\
-8 -6 356 356\\
-8 -5 345 345\\
-8 -4 336 336\\
-8 -3 329 329\\
-8 -2 324 324\\
-8 -1 321 321\\
-8 0 320 320\\
-8 1 321 321\\
-8 2 324 324\\
-8 3 329 329\\
-8 4 336 336\\
-8 5 345 345\\
-8 6 356 356\\
-8 7 369 369\\
-8 8 384 384\\
-8 9 401 401\\
-8 10 420 420\\
-7 -10 345 345\\
-7 -9 326 326\\
-7 -8 309 309\\
-7 -7 294 294\\
-7 -6 281 281\\
-7 -5 270 270\\
-7 -4 261 261\\
-7 -3 254 254\\
-7 -2 249 249\\
-7 -1 246 246\\
-7 0 245 245\\
-7 1 246 246\\
-7 2 249 249\\
-7 3 254 254\\
-7 4 261 261\\
-7 5 270 270\\
-7 6 281 281\\
-7 7 294 294\\
-7 8 309 309\\
-7 9 326 326\\
-7 10 345 345\\
-6 -10 280 280\\
-6 -9 261 261\\
-6 -8 244 244\\
-6 -7 229 229\\
-6 -6 216 216\\
-6 -5 205 205\\
-6 -4 196 196\\
-6 -3 189 189\\
-6 -2 184 184\\
-6 -1 181 181\\
-6 0 180 180\\
-6 1 181 181\\
-6 2 184 184\\
-6 3 189 189\\
-6 4 196 196\\
-6 5 205 205\\
-6 6 216 216\\
-6 7 229 229\\
-6 8 244 244\\
-6 9 261 261\\
-6 10 280 280\\
-5 -10 225 225\\
-5 -9 206 206\\
-5 -8 189 189\\
-5 -7 174 174\\
-5 -6 161 161\\
-5 -5 150 150\\
-5 -4 141 141\\
-5 -3 134 134\\
-5 -2 129 129\\
-5 -1 126 126\\
-5 0 125 125\\
-5 1 126 126\\
-5 2 129 129\\
-5 3 134 134\\
-5 4 141 141\\
-5 5 150 150\\
-5 6 161 161\\
-5 7 174 174\\
-5 8 189 189\\
-5 9 206 206\\
-5 10 225 225\\
-4 -10 180 180\\
-4 -9 161 161\\
-4 -8 144 144\\
-4 -7 129 129\\
-4 -6 116 116\\
-4 -5 105 105\\
-4 -4 96 96\\
-4 -3 89 89\\
-4 -2 84 84\\
-4 -1 81 81\\
-4 0 80 80\\
-4 1 81 81\\
-4 2 84 84\\
-4 3 89 89\\
-4 4 96 96\\
-4 5 105 105\\
-4 6 116 116\\
-4 7 129 129\\
-4 8 144 144\\
-4 9 161 161\\
-4 10 180 180\\
-3 -10 145 145\\
-3 -9 126 126\\
-3 -8 109 109\\
-3 -7 94 94\\
-3 -6 81 81\\
-3 -5 70 70\\
-3 -4 61 61\\
-3 -3 54 54\\
-3 -2 49 49\\
-3 -1 46 46\\
-3 0 45 45\\
-3 1 46 46\\
-3 2 49 49\\
-3 3 54 54\\
-3 4 61 61\\
-3 5 70 70\\
-3 6 81 81\\
-3 7 94 94\\
-3 8 109 109\\
-3 9 126 126\\
-3 10 145 145\\
-2 -10 120 120\\
-2 -9 101 101\\
-2 -8 84 84\\
-2 -7 69 69\\
-2 -6 56 56\\
-2 -5 45 45\\
-2 -4 36 36\\
-2 -3 29 29\\
-2 -2 24 24\\
-2 -1 21 21\\
-2 0 20 20\\
-2 1 21 21\\
-2 2 24 24\\
-2 3 29 29\\
-2 4 36 36\\
-2 5 45 45\\
-2 6 56 56\\
-2 7 69 69\\
-2 8 84 84\\
-2 9 101 101\\
-2 10 120 120\\
-1 -10 105 105\\
-1 -9 86 86\\
-1 -8 69 69\\
-1 -7 54 54\\
-1 -6 41 41\\
-1 -5 30 30\\
-1 -4 21 21\\
-1 -3 14 14\\
-1 -2 9 9\\
-1 -1 6 6\\
-1 0 5 5\\
-1 1 6 6\\
-1 2 9 9\\
-1 3 14 14\\
-1 4 21 21\\
-1 5 30 30\\
-1 6 41 41\\
-1 7 54 54\\
-1 8 69 69\\
-1 9 86 86\\
-1 10 105 105\\
0 -10 100 100\\
0 -9 81 81\\
0 -8 64 64\\
0 -7 49 49\\
0 -6 36 36\\
0 -5 25 25\\
0 -4 16 16\\
0 -3 9 9\\
0 -2 4 4\\
0 -1 1 1\\
0 0 0 0\\
0 1 1 1\\
0 2 4 4\\
0 3 9 9\\
0 4 16 16\\
0 5 25 25\\
0 6 36 36\\
0 7 49 49\\
0 8 64 64\\
0 9 81 81\\
0 10 100 100\\
1 -10 105 105\\
1 -9 86 86\\
1 -8 69 69\\
1 -7 54 54\\
1 -6 41 41\\
1 -5 30 30\\
1 -4 21 21\\
1 -3 14 14\\
1 -2 9 9\\
1 -1 6 6\\
1 0 5 5\\
1 1 6 6\\
1 2 9 9\\
1 3 14 14\\
1 4 21 21\\
1 5 30 30\\
1 6 41 41\\
1 7 54 54\\
1 8 69 69\\
1 9 86 86\\
1 10 105 105\\
2 -10 120 120\\
2 -9 101 101\\
2 -8 84 84\\
2 -7 69 69\\
2 -6 56 56\\
2 -5 45 45\\
2 -4 36 36\\
2 -3 29 29\\
2 -2 24 24\\
2 -1 21 21\\
2 0 20 20\\
2 1 21 21\\
2 2 24 24\\
2 3 29 29\\
2 4 36 36\\
2 5 45 45\\
2 6 56 56\\
2 7 69 69\\
2 8 84 84\\
2 9 101 101\\
2 10 120 120\\
3 -10 145 145\\
3 -9 126 126\\
3 -8 109 109\\
3 -7 94 94\\
3 -6 81 81\\
3 -5 70 70\\
3 -4 61 61\\
3 -3 54 54\\
3 -2 49 49\\
3 -1 46 46\\
3 0 45 45\\
3 1 46 46\\
3 2 49 49\\
3 3 54 54\\
3 4 61 61\\
3 5 70 70\\
3 6 81 81\\
3 7 94 94\\
3 8 109 109\\
3 9 126 126\\
3 10 145 145\\
4 -10 180 180\\
4 -9 161 161\\
4 -8 144 144\\
4 -7 129 129\\
4 -6 116 116\\
4 -5 105 105\\
4 -4 96 96\\
4 -3 89 89\\
4 -2 84 84\\
4 -1 81 81\\
4 0 80 80\\
4 1 81 81\\
4 2 84 84\\
4 3 89 89\\
4 4 96 96\\
4 5 105 105\\
4 6 116 116\\
4 7 129 129\\
4 8 144 144\\
4 9 161 161\\
4 10 180 180\\
5 -10 225 225\\
5 -9 206 206\\
5 -8 189 189\\
5 -7 174 174\\
5 -6 161 161\\
5 -5 150 150\\
5 -4 141 141\\
5 -3 134 134\\
5 -2 129 129\\
5 -1 126 126\\
5 0 125 125\\
5 1 126 126\\
5 2 129 129\\
5 3 134 134\\
5 4 141 141\\
5 5 150 150\\
5 6 161 161\\
5 7 174 174\\
5 8 189 189\\
5 9 206 206\\
5 10 225 225\\
6 -10 280 280\\
6 -9 261 261\\
6 -8 244 244\\
6 -7 229 229\\
6 -6 216 216\\
6 -5 205 205\\
6 -4 196 196\\
6 -3 189 189\\
6 -2 184 184\\
6 -1 181 181\\
6 0 180 180\\
6 1 181 181\\
6 2 184 184\\
6 3 189 189\\
6 4 196 196\\
6 5 205 205\\
6 6 216 216\\
6 7 229 229\\
6 8 244 244\\
6 9 261 261\\
6 10 280 280\\
7 -10 345 345\\
7 -9 326 326\\
7 -8 309 309\\
7 -7 294 294\\
7 -6 281 281\\
7 -5 270 270\\
7 -4 261 261\\
7 -3 254 254\\
7 -2 249 249\\
7 -1 246 246\\
7 0 245 245\\
7 1 246 246\\
7 2 249 249\\
7 3 254 254\\
7 4 261 261\\
7 5 270 270\\
7 6 281 281\\
7 7 294 294\\
7 8 309 309\\
7 9 326 326\\
7 10 345 345\\
8 -10 420 420\\
8 -9 401 401\\
8 -8 384 384\\
8 -7 369 369\\
8 -6 356 356\\
8 -5 345 345\\
8 -4 336 336\\
8 -3 329 329\\
8 -2 324 324\\
8 -1 321 321\\
8 0 320 320\\
8 1 321 321\\
8 2 324 324\\
8 3 329 329\\
8 4 336 336\\
8 5 345 345\\
8 6 356 356\\
8 7 369 369\\
8 8 384 384\\
8 9 401 401\\
8 10 420 420\\
9 -10 505 505\\
9 -9 486 486\\
9 -8 469 469\\
9 -7 454 454\\
9 -6 441 441\\
9 -5 430 430\\
9 -4 421 421\\
9 -3 414 414\\
9 -2 409 409\\
9 -1 406 406\\
9 0 405 405\\
9 1 406 406\\
9 2 409 409\\
9 3 414 414\\
9 4 421 421\\
9 5 430 430\\
9 6 441 441\\
9 7 454 454\\
9 8 469 469\\
9 9 486 486\\
9 10 505 505\\
10 -10 600 600\\
10 -9 581 581\\
10 -8 564 564\\
10 -7 549 549\\
10 -6 536 536\\
10 -5 525 525\\
10 -4 516 516\\
10 -3 509 509\\
10 -2 504 504\\
10 -1 501 501\\
10 0 500 500\\
10 1 501 501\\
10 2 504 504\\
10 3 509 509\\
10 4 516 516\\
10 5 525 525\\
10 6 536 536\\
10 7 549 549\\
10 8 564 564\\
10 9 581 581\\
10 10 600 600\\
};
\end{axis}
\begin{axis}[%
width=0.737in,
height=1.524in,
at={(0.774in,0.491in)},
scale only axis,
xmin=-10,
xmax=10,
tick align=outside,
ymin=-10,
ymax=10,
zmin=0,
zmax=700,
view={-37.5}{30},
axis background/.style={fill=white},
title style={yshift=1ex, font=\tiny\bfseries},
title={u=6},
axis x line*=bottom,
axis y line*=left,
axis z line*=left,
xmajorgrids,
ymajorgrids,
zmajorgrids
]
\addplot3[%
surf,
shader=flat, z buffer=sort, colormap={mymap}{[1pt] rgb(0pt)=(0.2422,0.1504,0.6603); rgb(1pt)=(0.2444,0.1534,0.6728); rgb(2pt)=(0.2464,0.1569,0.6847); rgb(3pt)=(0.2484,0.1607,0.6961); rgb(4pt)=(0.2503,0.1648,0.7071); rgb(5pt)=(0.2522,0.1689,0.7179); rgb(6pt)=(0.254,0.1732,0.7286); rgb(7pt)=(0.2558,0.1773,0.7393); rgb(8pt)=(0.2576,0.1814,0.7501); rgb(9pt)=(0.2594,0.1854,0.761); rgb(11pt)=(0.2628,0.1932,0.7828); rgb(12pt)=(0.2645,0.1972,0.7937); rgb(13pt)=(0.2661,0.2011,0.8043); rgb(14pt)=(0.2676,0.2052,0.8148); rgb(15pt)=(0.2691,0.2094,0.8249); rgb(16pt)=(0.2704,0.2138,0.8346); rgb(17pt)=(0.2717,0.2184,0.8439); rgb(18pt)=(0.2729,0.2231,0.8528); rgb(19pt)=(0.274,0.228,0.8612); rgb(20pt)=(0.2749,0.233,0.8692); rgb(21pt)=(0.2758,0.2382,0.8767); rgb(22pt)=(0.2766,0.2435,0.884); rgb(23pt)=(0.2774,0.2489,0.8908); rgb(24pt)=(0.2781,0.2543,0.8973); rgb(25pt)=(0.2788,0.2598,0.9035); rgb(26pt)=(0.2794,0.2653,0.9094); rgb(27pt)=(0.2798,0.2708,0.915); rgb(28pt)=(0.2802,0.2764,0.9204); rgb(29pt)=(0.2806,0.2819,0.9255); rgb(30pt)=(0.2809,0.2875,0.9305); rgb(31pt)=(0.2811,0.293,0.9352); rgb(32pt)=(0.2813,0.2985,0.9397); rgb(33pt)=(0.2814,0.304,0.9441); rgb(34pt)=(0.2814,0.3095,0.9483); rgb(35pt)=(0.2813,0.315,0.9524); rgb(36pt)=(0.2811,0.3204,0.9563); rgb(37pt)=(0.2809,0.3259,0.96); rgb(38pt)=(0.2807,0.3313,0.9636); rgb(39pt)=(0.2803,0.3367,0.967); rgb(40pt)=(0.2798,0.3421,0.9702); rgb(41pt)=(0.2791,0.3475,0.9733); rgb(42pt)=(0.2784,0.3529,0.9763); rgb(43pt)=(0.2776,0.3583,0.9791); rgb(44pt)=(0.2766,0.3638,0.9817); rgb(45pt)=(0.2754,0.3693,0.984); rgb(46pt)=(0.2741,0.3748,0.9862); rgb(47pt)=(0.2726,0.3804,0.9881); rgb(48pt)=(0.271,0.386,0.9898); rgb(49pt)=(0.2691,0.3916,0.9912); rgb(50pt)=(0.267,0.3973,0.9924); rgb(51pt)=(0.2647,0.403,0.9935); rgb(52pt)=(0.2621,0.4088,0.9946); rgb(53pt)=(0.2591,0.4145,0.9955); rgb(54pt)=(0.2556,0.4203,0.9965); rgb(55pt)=(0.2517,0.4261,0.9974); rgb(56pt)=(0.2473,0.4319,0.9983); rgb(57pt)=(0.2424,0.4378,0.9991); rgb(58pt)=(0.2369,0.4437,0.9996); rgb(59pt)=(0.2311,0.4497,0.9995); rgb(60pt)=(0.225,0.4559,0.9985); rgb(61pt)=(0.2189,0.462,0.9968); rgb(62pt)=(0.2128,0.4682,0.9948); rgb(63pt)=(0.2066,0.4743,0.9926); rgb(64pt)=(0.2006,0.4803,0.9906); rgb(65pt)=(0.195,0.4861,0.9887); rgb(66pt)=(0.1903,0.4919,0.9867); rgb(67pt)=(0.1869,0.4975,0.9844); rgb(68pt)=(0.1847,0.503,0.9819); rgb(69pt)=(0.1831,0.5084,0.9793); rgb(70pt)=(0.1818,0.5138,0.9766); rgb(71pt)=(0.1806,0.5191,0.9738); rgb(72pt)=(0.1795,0.5244,0.9709); rgb(73pt)=(0.1785,0.5296,0.9677); rgb(74pt)=(0.1778,0.5349,0.9641); rgb(75pt)=(0.1773,0.5401,0.9602); rgb(76pt)=(0.1768,0.5452,0.956); rgb(77pt)=(0.1764,0.5504,0.9516); rgb(78pt)=(0.1755,0.5554,0.9473); rgb(79pt)=(0.174,0.5605,0.9432); rgb(80pt)=(0.1716,0.5655,0.9393); rgb(81pt)=(0.1686,0.5705,0.9357); rgb(82pt)=(0.1649,0.5755,0.9323); rgb(83pt)=(0.161,0.5805,0.9289); rgb(84pt)=(0.1573,0.5854,0.9254); rgb(85pt)=(0.154,0.5902,0.9218); rgb(86pt)=(0.1513,0.595,0.9182); rgb(87pt)=(0.1492,0.5997,0.9147); rgb(88pt)=(0.1475,0.6043,0.9113); rgb(89pt)=(0.1461,0.6089,0.908); rgb(90pt)=(0.1446,0.6135,0.905); rgb(91pt)=(0.1429,0.618,0.9022); rgb(92pt)=(0.1408,0.6226,0.8998); rgb(93pt)=(0.1383,0.6272,0.8975); rgb(94pt)=(0.1354,0.6317,0.8953); rgb(95pt)=(0.1321,0.6363,0.8932); rgb(96pt)=(0.1288,0.6408,0.891); rgb(97pt)=(0.1253,0.6453,0.8887); rgb(98pt)=(0.1219,0.6497,0.8862); rgb(99pt)=(0.1185,0.6541,0.8834); rgb(100pt)=(0.1152,0.6584,0.8804); rgb(101pt)=(0.1119,0.6627,0.877); rgb(102pt)=(0.1085,0.6669,0.8734); rgb(103pt)=(0.1048,0.671,0.8695); rgb(104pt)=(0.1009,0.675,0.8653); rgb(105pt)=(0.0964,0.6789,0.8609); rgb(106pt)=(0.0914,0.6828,0.8562); rgb(107pt)=(0.0855,0.6865,0.8513); rgb(108pt)=(0.0789,0.6902,0.8462); rgb(109pt)=(0.0713,0.6938,0.8409); rgb(110pt)=(0.0628,0.6972,0.8355); rgb(111pt)=(0.0535,0.7006,0.8299); rgb(112pt)=(0.0433,0.7039,0.8242); rgb(113pt)=(0.0328,0.7071,0.8183); rgb(114pt)=(0.0234,0.7103,0.8124); rgb(115pt)=(0.0155,0.7133,0.8064); rgb(116pt)=(0.0091,0.7163,0.8003); rgb(117pt)=(0.0046,0.7192,0.7941); rgb(118pt)=(0.0019,0.722,0.7878); rgb(119pt)=(0.0009,0.7248,0.7815); rgb(120pt)=(0.0018,0.7275,0.7752); rgb(121pt)=(0.0046,0.7301,0.7688); rgb(122pt)=(0.0094,0.7327,0.7623); rgb(123pt)=(0.0162,0.7352,0.7558); rgb(124pt)=(0.0253,0.7376,0.7492); rgb(125pt)=(0.0369,0.74,0.7426); rgb(126pt)=(0.0504,0.7423,0.7359); rgb(127pt)=(0.0638,0.7446,0.7292); rgb(128pt)=(0.077,0.7468,0.7224); rgb(129pt)=(0.0899,0.7489,0.7156); rgb(130pt)=(0.1023,0.751,0.7088); rgb(131pt)=(0.1141,0.7531,0.7019); rgb(132pt)=(0.1252,0.7552,0.695); rgb(133pt)=(0.1354,0.7572,0.6881); rgb(134pt)=(0.1448,0.7593,0.6812); rgb(135pt)=(0.1532,0.7614,0.6741); rgb(136pt)=(0.1609,0.7635,0.6671); rgb(137pt)=(0.1678,0.7656,0.6599); rgb(138pt)=(0.1741,0.7678,0.6527); rgb(139pt)=(0.1799,0.7699,0.6454); rgb(140pt)=(0.1853,0.7721,0.6379); rgb(141pt)=(0.1905,0.7743,0.6303); rgb(142pt)=(0.1954,0.7765,0.6225); rgb(143pt)=(0.2003,0.7787,0.6146); rgb(144pt)=(0.2061,0.7808,0.6065); rgb(145pt)=(0.2118,0.7828,0.5983); rgb(146pt)=(0.2178,0.7849,0.5899); rgb(147pt)=(0.2244,0.7869,0.5813); rgb(148pt)=(0.2318,0.7887,0.5725); rgb(149pt)=(0.2401,0.7905,0.5636); rgb(150pt)=(0.2491,0.7922,0.5546); rgb(151pt)=(0.2589,0.7937,0.5454); rgb(152pt)=(0.2695,0.7951,0.536); rgb(153pt)=(0.2809,0.7964,0.5266); rgb(154pt)=(0.2929,0.7975,0.517); rgb(155pt)=(0.3052,0.7985,0.5074); rgb(156pt)=(0.3176,0.7994,0.4975); rgb(157pt)=(0.3301,0.8002,0.4876); rgb(158pt)=(0.3424,0.8009,0.4774); rgb(159pt)=(0.3548,0.8016,0.4669); rgb(160pt)=(0.3671,0.8021,0.4563); rgb(161pt)=(0.3795,0.8026,0.4454); rgb(162pt)=(0.3921,0.8029,0.4344); rgb(163pt)=(0.405,0.8031,0.4233); rgb(164pt)=(0.4184,0.803,0.4122); rgb(165pt)=(0.4322,0.8028,0.4013); rgb(166pt)=(0.4463,0.8024,0.3904); rgb(167pt)=(0.4608,0.8018,0.3797); rgb(168pt)=(0.4753,0.8011,0.3691); rgb(169pt)=(0.4899,0.8002,0.3586); rgb(170pt)=(0.5044,0.7993,0.348); rgb(171pt)=(0.5187,0.7982,0.3374); rgb(172pt)=(0.5329,0.797,0.3267); rgb(173pt)=(0.547,0.7957,0.3159); rgb(175pt)=(0.5748,0.7929,0.2941); rgb(176pt)=(0.5886,0.7913,0.2833); rgb(177pt)=(0.6024,0.7896,0.2726); rgb(178pt)=(0.6161,0.7878,0.2622); rgb(179pt)=(0.6297,0.7859,0.2521); rgb(180pt)=(0.6433,0.7839,0.2423); rgb(181pt)=(0.6567,0.7818,0.2329); rgb(182pt)=(0.6701,0.7796,0.2239); rgb(183pt)=(0.6833,0.7773,0.2155); rgb(184pt)=(0.6963,0.775,0.2075); rgb(185pt)=(0.7091,0.7727,0.1998); rgb(186pt)=(0.7218,0.7703,0.1924); rgb(187pt)=(0.7344,0.7679,0.1852); rgb(188pt)=(0.7468,0.7654,0.1782); rgb(189pt)=(0.759,0.7629,0.1717); rgb(190pt)=(0.771,0.7604,0.1658); rgb(191pt)=(0.7829,0.7579,0.1608); rgb(192pt)=(0.7945,0.7554,0.157); rgb(193pt)=(0.806,0.7529,0.1546); rgb(194pt)=(0.8172,0.7505,0.1535); rgb(195pt)=(0.8281,0.7481,0.1536); rgb(196pt)=(0.8389,0.7457,0.1546); rgb(197pt)=(0.8495,0.7435,0.1564); rgb(198pt)=(0.86,0.7413,0.1587); rgb(199pt)=(0.8703,0.7392,0.1615); rgb(200pt)=(0.8804,0.7372,0.165); rgb(201pt)=(0.8903,0.7353,0.1695); rgb(202pt)=(0.9,0.7336,0.1749); rgb(203pt)=(0.9093,0.7321,0.1815); rgb(204pt)=(0.9184,0.7308,0.189); rgb(205pt)=(0.9272,0.7298,0.1973); rgb(206pt)=(0.9357,0.729,0.2061); rgb(207pt)=(0.944,0.7285,0.2151); rgb(208pt)=(0.9523,0.7284,0.2237); rgb(209pt)=(0.9606,0.7285,0.2312); rgb(210pt)=(0.9689,0.7292,0.2373); rgb(211pt)=(0.977,0.7304,0.2418); rgb(212pt)=(0.9842,0.733,0.2446); rgb(213pt)=(0.99,0.7365,0.2429); rgb(214pt)=(0.9946,0.7407,0.2394); rgb(215pt)=(0.9966,0.7458,0.2351); rgb(216pt)=(0.9971,0.7513,0.2309); rgb(217pt)=(0.9972,0.7569,0.2267); rgb(218pt)=(0.9971,0.7626,0.2224); rgb(219pt)=(0.9969,0.7683,0.2181); rgb(220pt)=(0.9966,0.774,0.2138); rgb(221pt)=(0.9962,0.7798,0.2095); rgb(222pt)=(0.9957,0.7856,0.2053); rgb(223pt)=(0.9949,0.7915,0.2012); rgb(224pt)=(0.9938,0.7974,0.1974); rgb(225pt)=(0.9923,0.8034,0.1939); rgb(226pt)=(0.9906,0.8095,0.1906); rgb(227pt)=(0.9885,0.8156,0.1875); rgb(228pt)=(0.9861,0.8218,0.1846); rgb(229pt)=(0.9835,0.828,0.1817); rgb(230pt)=(0.9807,0.8342,0.1787); rgb(231pt)=(0.9778,0.8404,0.1757); rgb(232pt)=(0.9748,0.8467,0.1726); rgb(233pt)=(0.972,0.8529,0.1695); rgb(234pt)=(0.9694,0.8591,0.1665); rgb(235pt)=(0.9671,0.8654,0.1636); rgb(236pt)=(0.9651,0.8716,0.1608); rgb(237pt)=(0.9634,0.8778,0.1582); rgb(238pt)=(0.9619,0.884,0.1557); rgb(239pt)=(0.9608,0.8902,0.1532); rgb(240pt)=(0.9601,0.8963,0.1507); rgb(241pt)=(0.9596,0.9023,0.148); rgb(242pt)=(0.9595,0.9084,0.145); rgb(243pt)=(0.9597,0.9143,0.1418); rgb(244pt)=(0.9601,0.9203,0.1382); rgb(245pt)=(0.9608,0.9262,0.1344); rgb(246pt)=(0.9618,0.932,0.1304); rgb(247pt)=(0.9629,0.9379,0.1261); rgb(248pt)=(0.9642,0.9437,0.1216); rgb(249pt)=(0.9657,0.9494,0.1168); rgb(250pt)=(0.9674,0.9552,0.1116); rgb(251pt)=(0.9692,0.9609,0.1061); rgb(252pt)=(0.9711,0.9667,0.1001); rgb(253pt)=(0.973,0.9724,0.0938); rgb(254pt)=(0.9749,0.9782,0.0872); rgb(255pt)=(0.9769,0.9839,0.0805)}, mesh/rows=21]
table[row sep=crcr, point meta=\thisrow{c}] {%
%
x y z c\\
-10 -10 700 700\\
-10 -9 681 681\\
-10 -8 664 664\\
-10 -7 649 649\\
-10 -6 636 636\\
-10 -5 625 625\\
-10 -4 616 616\\
-10 -3 609 609\\
-10 -2 604 604\\
-10 -1 601 601\\
-10 0 600 600\\
-10 1 601 601\\
-10 2 604 604\\
-10 3 609 609\\
-10 4 616 616\\
-10 5 625 625\\
-10 6 636 636\\
-10 7 649 649\\
-10 8 664 664\\
-10 9 681 681\\
-10 10 700 700\\
-9 -10 586 586\\
-9 -9 567 567\\
-9 -8 550 550\\
-9 -7 535 535\\
-9 -6 522 522\\
-9 -5 511 511\\
-9 -4 502 502\\
-9 -3 495 495\\
-9 -2 490 490\\
-9 -1 487 487\\
-9 0 486 486\\
-9 1 487 487\\
-9 2 490 490\\
-9 3 495 495\\
-9 4 502 502\\
-9 5 511 511\\
-9 6 522 522\\
-9 7 535 535\\
-9 8 550 550\\
-9 9 567 567\\
-9 10 586 586\\
-8 -10 484 484\\
-8 -9 465 465\\
-8 -8 448 448\\
-8 -7 433 433\\
-8 -6 420 420\\
-8 -5 409 409\\
-8 -4 400 400\\
-8 -3 393 393\\
-8 -2 388 388\\
-8 -1 385 385\\
-8 0 384 384\\
-8 1 385 385\\
-8 2 388 388\\
-8 3 393 393\\
-8 4 400 400\\
-8 5 409 409\\
-8 6 420 420\\
-8 7 433 433\\
-8 8 448 448\\
-8 9 465 465\\
-8 10 484 484\\
-7 -10 394 394\\
-7 -9 375 375\\
-7 -8 358 358\\
-7 -7 343 343\\
-7 -6 330 330\\
-7 -5 319 319\\
-7 -4 310 310\\
-7 -3 303 303\\
-7 -2 298 298\\
-7 -1 295 295\\
-7 0 294 294\\
-7 1 295 295\\
-7 2 298 298\\
-7 3 303 303\\
-7 4 310 310\\
-7 5 319 319\\
-7 6 330 330\\
-7 7 343 343\\
-7 8 358 358\\
-7 9 375 375\\
-7 10 394 394\\
-6 -10 316 316\\
-6 -9 297 297\\
-6 -8 280 280\\
-6 -7 265 265\\
-6 -6 252 252\\
-6 -5 241 241\\
-6 -4 232 232\\
-6 -3 225 225\\
-6 -2 220 220\\
-6 -1 217 217\\
-6 0 216 216\\
-6 1 217 217\\
-6 2 220 220\\
-6 3 225 225\\
-6 4 232 232\\
-6 5 241 241\\
-6 6 252 252\\
-6 7 265 265\\
-6 8 280 280\\
-6 9 297 297\\
-6 10 316 316\\
-5 -10 250 250\\
-5 -9 231 231\\
-5 -8 214 214\\
-5 -7 199 199\\
-5 -6 186 186\\
-5 -5 175 175\\
-5 -4 166 166\\
-5 -3 159 159\\
-5 -2 154 154\\
-5 -1 151 151\\
-5 0 150 150\\
-5 1 151 151\\
-5 2 154 154\\
-5 3 159 159\\
-5 4 166 166\\
-5 5 175 175\\
-5 6 186 186\\
-5 7 199 199\\
-5 8 214 214\\
-5 9 231 231\\
-5 10 250 250\\
-4 -10 196 196\\
-4 -9 177 177\\
-4 -8 160 160\\
-4 -7 145 145\\
-4 -6 132 132\\
-4 -5 121 121\\
-4 -4 112 112\\
-4 -3 105 105\\
-4 -2 100 100\\
-4 -1 97 97\\
-4 0 96 96\\
-4 1 97 97\\
-4 2 100 100\\
-4 3 105 105\\
-4 4 112 112\\
-4 5 121 121\\
-4 6 132 132\\
-4 7 145 145\\
-4 8 160 160\\
-4 9 177 177\\
-4 10 196 196\\
-3 -10 154 154\\
-3 -9 135 135\\
-3 -8 118 118\\
-3 -7 103 103\\
-3 -6 90 90\\
-3 -5 79 79\\
-3 -4 70 70\\
-3 -3 63 63\\
-3 -2 58 58\\
-3 -1 55 55\\
-3 0 54 54\\
-3 1 55 55\\
-3 2 58 58\\
-3 3 63 63\\
-3 4 70 70\\
-3 5 79 79\\
-3 6 90 90\\
-3 7 103 103\\
-3 8 118 118\\
-3 9 135 135\\
-3 10 154 154\\
-2 -10 124 124\\
-2 -9 105 105\\
-2 -8 88 88\\
-2 -7 73 73\\
-2 -6 60 60\\
-2 -5 49 49\\
-2 -4 40 40\\
-2 -3 33 33\\
-2 -2 28 28\\
-2 -1 25 25\\
-2 0 24 24\\
-2 1 25 25\\
-2 2 28 28\\
-2 3 33 33\\
-2 4 40 40\\
-2 5 49 49\\
-2 6 60 60\\
-2 7 73 73\\
-2 8 88 88\\
-2 9 105 105\\
-2 10 124 124\\
-1 -10 106 106\\
-1 -9 87 87\\
-1 -8 70 70\\
-1 -7 55 55\\
-1 -6 42 42\\
-1 -5 31 31\\
-1 -4 22 22\\
-1 -3 15 15\\
-1 -2 10 10\\
-1 -1 7 7\\
-1 0 6 6\\
-1 1 7 7\\
-1 2 10 10\\
-1 3 15 15\\
-1 4 22 22\\
-1 5 31 31\\
-1 6 42 42\\
-1 7 55 55\\
-1 8 70 70\\
-1 9 87 87\\
-1 10 106 106\\
0 -10 100 100\\
0 -9 81 81\\
0 -8 64 64\\
0 -7 49 49\\
0 -6 36 36\\
0 -5 25 25\\
0 -4 16 16\\
0 -3 9 9\\
0 -2 4 4\\
0 -1 1 1\\
0 0 0 0\\
0 1 1 1\\
0 2 4 4\\
0 3 9 9\\
0 4 16 16\\
0 5 25 25\\
0 6 36 36\\
0 7 49 49\\
0 8 64 64\\
0 9 81 81\\
0 10 100 100\\
1 -10 106 106\\
1 -9 87 87\\
1 -8 70 70\\
1 -7 55 55\\
1 -6 42 42\\
1 -5 31 31\\
1 -4 22 22\\
1 -3 15 15\\
1 -2 10 10\\
1 -1 7 7\\
1 0 6 6\\
1 1 7 7\\
1 2 10 10\\
1 3 15 15\\
1 4 22 22\\
1 5 31 31\\
1 6 42 42\\
1 7 55 55\\
1 8 70 70\\
1 9 87 87\\
1 10 106 106\\
2 -10 124 124\\
2 -9 105 105\\
2 -8 88 88\\
2 -7 73 73\\
2 -6 60 60\\
2 -5 49 49\\
2 -4 40 40\\
2 -3 33 33\\
2 -2 28 28\\
2 -1 25 25\\
2 0 24 24\\
2 1 25 25\\
2 2 28 28\\
2 3 33 33\\
2 4 40 40\\
2 5 49 49\\
2 6 60 60\\
2 7 73 73\\
2 8 88 88\\
2 9 105 105\\
2 10 124 124\\
3 -10 154 154\\
3 -9 135 135\\
3 -8 118 118\\
3 -7 103 103\\
3 -6 90 90\\
3 -5 79 79\\
3 -4 70 70\\
3 -3 63 63\\
3 -2 58 58\\
3 -1 55 55\\
3 0 54 54\\
3 1 55 55\\
3 2 58 58\\
3 3 63 63\\
3 4 70 70\\
3 5 79 79\\
3 6 90 90\\
3 7 103 103\\
3 8 118 118\\
3 9 135 135\\
3 10 154 154\\
4 -10 196 196\\
4 -9 177 177\\
4 -8 160 160\\
4 -7 145 145\\
4 -6 132 132\\
4 -5 121 121\\
4 -4 112 112\\
4 -3 105 105\\
4 -2 100 100\\
4 -1 97 97\\
4 0 96 96\\
4 1 97 97\\
4 2 100 100\\
4 3 105 105\\
4 4 112 112\\
4 5 121 121\\
4 6 132 132\\
4 7 145 145\\
4 8 160 160\\
4 9 177 177\\
4 10 196 196\\
5 -10 250 250\\
5 -9 231 231\\
5 -8 214 214\\
5 -7 199 199\\
5 -6 186 186\\
5 -5 175 175\\
5 -4 166 166\\
5 -3 159 159\\
5 -2 154 154\\
5 -1 151 151\\
5 0 150 150\\
5 1 151 151\\
5 2 154 154\\
5 3 159 159\\
5 4 166 166\\
5 5 175 175\\
5 6 186 186\\
5 7 199 199\\
5 8 214 214\\
5 9 231 231\\
5 10 250 250\\
6 -10 316 316\\
6 -9 297 297\\
6 -8 280 280\\
6 -7 265 265\\
6 -6 252 252\\
6 -5 241 241\\
6 -4 232 232\\
6 -3 225 225\\
6 -2 220 220\\
6 -1 217 217\\
6 0 216 216\\
6 1 217 217\\
6 2 220 220\\
6 3 225 225\\
6 4 232 232\\
6 5 241 241\\
6 6 252 252\\
6 7 265 265\\
6 8 280 280\\
6 9 297 297\\
6 10 316 316\\
7 -10 394 394\\
7 -9 375 375\\
7 -8 358 358\\
7 -7 343 343\\
7 -6 330 330\\
7 -5 319 319\\
7 -4 310 310\\
7 -3 303 303\\
7 -2 298 298\\
7 -1 295 295\\
7 0 294 294\\
7 1 295 295\\
7 2 298 298\\
7 3 303 303\\
7 4 310 310\\
7 5 319 319\\
7 6 330 330\\
7 7 343 343\\
7 8 358 358\\
7 9 375 375\\
7 10 394 394\\
8 -10 484 484\\
8 -9 465 465\\
8 -8 448 448\\
8 -7 433 433\\
8 -6 420 420\\
8 -5 409 409\\
8 -4 400 400\\
8 -3 393 393\\
8 -2 388 388\\
8 -1 385 385\\
8 0 384 384\\
8 1 385 385\\
8 2 388 388\\
8 3 393 393\\
8 4 400 400\\
8 5 409 409\\
8 6 420 420\\
8 7 433 433\\
8 8 448 448\\
8 9 465 465\\
8 10 484 484\\
9 -10 586 586\\
9 -9 567 567\\
9 -8 550 550\\
9 -7 535 535\\
9 -6 522 522\\
9 -5 511 511\\
9 -4 502 502\\
9 -3 495 495\\
9 -2 490 490\\
9 -1 487 487\\
9 0 486 486\\
9 1 487 487\\
9 2 490 490\\
9 3 495 495\\
9 4 502 502\\
9 5 511 511\\
9 6 522 522\\
9 7 535 535\\
9 8 550 550\\
9 9 567 567\\
9 10 586 586\\
10 -10 700 700\\
10 -9 681 681\\
10 -8 664 664\\
10 -7 649 649\\
10 -6 636 636\\
10 -5 625 625\\
10 -4 616 616\\
10 -3 609 609\\
10 -2 604 604\\
10 -1 601 601\\
10 0 600 600\\
10 1 601 601\\
10 2 604 604\\
10 3 609 609\\
10 4 616 616\\
10 5 625 625\\
10 6 636 636\\
10 7 649 649\\
10 8 664 664\\
10 9 681 681\\
10 10 700 700\\
};
\end{axis}
\begin{axis}[%
width=0.737in,
height=1.524in,
at={(1.744in,0.491in)},
scale only axis,
xmin=-10,
xmax=10,
tick align=outside,
ymin=-10,
ymax=10,
zmin=0,
zmax=1000,
view={-37.5}{30},
axis background/.style={fill=white},
title style={yshift=1ex, font=\tiny\bfseries},
title={u=7},
axis x line*=bottom,
axis y line*=left,
axis z line*=left,
xmajorgrids,
ymajorgrids,
zmajorgrids
]
\addplot3[%
surf,
shader=flat, z buffer=sort, colormap={mymap}{[1pt] rgb(0pt)=(0.2422,0.1504,0.6603); rgb(1pt)=(0.2444,0.1534,0.6728); rgb(2pt)=(0.2464,0.1569,0.6847); rgb(3pt)=(0.2484,0.1607,0.6961); rgb(4pt)=(0.2503,0.1648,0.7071); rgb(5pt)=(0.2522,0.1689,0.7179); rgb(6pt)=(0.254,0.1732,0.7286); rgb(7pt)=(0.2558,0.1773,0.7393); rgb(8pt)=(0.2576,0.1814,0.7501); rgb(9pt)=(0.2594,0.1854,0.761); rgb(11pt)=(0.2628,0.1932,0.7828); rgb(12pt)=(0.2645,0.1972,0.7937); rgb(13pt)=(0.2661,0.2011,0.8043); rgb(14pt)=(0.2676,0.2052,0.8148); rgb(15pt)=(0.2691,0.2094,0.8249); rgb(16pt)=(0.2704,0.2138,0.8346); rgb(17pt)=(0.2717,0.2184,0.8439); rgb(18pt)=(0.2729,0.2231,0.8528); rgb(19pt)=(0.274,0.228,0.8612); rgb(20pt)=(0.2749,0.233,0.8692); rgb(21pt)=(0.2758,0.2382,0.8767); rgb(22pt)=(0.2766,0.2435,0.884); rgb(23pt)=(0.2774,0.2489,0.8908); rgb(24pt)=(0.2781,0.2543,0.8973); rgb(25pt)=(0.2788,0.2598,0.9035); rgb(26pt)=(0.2794,0.2653,0.9094); rgb(27pt)=(0.2798,0.2708,0.915); rgb(28pt)=(0.2802,0.2764,0.9204); rgb(29pt)=(0.2806,0.2819,0.9255); rgb(30pt)=(0.2809,0.2875,0.9305); rgb(31pt)=(0.2811,0.293,0.9352); rgb(32pt)=(0.2813,0.2985,0.9397); rgb(33pt)=(0.2814,0.304,0.9441); rgb(34pt)=(0.2814,0.3095,0.9483); rgb(35pt)=(0.2813,0.315,0.9524); rgb(36pt)=(0.2811,0.3204,0.9563); rgb(37pt)=(0.2809,0.3259,0.96); rgb(38pt)=(0.2807,0.3313,0.9636); rgb(39pt)=(0.2803,0.3367,0.967); rgb(40pt)=(0.2798,0.3421,0.9702); rgb(41pt)=(0.2791,0.3475,0.9733); rgb(42pt)=(0.2784,0.3529,0.9763); rgb(43pt)=(0.2776,0.3583,0.9791); rgb(44pt)=(0.2766,0.3638,0.9817); rgb(45pt)=(0.2754,0.3693,0.984); rgb(46pt)=(0.2741,0.3748,0.9862); rgb(47pt)=(0.2726,0.3804,0.9881); rgb(48pt)=(0.271,0.386,0.9898); rgb(49pt)=(0.2691,0.3916,0.9912); rgb(50pt)=(0.267,0.3973,0.9924); rgb(51pt)=(0.2647,0.403,0.9935); rgb(52pt)=(0.2621,0.4088,0.9946); rgb(53pt)=(0.2591,0.4145,0.9955); rgb(54pt)=(0.2556,0.4203,0.9965); rgb(55pt)=(0.2517,0.4261,0.9974); rgb(56pt)=(0.2473,0.4319,0.9983); rgb(57pt)=(0.2424,0.4378,0.9991); rgb(58pt)=(0.2369,0.4437,0.9996); rgb(59pt)=(0.2311,0.4497,0.9995); rgb(60pt)=(0.225,0.4559,0.9985); rgb(61pt)=(0.2189,0.462,0.9968); rgb(62pt)=(0.2128,0.4682,0.9948); rgb(63pt)=(0.2066,0.4743,0.9926); rgb(64pt)=(0.2006,0.4803,0.9906); rgb(65pt)=(0.195,0.4861,0.9887); rgb(66pt)=(0.1903,0.4919,0.9867); rgb(67pt)=(0.1869,0.4975,0.9844); rgb(68pt)=(0.1847,0.503,0.9819); rgb(69pt)=(0.1831,0.5084,0.9793); rgb(70pt)=(0.1818,0.5138,0.9766); rgb(71pt)=(0.1806,0.5191,0.9738); rgb(72pt)=(0.1795,0.5244,0.9709); rgb(73pt)=(0.1785,0.5296,0.9677); rgb(74pt)=(0.1778,0.5349,0.9641); rgb(75pt)=(0.1773,0.5401,0.9602); rgb(76pt)=(0.1768,0.5452,0.956); rgb(77pt)=(0.1764,0.5504,0.9516); rgb(78pt)=(0.1755,0.5554,0.9473); rgb(79pt)=(0.174,0.5605,0.9432); rgb(80pt)=(0.1716,0.5655,0.9393); rgb(81pt)=(0.1686,0.5705,0.9357); rgb(82pt)=(0.1649,0.5755,0.9323); rgb(83pt)=(0.161,0.5805,0.9289); rgb(84pt)=(0.1573,0.5854,0.9254); rgb(85pt)=(0.154,0.5902,0.9218); rgb(86pt)=(0.1513,0.595,0.9182); rgb(87pt)=(0.1492,0.5997,0.9147); rgb(88pt)=(0.1475,0.6043,0.9113); rgb(89pt)=(0.1461,0.6089,0.908); rgb(90pt)=(0.1446,0.6135,0.905); rgb(91pt)=(0.1429,0.618,0.9022); rgb(92pt)=(0.1408,0.6226,0.8998); rgb(93pt)=(0.1383,0.6272,0.8975); rgb(94pt)=(0.1354,0.6317,0.8953); rgb(95pt)=(0.1321,0.6363,0.8932); rgb(96pt)=(0.1288,0.6408,0.891); rgb(97pt)=(0.1253,0.6453,0.8887); rgb(98pt)=(0.1219,0.6497,0.8862); rgb(99pt)=(0.1185,0.6541,0.8834); rgb(100pt)=(0.1152,0.6584,0.8804); rgb(101pt)=(0.1119,0.6627,0.877); rgb(102pt)=(0.1085,0.6669,0.8734); rgb(103pt)=(0.1048,0.671,0.8695); rgb(104pt)=(0.1009,0.675,0.8653); rgb(105pt)=(0.0964,0.6789,0.8609); rgb(106pt)=(0.0914,0.6828,0.8562); rgb(107pt)=(0.0855,0.6865,0.8513); rgb(108pt)=(0.0789,0.6902,0.8462); rgb(109pt)=(0.0713,0.6938,0.8409); rgb(110pt)=(0.0628,0.6972,0.8355); rgb(111pt)=(0.0535,0.7006,0.8299); rgb(112pt)=(0.0433,0.7039,0.8242); rgb(113pt)=(0.0328,0.7071,0.8183); rgb(114pt)=(0.0234,0.7103,0.8124); rgb(115pt)=(0.0155,0.7133,0.8064); rgb(116pt)=(0.0091,0.7163,0.8003); rgb(117pt)=(0.0046,0.7192,0.7941); rgb(118pt)=(0.0019,0.722,0.7878); rgb(119pt)=(0.0009,0.7248,0.7815); rgb(120pt)=(0.0018,0.7275,0.7752); rgb(121pt)=(0.0046,0.7301,0.7688); rgb(122pt)=(0.0094,0.7327,0.7623); rgb(123pt)=(0.0162,0.7352,0.7558); rgb(124pt)=(0.0253,0.7376,0.7492); rgb(125pt)=(0.0369,0.74,0.7426); rgb(126pt)=(0.0504,0.7423,0.7359); rgb(127pt)=(0.0638,0.7446,0.7292); rgb(128pt)=(0.077,0.7468,0.7224); rgb(129pt)=(0.0899,0.7489,0.7156); rgb(130pt)=(0.1023,0.751,0.7088); rgb(131pt)=(0.1141,0.7531,0.7019); rgb(132pt)=(0.1252,0.7552,0.695); rgb(133pt)=(0.1354,0.7572,0.6881); rgb(134pt)=(0.1448,0.7593,0.6812); rgb(135pt)=(0.1532,0.7614,0.6741); rgb(136pt)=(0.1609,0.7635,0.6671); rgb(137pt)=(0.1678,0.7656,0.6599); rgb(138pt)=(0.1741,0.7678,0.6527); rgb(139pt)=(0.1799,0.7699,0.6454); rgb(140pt)=(0.1853,0.7721,0.6379); rgb(141pt)=(0.1905,0.7743,0.6303); rgb(142pt)=(0.1954,0.7765,0.6225); rgb(143pt)=(0.2003,0.7787,0.6146); rgb(144pt)=(0.2061,0.7808,0.6065); rgb(145pt)=(0.2118,0.7828,0.5983); rgb(146pt)=(0.2178,0.7849,0.5899); rgb(147pt)=(0.2244,0.7869,0.5813); rgb(148pt)=(0.2318,0.7887,0.5725); rgb(149pt)=(0.2401,0.7905,0.5636); rgb(150pt)=(0.2491,0.7922,0.5546); rgb(151pt)=(0.2589,0.7937,0.5454); rgb(152pt)=(0.2695,0.7951,0.536); rgb(153pt)=(0.2809,0.7964,0.5266); rgb(154pt)=(0.2929,0.7975,0.517); rgb(155pt)=(0.3052,0.7985,0.5074); rgb(156pt)=(0.3176,0.7994,0.4975); rgb(157pt)=(0.3301,0.8002,0.4876); rgb(158pt)=(0.3424,0.8009,0.4774); rgb(159pt)=(0.3548,0.8016,0.4669); rgb(160pt)=(0.3671,0.8021,0.4563); rgb(161pt)=(0.3795,0.8026,0.4454); rgb(162pt)=(0.3921,0.8029,0.4344); rgb(163pt)=(0.405,0.8031,0.4233); rgb(164pt)=(0.4184,0.803,0.4122); rgb(165pt)=(0.4322,0.8028,0.4013); rgb(166pt)=(0.4463,0.8024,0.3904); rgb(167pt)=(0.4608,0.8018,0.3797); rgb(168pt)=(0.4753,0.8011,0.3691); rgb(169pt)=(0.4899,0.8002,0.3586); rgb(170pt)=(0.5044,0.7993,0.348); rgb(171pt)=(0.5187,0.7982,0.3374); rgb(172pt)=(0.5329,0.797,0.3267); rgb(173pt)=(0.547,0.7957,0.3159); rgb(175pt)=(0.5748,0.7929,0.2941); rgb(176pt)=(0.5886,0.7913,0.2833); rgb(177pt)=(0.6024,0.7896,0.2726); rgb(178pt)=(0.6161,0.7878,0.2622); rgb(179pt)=(0.6297,0.7859,0.2521); rgb(180pt)=(0.6433,0.7839,0.2423); rgb(181pt)=(0.6567,0.7818,0.2329); rgb(182pt)=(0.6701,0.7796,0.2239); rgb(183pt)=(0.6833,0.7773,0.2155); rgb(184pt)=(0.6963,0.775,0.2075); rgb(185pt)=(0.7091,0.7727,0.1998); rgb(186pt)=(0.7218,0.7703,0.1924); rgb(187pt)=(0.7344,0.7679,0.1852); rgb(188pt)=(0.7468,0.7654,0.1782); rgb(189pt)=(0.759,0.7629,0.1717); rgb(190pt)=(0.771,0.7604,0.1658); rgb(191pt)=(0.7829,0.7579,0.1608); rgb(192pt)=(0.7945,0.7554,0.157); rgb(193pt)=(0.806,0.7529,0.1546); rgb(194pt)=(0.8172,0.7505,0.1535); rgb(195pt)=(0.8281,0.7481,0.1536); rgb(196pt)=(0.8389,0.7457,0.1546); rgb(197pt)=(0.8495,0.7435,0.1564); rgb(198pt)=(0.86,0.7413,0.1587); rgb(199pt)=(0.8703,0.7392,0.1615); rgb(200pt)=(0.8804,0.7372,0.165); rgb(201pt)=(0.8903,0.7353,0.1695); rgb(202pt)=(0.9,0.7336,0.1749); rgb(203pt)=(0.9093,0.7321,0.1815); rgb(204pt)=(0.9184,0.7308,0.189); rgb(205pt)=(0.9272,0.7298,0.1973); rgb(206pt)=(0.9357,0.729,0.2061); rgb(207pt)=(0.944,0.7285,0.2151); rgb(208pt)=(0.9523,0.7284,0.2237); rgb(209pt)=(0.9606,0.7285,0.2312); rgb(210pt)=(0.9689,0.7292,0.2373); rgb(211pt)=(0.977,0.7304,0.2418); rgb(212pt)=(0.9842,0.733,0.2446); rgb(213pt)=(0.99,0.7365,0.2429); rgb(214pt)=(0.9946,0.7407,0.2394); rgb(215pt)=(0.9966,0.7458,0.2351); rgb(216pt)=(0.9971,0.7513,0.2309); rgb(217pt)=(0.9972,0.7569,0.2267); rgb(218pt)=(0.9971,0.7626,0.2224); rgb(219pt)=(0.9969,0.7683,0.2181); rgb(220pt)=(0.9966,0.774,0.2138); rgb(221pt)=(0.9962,0.7798,0.2095); rgb(222pt)=(0.9957,0.7856,0.2053); rgb(223pt)=(0.9949,0.7915,0.2012); rgb(224pt)=(0.9938,0.7974,0.1974); rgb(225pt)=(0.9923,0.8034,0.1939); rgb(226pt)=(0.9906,0.8095,0.1906); rgb(227pt)=(0.9885,0.8156,0.1875); rgb(228pt)=(0.9861,0.8218,0.1846); rgb(229pt)=(0.9835,0.828,0.1817); rgb(230pt)=(0.9807,0.8342,0.1787); rgb(231pt)=(0.9778,0.8404,0.1757); rgb(232pt)=(0.9748,0.8467,0.1726); rgb(233pt)=(0.972,0.8529,0.1695); rgb(234pt)=(0.9694,0.8591,0.1665); rgb(235pt)=(0.9671,0.8654,0.1636); rgb(236pt)=(0.9651,0.8716,0.1608); rgb(237pt)=(0.9634,0.8778,0.1582); rgb(238pt)=(0.9619,0.884,0.1557); rgb(239pt)=(0.9608,0.8902,0.1532); rgb(240pt)=(0.9601,0.8963,0.1507); rgb(241pt)=(0.9596,0.9023,0.148); rgb(242pt)=(0.9595,0.9084,0.145); rgb(243pt)=(0.9597,0.9143,0.1418); rgb(244pt)=(0.9601,0.9203,0.1382); rgb(245pt)=(0.9608,0.9262,0.1344); rgb(246pt)=(0.9618,0.932,0.1304); rgb(247pt)=(0.9629,0.9379,0.1261); rgb(248pt)=(0.9642,0.9437,0.1216); rgb(249pt)=(0.9657,0.9494,0.1168); rgb(250pt)=(0.9674,0.9552,0.1116); rgb(251pt)=(0.9692,0.9609,0.1061); rgb(252pt)=(0.9711,0.9667,0.1001); rgb(253pt)=(0.973,0.9724,0.0938); rgb(254pt)=(0.9749,0.9782,0.0872); rgb(255pt)=(0.9769,0.9839,0.0805)}, mesh/rows=21]
table[row sep=crcr, point meta=\thisrow{c}] {%
%
x y z c\\
-10 -10 800 800\\
-10 -9 781 781\\
-10 -8 764 764\\
-10 -7 749 749\\
-10 -6 736 736\\
-10 -5 725 725\\
-10 -4 716 716\\
-10 -3 709 709\\
-10 -2 704 704\\
-10 -1 701 701\\
-10 0 700 700\\
-10 1 701 701\\
-10 2 704 704\\
-10 3 709 709\\
-10 4 716 716\\
-10 5 725 725\\
-10 6 736 736\\
-10 7 749 749\\
-10 8 764 764\\
-10 9 781 781\\
-10 10 800 800\\
-9 -10 667 667\\
-9 -9 648 648\\
-9 -8 631 631\\
-9 -7 616 616\\
-9 -6 603 603\\
-9 -5 592 592\\
-9 -4 583 583\\
-9 -3 576 576\\
-9 -2 571 571\\
-9 -1 568 568\\
-9 0 567 567\\
-9 1 568 568\\
-9 2 571 571\\
-9 3 576 576\\
-9 4 583 583\\
-9 5 592 592\\
-9 6 603 603\\
-9 7 616 616\\
-9 8 631 631\\
-9 9 648 648\\
-9 10 667 667\\
-8 -10 548 548\\
-8 -9 529 529\\
-8 -8 512 512\\
-8 -7 497 497\\
-8 -6 484 484\\
-8 -5 473 473\\
-8 -4 464 464\\
-8 -3 457 457\\
-8 -2 452 452\\
-8 -1 449 449\\
-8 0 448 448\\
-8 1 449 449\\
-8 2 452 452\\
-8 3 457 457\\
-8 4 464 464\\
-8 5 473 473\\
-8 6 484 484\\
-8 7 497 497\\
-8 8 512 512\\
-8 9 529 529\\
-8 10 548 548\\
-7 -10 443 443\\
-7 -9 424 424\\
-7 -8 407 407\\
-7 -7 392 392\\
-7 -6 379 379\\
-7 -5 368 368\\
-7 -4 359 359\\
-7 -3 352 352\\
-7 -2 347 347\\
-7 -1 344 344\\
-7 0 343 343\\
-7 1 344 344\\
-7 2 347 347\\
-7 3 352 352\\
-7 4 359 359\\
-7 5 368 368\\
-7 6 379 379\\
-7 7 392 392\\
-7 8 407 407\\
-7 9 424 424\\
-7 10 443 443\\
-6 -10 352 352\\
-6 -9 333 333\\
-6 -8 316 316\\
-6 -7 301 301\\
-6 -6 288 288\\
-6 -5 277 277\\
-6 -4 268 268\\
-6 -3 261 261\\
-6 -2 256 256\\
-6 -1 253 253\\
-6 0 252 252\\
-6 1 253 253\\
-6 2 256 256\\
-6 3 261 261\\
-6 4 268 268\\
-6 5 277 277\\
-6 6 288 288\\
-6 7 301 301\\
-6 8 316 316\\
-6 9 333 333\\
-6 10 352 352\\
-5 -10 275 275\\
-5 -9 256 256\\
-5 -8 239 239\\
-5 -7 224 224\\
-5 -6 211 211\\
-5 -5 200 200\\
-5 -4 191 191\\
-5 -3 184 184\\
-5 -2 179 179\\
-5 -1 176 176\\
-5 0 175 175\\
-5 1 176 176\\
-5 2 179 179\\
-5 3 184 184\\
-5 4 191 191\\
-5 5 200 200\\
-5 6 211 211\\
-5 7 224 224\\
-5 8 239 239\\
-5 9 256 256\\
-5 10 275 275\\
-4 -10 212 212\\
-4 -9 193 193\\
-4 -8 176 176\\
-4 -7 161 161\\
-4 -6 148 148\\
-4 -5 137 137\\
-4 -4 128 128\\
-4 -3 121 121\\
-4 -2 116 116\\
-4 -1 113 113\\
-4 0 112 112\\
-4 1 113 113\\
-4 2 116 116\\
-4 3 121 121\\
-4 4 128 128\\
-4 5 137 137\\
-4 6 148 148\\
-4 7 161 161\\
-4 8 176 176\\
-4 9 193 193\\
-4 10 212 212\\
-3 -10 163 163\\
-3 -9 144 144\\
-3 -8 127 127\\
-3 -7 112 112\\
-3 -6 99 99\\
-3 -5 88 88\\
-3 -4 79 79\\
-3 -3 72 72\\
-3 -2 67 67\\
-3 -1 64 64\\
-3 0 63 63\\
-3 1 64 64\\
-3 2 67 67\\
-3 3 72 72\\
-3 4 79 79\\
-3 5 88 88\\
-3 6 99 99\\
-3 7 112 112\\
-3 8 127 127\\
-3 9 144 144\\
-3 10 163 163\\
-2 -10 128 128\\
-2 -9 109 109\\
-2 -8 92 92\\
-2 -7 77 77\\
-2 -6 64 64\\
-2 -5 53 53\\
-2 -4 44 44\\
-2 -3 37 37\\
-2 -2 32 32\\
-2 -1 29 29\\
-2 0 28 28\\
-2 1 29 29\\
-2 2 32 32\\
-2 3 37 37\\
-2 4 44 44\\
-2 5 53 53\\
-2 6 64 64\\
-2 7 77 77\\
-2 8 92 92\\
-2 9 109 109\\
-2 10 128 128\\
-1 -10 107 107\\
-1 -9 88 88\\
-1 -8 71 71\\
-1 -7 56 56\\
-1 -6 43 43\\
-1 -5 32 32\\
-1 -4 23 23\\
-1 -3 16 16\\
-1 -2 11 11\\
-1 -1 8 8\\
-1 0 7 7\\
-1 1 8 8\\
-1 2 11 11\\
-1 3 16 16\\
-1 4 23 23\\
-1 5 32 32\\
-1 6 43 43\\
-1 7 56 56\\
-1 8 71 71\\
-1 9 88 88\\
-1 10 107 107\\
0 -10 100 100\\
0 -9 81 81\\
0 -8 64 64\\
0 -7 49 49\\
0 -6 36 36\\
0 -5 25 25\\
0 -4 16 16\\
0 -3 9 9\\
0 -2 4 4\\
0 -1 1 1\\
0 0 0 0\\
0 1 1 1\\
0 2 4 4\\
0 3 9 9\\
0 4 16 16\\
0 5 25 25\\
0 6 36 36\\
0 7 49 49\\
0 8 64 64\\
0 9 81 81\\
0 10 100 100\\
1 -10 107 107\\
1 -9 88 88\\
1 -8 71 71\\
1 -7 56 56\\
1 -6 43 43\\
1 -5 32 32\\
1 -4 23 23\\
1 -3 16 16\\
1 -2 11 11\\
1 -1 8 8\\
1 0 7 7\\
1 1 8 8\\
1 2 11 11\\
1 3 16 16\\
1 4 23 23\\
1 5 32 32\\
1 6 43 43\\
1 7 56 56\\
1 8 71 71\\
1 9 88 88\\
1 10 107 107\\
2 -10 128 128\\
2 -9 109 109\\
2 -8 92 92\\
2 -7 77 77\\
2 -6 64 64\\
2 -5 53 53\\
2 -4 44 44\\
2 -3 37 37\\
2 -2 32 32\\
2 -1 29 29\\
2 0 28 28\\
2 1 29 29\\
2 2 32 32\\
2 3 37 37\\
2 4 44 44\\
2 5 53 53\\
2 6 64 64\\
2 7 77 77\\
2 8 92 92\\
2 9 109 109\\
2 10 128 128\\
3 -10 163 163\\
3 -9 144 144\\
3 -8 127 127\\
3 -7 112 112\\
3 -6 99 99\\
3 -5 88 88\\
3 -4 79 79\\
3 -3 72 72\\
3 -2 67 67\\
3 -1 64 64\\
3 0 63 63\\
3 1 64 64\\
3 2 67 67\\
3 3 72 72\\
3 4 79 79\\
3 5 88 88\\
3 6 99 99\\
3 7 112 112\\
3 8 127 127\\
3 9 144 144\\
3 10 163 163\\
4 -10 212 212\\
4 -9 193 193\\
4 -8 176 176\\
4 -7 161 161\\
4 -6 148 148\\
4 -5 137 137\\
4 -4 128 128\\
4 -3 121 121\\
4 -2 116 116\\
4 -1 113 113\\
4 0 112 112\\
4 1 113 113\\
4 2 116 116\\
4 3 121 121\\
4 4 128 128\\
4 5 137 137\\
4 6 148 148\\
4 7 161 161\\
4 8 176 176\\
4 9 193 193\\
4 10 212 212\\
5 -10 275 275\\
5 -9 256 256\\
5 -8 239 239\\
5 -7 224 224\\
5 -6 211 211\\
5 -5 200 200\\
5 -4 191 191\\
5 -3 184 184\\
5 -2 179 179\\
5 -1 176 176\\
5 0 175 175\\
5 1 176 176\\
5 2 179 179\\
5 3 184 184\\
5 4 191 191\\
5 5 200 200\\
5 6 211 211\\
5 7 224 224\\
5 8 239 239\\
5 9 256 256\\
5 10 275 275\\
6 -10 352 352\\
6 -9 333 333\\
6 -8 316 316\\
6 -7 301 301\\
6 -6 288 288\\
6 -5 277 277\\
6 -4 268 268\\
6 -3 261 261\\
6 -2 256 256\\
6 -1 253 253\\
6 0 252 252\\
6 1 253 253\\
6 2 256 256\\
6 3 261 261\\
6 4 268 268\\
6 5 277 277\\
6 6 288 288\\
6 7 301 301\\
6 8 316 316\\
6 9 333 333\\
6 10 352 352\\
7 -10 443 443\\
7 -9 424 424\\
7 -8 407 407\\
7 -7 392 392\\
7 -6 379 379\\
7 -5 368 368\\
7 -4 359 359\\
7 -3 352 352\\
7 -2 347 347\\
7 -1 344 344\\
7 0 343 343\\
7 1 344 344\\
7 2 347 347\\
7 3 352 352\\
7 4 359 359\\
7 5 368 368\\
7 6 379 379\\
7 7 392 392\\
7 8 407 407\\
7 9 424 424\\
7 10 443 443\\
8 -10 548 548\\
8 -9 529 529\\
8 -8 512 512\\
8 -7 497 497\\
8 -6 484 484\\
8 -5 473 473\\
8 -4 464 464\\
8 -3 457 457\\
8 -2 452 452\\
8 -1 449 449\\
8 0 448 448\\
8 1 449 449\\
8 2 452 452\\
8 3 457 457\\
8 4 464 464\\
8 5 473 473\\
8 6 484 484\\
8 7 497 497\\
8 8 512 512\\
8 9 529 529\\
8 10 548 548\\
9 -10 667 667\\
9 -9 648 648\\
9 -8 631 631\\
9 -7 616 616\\
9 -6 603 603\\
9 -5 592 592\\
9 -4 583 583\\
9 -3 576 576\\
9 -2 571 571\\
9 -1 568 568\\
9 0 567 567\\
9 1 568 568\\
9 2 571 571\\
9 3 576 576\\
9 4 583 583\\
9 5 592 592\\
9 6 603 603\\
9 7 616 616\\
9 8 631 631\\
9 9 648 648\\
9 10 667 667\\
10 -10 800 800\\
10 -9 781 781\\
10 -8 764 764\\
10 -7 749 749\\
10 -6 736 736\\
10 -5 725 725\\
10 -4 716 716\\
10 -3 709 709\\
10 -2 704 704\\
10 -1 701 701\\
10 0 700 700\\
10 1 701 701\\
10 2 704 704\\
10 3 709 709\\
10 4 716 716\\
10 5 725 725\\
10 6 736 736\\
10 7 749 749\\
10 8 764 764\\
10 9 781 781\\
10 10 800 800\\
};
\end{axis}
\begin{axis}[%
width=0.737in,
height=1.524in,
at={(2.714in,0.491in)},
scale only axis,
xmin=-10,
xmax=10,
tick align=outside,
ymin=-10,
ymax=10,
zmin=0,
zmax=1000,
view={-37.5}{30},
axis background/.style={fill=white},
title style={yshift=1ex, font=\tiny\bfseries},
title={u=8},
axis x line*=bottom,
axis y line*=left,
axis z line*=left,
xmajorgrids,
ymajorgrids,
zmajorgrids
]
\addplot3[%
surf,
shader=flat, z buffer=sort, colormap={mymap}{[1pt] rgb(0pt)=(0.2422,0.1504,0.6603); rgb(1pt)=(0.2444,0.1534,0.6728); rgb(2pt)=(0.2464,0.1569,0.6847); rgb(3pt)=(0.2484,0.1607,0.6961); rgb(4pt)=(0.2503,0.1648,0.7071); rgb(5pt)=(0.2522,0.1689,0.7179); rgb(6pt)=(0.254,0.1732,0.7286); rgb(7pt)=(0.2558,0.1773,0.7393); rgb(8pt)=(0.2576,0.1814,0.7501); rgb(9pt)=(0.2594,0.1854,0.761); rgb(11pt)=(0.2628,0.1932,0.7828); rgb(12pt)=(0.2645,0.1972,0.7937); rgb(13pt)=(0.2661,0.2011,0.8043); rgb(14pt)=(0.2676,0.2052,0.8148); rgb(15pt)=(0.2691,0.2094,0.8249); rgb(16pt)=(0.2704,0.2138,0.8346); rgb(17pt)=(0.2717,0.2184,0.8439); rgb(18pt)=(0.2729,0.2231,0.8528); rgb(19pt)=(0.274,0.228,0.8612); rgb(20pt)=(0.2749,0.233,0.8692); rgb(21pt)=(0.2758,0.2382,0.8767); rgb(22pt)=(0.2766,0.2435,0.884); rgb(23pt)=(0.2774,0.2489,0.8908); rgb(24pt)=(0.2781,0.2543,0.8973); rgb(25pt)=(0.2788,0.2598,0.9035); rgb(26pt)=(0.2794,0.2653,0.9094); rgb(27pt)=(0.2798,0.2708,0.915); rgb(28pt)=(0.2802,0.2764,0.9204); rgb(29pt)=(0.2806,0.2819,0.9255); rgb(30pt)=(0.2809,0.2875,0.9305); rgb(31pt)=(0.2811,0.293,0.9352); rgb(32pt)=(0.2813,0.2985,0.9397); rgb(33pt)=(0.2814,0.304,0.9441); rgb(34pt)=(0.2814,0.3095,0.9483); rgb(35pt)=(0.2813,0.315,0.9524); rgb(36pt)=(0.2811,0.3204,0.9563); rgb(37pt)=(0.2809,0.3259,0.96); rgb(38pt)=(0.2807,0.3313,0.9636); rgb(39pt)=(0.2803,0.3367,0.967); rgb(40pt)=(0.2798,0.3421,0.9702); rgb(41pt)=(0.2791,0.3475,0.9733); rgb(42pt)=(0.2784,0.3529,0.9763); rgb(43pt)=(0.2776,0.3583,0.9791); rgb(44pt)=(0.2766,0.3638,0.9817); rgb(45pt)=(0.2754,0.3693,0.984); rgb(46pt)=(0.2741,0.3748,0.9862); rgb(47pt)=(0.2726,0.3804,0.9881); rgb(48pt)=(0.271,0.386,0.9898); rgb(49pt)=(0.2691,0.3916,0.9912); rgb(50pt)=(0.267,0.3973,0.9924); rgb(51pt)=(0.2647,0.403,0.9935); rgb(52pt)=(0.2621,0.4088,0.9946); rgb(53pt)=(0.2591,0.4145,0.9955); rgb(54pt)=(0.2556,0.4203,0.9965); rgb(55pt)=(0.2517,0.4261,0.9974); rgb(56pt)=(0.2473,0.4319,0.9983); rgb(57pt)=(0.2424,0.4378,0.9991); rgb(58pt)=(0.2369,0.4437,0.9996); rgb(59pt)=(0.2311,0.4497,0.9995); rgb(60pt)=(0.225,0.4559,0.9985); rgb(61pt)=(0.2189,0.462,0.9968); rgb(62pt)=(0.2128,0.4682,0.9948); rgb(63pt)=(0.2066,0.4743,0.9926); rgb(64pt)=(0.2006,0.4803,0.9906); rgb(65pt)=(0.195,0.4861,0.9887); rgb(66pt)=(0.1903,0.4919,0.9867); rgb(67pt)=(0.1869,0.4975,0.9844); rgb(68pt)=(0.1847,0.503,0.9819); rgb(69pt)=(0.1831,0.5084,0.9793); rgb(70pt)=(0.1818,0.5138,0.9766); rgb(71pt)=(0.1806,0.5191,0.9738); rgb(72pt)=(0.1795,0.5244,0.9709); rgb(73pt)=(0.1785,0.5296,0.9677); rgb(74pt)=(0.1778,0.5349,0.9641); rgb(75pt)=(0.1773,0.5401,0.9602); rgb(76pt)=(0.1768,0.5452,0.956); rgb(77pt)=(0.1764,0.5504,0.9516); rgb(78pt)=(0.1755,0.5554,0.9473); rgb(79pt)=(0.174,0.5605,0.9432); rgb(80pt)=(0.1716,0.5655,0.9393); rgb(81pt)=(0.1686,0.5705,0.9357); rgb(82pt)=(0.1649,0.5755,0.9323); rgb(83pt)=(0.161,0.5805,0.9289); rgb(84pt)=(0.1573,0.5854,0.9254); rgb(85pt)=(0.154,0.5902,0.9218); rgb(86pt)=(0.1513,0.595,0.9182); rgb(87pt)=(0.1492,0.5997,0.9147); rgb(88pt)=(0.1475,0.6043,0.9113); rgb(89pt)=(0.1461,0.6089,0.908); rgb(90pt)=(0.1446,0.6135,0.905); rgb(91pt)=(0.1429,0.618,0.9022); rgb(92pt)=(0.1408,0.6226,0.8998); rgb(93pt)=(0.1383,0.6272,0.8975); rgb(94pt)=(0.1354,0.6317,0.8953); rgb(95pt)=(0.1321,0.6363,0.8932); rgb(96pt)=(0.1288,0.6408,0.891); rgb(97pt)=(0.1253,0.6453,0.8887); rgb(98pt)=(0.1219,0.6497,0.8862); rgb(99pt)=(0.1185,0.6541,0.8834); rgb(100pt)=(0.1152,0.6584,0.8804); rgb(101pt)=(0.1119,0.6627,0.877); rgb(102pt)=(0.1085,0.6669,0.8734); rgb(103pt)=(0.1048,0.671,0.8695); rgb(104pt)=(0.1009,0.675,0.8653); rgb(105pt)=(0.0964,0.6789,0.8609); rgb(106pt)=(0.0914,0.6828,0.8562); rgb(107pt)=(0.0855,0.6865,0.8513); rgb(108pt)=(0.0789,0.6902,0.8462); rgb(109pt)=(0.0713,0.6938,0.8409); rgb(110pt)=(0.0628,0.6972,0.8355); rgb(111pt)=(0.0535,0.7006,0.8299); rgb(112pt)=(0.0433,0.7039,0.8242); rgb(113pt)=(0.0328,0.7071,0.8183); rgb(114pt)=(0.0234,0.7103,0.8124); rgb(115pt)=(0.0155,0.7133,0.8064); rgb(116pt)=(0.0091,0.7163,0.8003); rgb(117pt)=(0.0046,0.7192,0.7941); rgb(118pt)=(0.0019,0.722,0.7878); rgb(119pt)=(0.0009,0.7248,0.7815); rgb(120pt)=(0.0018,0.7275,0.7752); rgb(121pt)=(0.0046,0.7301,0.7688); rgb(122pt)=(0.0094,0.7327,0.7623); rgb(123pt)=(0.0162,0.7352,0.7558); rgb(124pt)=(0.0253,0.7376,0.7492); rgb(125pt)=(0.0369,0.74,0.7426); rgb(126pt)=(0.0504,0.7423,0.7359); rgb(127pt)=(0.0638,0.7446,0.7292); rgb(128pt)=(0.077,0.7468,0.7224); rgb(129pt)=(0.0899,0.7489,0.7156); rgb(130pt)=(0.1023,0.751,0.7088); rgb(131pt)=(0.1141,0.7531,0.7019); rgb(132pt)=(0.1252,0.7552,0.695); rgb(133pt)=(0.1354,0.7572,0.6881); rgb(134pt)=(0.1448,0.7593,0.6812); rgb(135pt)=(0.1532,0.7614,0.6741); rgb(136pt)=(0.1609,0.7635,0.6671); rgb(137pt)=(0.1678,0.7656,0.6599); rgb(138pt)=(0.1741,0.7678,0.6527); rgb(139pt)=(0.1799,0.7699,0.6454); rgb(140pt)=(0.1853,0.7721,0.6379); rgb(141pt)=(0.1905,0.7743,0.6303); rgb(142pt)=(0.1954,0.7765,0.6225); rgb(143pt)=(0.2003,0.7787,0.6146); rgb(144pt)=(0.2061,0.7808,0.6065); rgb(145pt)=(0.2118,0.7828,0.5983); rgb(146pt)=(0.2178,0.7849,0.5899); rgb(147pt)=(0.2244,0.7869,0.5813); rgb(148pt)=(0.2318,0.7887,0.5725); rgb(149pt)=(0.2401,0.7905,0.5636); rgb(150pt)=(0.2491,0.7922,0.5546); rgb(151pt)=(0.2589,0.7937,0.5454); rgb(152pt)=(0.2695,0.7951,0.536); rgb(153pt)=(0.2809,0.7964,0.5266); rgb(154pt)=(0.2929,0.7975,0.517); rgb(155pt)=(0.3052,0.7985,0.5074); rgb(156pt)=(0.3176,0.7994,0.4975); rgb(157pt)=(0.3301,0.8002,0.4876); rgb(158pt)=(0.3424,0.8009,0.4774); rgb(159pt)=(0.3548,0.8016,0.4669); rgb(160pt)=(0.3671,0.8021,0.4563); rgb(161pt)=(0.3795,0.8026,0.4454); rgb(162pt)=(0.3921,0.8029,0.4344); rgb(163pt)=(0.405,0.8031,0.4233); rgb(164pt)=(0.4184,0.803,0.4122); rgb(165pt)=(0.4322,0.8028,0.4013); rgb(166pt)=(0.4463,0.8024,0.3904); rgb(167pt)=(0.4608,0.8018,0.3797); rgb(168pt)=(0.4753,0.8011,0.3691); rgb(169pt)=(0.4899,0.8002,0.3586); rgb(170pt)=(0.5044,0.7993,0.348); rgb(171pt)=(0.5187,0.7982,0.3374); rgb(172pt)=(0.5329,0.797,0.3267); rgb(173pt)=(0.547,0.7957,0.3159); rgb(175pt)=(0.5748,0.7929,0.2941); rgb(176pt)=(0.5886,0.7913,0.2833); rgb(177pt)=(0.6024,0.7896,0.2726); rgb(178pt)=(0.6161,0.7878,0.2622); rgb(179pt)=(0.6297,0.7859,0.2521); rgb(180pt)=(0.6433,0.7839,0.2423); rgb(181pt)=(0.6567,0.7818,0.2329); rgb(182pt)=(0.6701,0.7796,0.2239); rgb(183pt)=(0.6833,0.7773,0.2155); rgb(184pt)=(0.6963,0.775,0.2075); rgb(185pt)=(0.7091,0.7727,0.1998); rgb(186pt)=(0.7218,0.7703,0.1924); rgb(187pt)=(0.7344,0.7679,0.1852); rgb(188pt)=(0.7468,0.7654,0.1782); rgb(189pt)=(0.759,0.7629,0.1717); rgb(190pt)=(0.771,0.7604,0.1658); rgb(191pt)=(0.7829,0.7579,0.1608); rgb(192pt)=(0.7945,0.7554,0.157); rgb(193pt)=(0.806,0.7529,0.1546); rgb(194pt)=(0.8172,0.7505,0.1535); rgb(195pt)=(0.8281,0.7481,0.1536); rgb(196pt)=(0.8389,0.7457,0.1546); rgb(197pt)=(0.8495,0.7435,0.1564); rgb(198pt)=(0.86,0.7413,0.1587); rgb(199pt)=(0.8703,0.7392,0.1615); rgb(200pt)=(0.8804,0.7372,0.165); rgb(201pt)=(0.8903,0.7353,0.1695); rgb(202pt)=(0.9,0.7336,0.1749); rgb(203pt)=(0.9093,0.7321,0.1815); rgb(204pt)=(0.9184,0.7308,0.189); rgb(205pt)=(0.9272,0.7298,0.1973); rgb(206pt)=(0.9357,0.729,0.2061); rgb(207pt)=(0.944,0.7285,0.2151); rgb(208pt)=(0.9523,0.7284,0.2237); rgb(209pt)=(0.9606,0.7285,0.2312); rgb(210pt)=(0.9689,0.7292,0.2373); rgb(211pt)=(0.977,0.7304,0.2418); rgb(212pt)=(0.9842,0.733,0.2446); rgb(213pt)=(0.99,0.7365,0.2429); rgb(214pt)=(0.9946,0.7407,0.2394); rgb(215pt)=(0.9966,0.7458,0.2351); rgb(216pt)=(0.9971,0.7513,0.2309); rgb(217pt)=(0.9972,0.7569,0.2267); rgb(218pt)=(0.9971,0.7626,0.2224); rgb(219pt)=(0.9969,0.7683,0.2181); rgb(220pt)=(0.9966,0.774,0.2138); rgb(221pt)=(0.9962,0.7798,0.2095); rgb(222pt)=(0.9957,0.7856,0.2053); rgb(223pt)=(0.9949,0.7915,0.2012); rgb(224pt)=(0.9938,0.7974,0.1974); rgb(225pt)=(0.9923,0.8034,0.1939); rgb(226pt)=(0.9906,0.8095,0.1906); rgb(227pt)=(0.9885,0.8156,0.1875); rgb(228pt)=(0.9861,0.8218,0.1846); rgb(229pt)=(0.9835,0.828,0.1817); rgb(230pt)=(0.9807,0.8342,0.1787); rgb(231pt)=(0.9778,0.8404,0.1757); rgb(232pt)=(0.9748,0.8467,0.1726); rgb(233pt)=(0.972,0.8529,0.1695); rgb(234pt)=(0.9694,0.8591,0.1665); rgb(235pt)=(0.9671,0.8654,0.1636); rgb(236pt)=(0.9651,0.8716,0.1608); rgb(237pt)=(0.9634,0.8778,0.1582); rgb(238pt)=(0.9619,0.884,0.1557); rgb(239pt)=(0.9608,0.8902,0.1532); rgb(240pt)=(0.9601,0.8963,0.1507); rgb(241pt)=(0.9596,0.9023,0.148); rgb(242pt)=(0.9595,0.9084,0.145); rgb(243pt)=(0.9597,0.9143,0.1418); rgb(244pt)=(0.9601,0.9203,0.1382); rgb(245pt)=(0.9608,0.9262,0.1344); rgb(246pt)=(0.9618,0.932,0.1304); rgb(247pt)=(0.9629,0.9379,0.1261); rgb(248pt)=(0.9642,0.9437,0.1216); rgb(249pt)=(0.9657,0.9494,0.1168); rgb(250pt)=(0.9674,0.9552,0.1116); rgb(251pt)=(0.9692,0.9609,0.1061); rgb(252pt)=(0.9711,0.9667,0.1001); rgb(253pt)=(0.973,0.9724,0.0938); rgb(254pt)=(0.9749,0.9782,0.0872); rgb(255pt)=(0.9769,0.9839,0.0805)}, mesh/rows=21]
table[row sep=crcr, point meta=\thisrow{c}] {%
%
x y z c\\
-10 -10 900 900\\
-10 -9 881 881\\
-10 -8 864 864\\
-10 -7 849 849\\
-10 -6 836 836\\
-10 -5 825 825\\
-10 -4 816 816\\
-10 -3 809 809\\
-10 -2 804 804\\
-10 -1 801 801\\
-10 0 800 800\\
-10 1 801 801\\
-10 2 804 804\\
-10 3 809 809\\
-10 4 816 816\\
-10 5 825 825\\
-10 6 836 836\\
-10 7 849 849\\
-10 8 864 864\\
-10 9 881 881\\
-10 10 900 900\\
-9 -10 748 748\\
-9 -9 729 729\\
-9 -8 712 712\\
-9 -7 697 697\\
-9 -6 684 684\\
-9 -5 673 673\\
-9 -4 664 664\\
-9 -3 657 657\\
-9 -2 652 652\\
-9 -1 649 649\\
-9 0 648 648\\
-9 1 649 649\\
-9 2 652 652\\
-9 3 657 657\\
-9 4 664 664\\
-9 5 673 673\\
-9 6 684 684\\
-9 7 697 697\\
-9 8 712 712\\
-9 9 729 729\\
-9 10 748 748\\
-8 -10 612 612\\
-8 -9 593 593\\
-8 -8 576 576\\
-8 -7 561 561\\
-8 -6 548 548\\
-8 -5 537 537\\
-8 -4 528 528\\
-8 -3 521 521\\
-8 -2 516 516\\
-8 -1 513 513\\
-8 0 512 512\\
-8 1 513 513\\
-8 2 516 516\\
-8 3 521 521\\
-8 4 528 528\\
-8 5 537 537\\
-8 6 548 548\\
-8 7 561 561\\
-8 8 576 576\\
-8 9 593 593\\
-8 10 612 612\\
-7 -10 492 492\\
-7 -9 473 473\\
-7 -8 456 456\\
-7 -7 441 441\\
-7 -6 428 428\\
-7 -5 417 417\\
-7 -4 408 408\\
-7 -3 401 401\\
-7 -2 396 396\\
-7 -1 393 393\\
-7 0 392 392\\
-7 1 393 393\\
-7 2 396 396\\
-7 3 401 401\\
-7 4 408 408\\
-7 5 417 417\\
-7 6 428 428\\
-7 7 441 441\\
-7 8 456 456\\
-7 9 473 473\\
-7 10 492 492\\
-6 -10 388 388\\
-6 -9 369 369\\
-6 -8 352 352\\
-6 -7 337 337\\
-6 -6 324 324\\
-6 -5 313 313\\
-6 -4 304 304\\
-6 -3 297 297\\
-6 -2 292 292\\
-6 -1 289 289\\
-6 0 288 288\\
-6 1 289 289\\
-6 2 292 292\\
-6 3 297 297\\
-6 4 304 304\\
-6 5 313 313\\
-6 6 324 324\\
-6 7 337 337\\
-6 8 352 352\\
-6 9 369 369\\
-6 10 388 388\\
-5 -10 300 300\\
-5 -9 281 281\\
-5 -8 264 264\\
-5 -7 249 249\\
-5 -6 236 236\\
-5 -5 225 225\\
-5 -4 216 216\\
-5 -3 209 209\\
-5 -2 204 204\\
-5 -1 201 201\\
-5 0 200 200\\
-5 1 201 201\\
-5 2 204 204\\
-5 3 209 209\\
-5 4 216 216\\
-5 5 225 225\\
-5 6 236 236\\
-5 7 249 249\\
-5 8 264 264\\
-5 9 281 281\\
-5 10 300 300\\
-4 -10 228 228\\
-4 -9 209 209\\
-4 -8 192 192\\
-4 -7 177 177\\
-4 -6 164 164\\
-4 -5 153 153\\
-4 -4 144 144\\
-4 -3 137 137\\
-4 -2 132 132\\
-4 -1 129 129\\
-4 0 128 128\\
-4 1 129 129\\
-4 2 132 132\\
-4 3 137 137\\
-4 4 144 144\\
-4 5 153 153\\
-4 6 164 164\\
-4 7 177 177\\
-4 8 192 192\\
-4 9 209 209\\
-4 10 228 228\\
-3 -10 172 172\\
-3 -9 153 153\\
-3 -8 136 136\\
-3 -7 121 121\\
-3 -6 108 108\\
-3 -5 97 97\\
-3 -4 88 88\\
-3 -3 81 81\\
-3 -2 76 76\\
-3 -1 73 73\\
-3 0 72 72\\
-3 1 73 73\\
-3 2 76 76\\
-3 3 81 81\\
-3 4 88 88\\
-3 5 97 97\\
-3 6 108 108\\
-3 7 121 121\\
-3 8 136 136\\
-3 9 153 153\\
-3 10 172 172\\
-2 -10 132 132\\
-2 -9 113 113\\
-2 -8 96 96\\
-2 -7 81 81\\
-2 -6 68 68\\
-2 -5 57 57\\
-2 -4 48 48\\
-2 -3 41 41\\
-2 -2 36 36\\
-2 -1 33 33\\
-2 0 32 32\\
-2 1 33 33\\
-2 2 36 36\\
-2 3 41 41\\
-2 4 48 48\\
-2 5 57 57\\
-2 6 68 68\\
-2 7 81 81\\
-2 8 96 96\\
-2 9 113 113\\
-2 10 132 132\\
-1 -10 108 108\\
-1 -9 89 89\\
-1 -8 72 72\\
-1 -7 57 57\\
-1 -6 44 44\\
-1 -5 33 33\\
-1 -4 24 24\\
-1 -3 17 17\\
-1 -2 12 12\\
-1 -1 9 9\\
-1 0 8 8\\
-1 1 9 9\\
-1 2 12 12\\
-1 3 17 17\\
-1 4 24 24\\
-1 5 33 33\\
-1 6 44 44\\
-1 7 57 57\\
-1 8 72 72\\
-1 9 89 89\\
-1 10 108 108\\
0 -10 100 100\\
0 -9 81 81\\
0 -8 64 64\\
0 -7 49 49\\
0 -6 36 36\\
0 -5 25 25\\
0 -4 16 16\\
0 -3 9 9\\
0 -2 4 4\\
0 -1 1 1\\
0 0 0 0\\
0 1 1 1\\
0 2 4 4\\
0 3 9 9\\
0 4 16 16\\
0 5 25 25\\
0 6 36 36\\
0 7 49 49\\
0 8 64 64\\
0 9 81 81\\
0 10 100 100\\
1 -10 108 108\\
1 -9 89 89\\
1 -8 72 72\\
1 -7 57 57\\
1 -6 44 44\\
1 -5 33 33\\
1 -4 24 24\\
1 -3 17 17\\
1 -2 12 12\\
1 -1 9 9\\
1 0 8 8\\
1 1 9 9\\
1 2 12 12\\
1 3 17 17\\
1 4 24 24\\
1 5 33 33\\
1 6 44 44\\
1 7 57 57\\
1 8 72 72\\
1 9 89 89\\
1 10 108 108\\
2 -10 132 132\\
2 -9 113 113\\
2 -8 96 96\\
2 -7 81 81\\
2 -6 68 68\\
2 -5 57 57\\
2 -4 48 48\\
2 -3 41 41\\
2 -2 36 36\\
2 -1 33 33\\
2 0 32 32\\
2 1 33 33\\
2 2 36 36\\
2 3 41 41\\
2 4 48 48\\
2 5 57 57\\
2 6 68 68\\
2 7 81 81\\
2 8 96 96\\
2 9 113 113\\
2 10 132 132\\
3 -10 172 172\\
3 -9 153 153\\
3 -8 136 136\\
3 -7 121 121\\
3 -6 108 108\\
3 -5 97 97\\
3 -4 88 88\\
3 -3 81 81\\
3 -2 76 76\\
3 -1 73 73\\
3 0 72 72\\
3 1 73 73\\
3 2 76 76\\
3 3 81 81\\
3 4 88 88\\
3 5 97 97\\
3 6 108 108\\
3 7 121 121\\
3 8 136 136\\
3 9 153 153\\
3 10 172 172\\
4 -10 228 228\\
4 -9 209 209\\
4 -8 192 192\\
4 -7 177 177\\
4 -6 164 164\\
4 -5 153 153\\
4 -4 144 144\\
4 -3 137 137\\
4 -2 132 132\\
4 -1 129 129\\
4 0 128 128\\
4 1 129 129\\
4 2 132 132\\
4 3 137 137\\
4 4 144 144\\
4 5 153 153\\
4 6 164 164\\
4 7 177 177\\
4 8 192 192\\
4 9 209 209\\
4 10 228 228\\
5 -10 300 300\\
5 -9 281 281\\
5 -8 264 264\\
5 -7 249 249\\
5 -6 236 236\\
5 -5 225 225\\
5 -4 216 216\\
5 -3 209 209\\
5 -2 204 204\\
5 -1 201 201\\
5 0 200 200\\
5 1 201 201\\
5 2 204 204\\
5 3 209 209\\
5 4 216 216\\
5 5 225 225\\
5 6 236 236\\
5 7 249 249\\
5 8 264 264\\
5 9 281 281\\
5 10 300 300\\
6 -10 388 388\\
6 -9 369 369\\
6 -8 352 352\\
6 -7 337 337\\
6 -6 324 324\\
6 -5 313 313\\
6 -4 304 304\\
6 -3 297 297\\
6 -2 292 292\\
6 -1 289 289\\
6 0 288 288\\
6 1 289 289\\
6 2 292 292\\
6 3 297 297\\
6 4 304 304\\
6 5 313 313\\
6 6 324 324\\
6 7 337 337\\
6 8 352 352\\
6 9 369 369\\
6 10 388 388\\
7 -10 492 492\\
7 -9 473 473\\
7 -8 456 456\\
7 -7 441 441\\
7 -6 428 428\\
7 -5 417 417\\
7 -4 408 408\\
7 -3 401 401\\
7 -2 396 396\\
7 -1 393 393\\
7 0 392 392\\
7 1 393 393\\
7 2 396 396\\
7 3 401 401\\
7 4 408 408\\
7 5 417 417\\
7 6 428 428\\
7 7 441 441\\
7 8 456 456\\
7 9 473 473\\
7 10 492 492\\
8 -10 612 612\\
8 -9 593 593\\
8 -8 576 576\\
8 -7 561 561\\
8 -6 548 548\\
8 -5 537 537\\
8 -4 528 528\\
8 -3 521 521\\
8 -2 516 516\\
8 -1 513 513\\
8 0 512 512\\
8 1 513 513\\
8 2 516 516\\
8 3 521 521\\
8 4 528 528\\
8 5 537 537\\
8 6 548 548\\
8 7 561 561\\
8 8 576 576\\
8 9 593 593\\
8 10 612 612\\
9 -10 748 748\\
9 -9 729 729\\
9 -8 712 712\\
9 -7 697 697\\
9 -6 684 684\\
9 -5 673 673\\
9 -4 664 664\\
9 -3 657 657\\
9 -2 652 652\\
9 -1 649 649\\
9 0 648 648\\
9 1 649 649\\
9 2 652 652\\
9 3 657 657\\
9 4 664 664\\
9 5 673 673\\
9 6 684 684\\
9 7 697 697\\
9 8 712 712\\
9 9 729 729\\
9 10 748 748\\
10 -10 900 900\\
10 -9 881 881\\
10 -8 864 864\\
10 -7 849 849\\
10 -6 836 836\\
10 -5 825 825\\
10 -4 816 816\\
10 -3 809 809\\
10 -2 804 804\\
10 -1 801 801\\
10 0 800 800\\
10 1 801 801\\
10 2 804 804\\
10 3 809 809\\
10 4 816 816\\
10 5 825 825\\
10 6 836 836\\
10 7 849 849\\
10 8 864 864\\
10 9 881 881\\
10 10 900 900\\
};
\end{axis}
\begin{axis}[%
width=0.737in,
height=1.524in,
at={(3.684in,0.491in)},
scale only axis,
xmin=-10,
xmax=10,
tick align=outside,
ymin=-10,
ymax=10,
zmin=0,
zmax=1000,
view={-37.5}{30},
axis background/.style={fill=white},
title style={yshift=1ex, font=\tiny\bfseries},
title={u=9},
axis x line*=bottom,
axis y line*=left,
axis z line*=left,
xmajorgrids,
ymajorgrids,
zmajorgrids
]
\addplot3[%
surf,
shader=flat, z buffer=sort, colormap={mymap}{[1pt] rgb(0pt)=(0.2422,0.1504,0.6603); rgb(1pt)=(0.2444,0.1534,0.6728); rgb(2pt)=(0.2464,0.1569,0.6847); rgb(3pt)=(0.2484,0.1607,0.6961); rgb(4pt)=(0.2503,0.1648,0.7071); rgb(5pt)=(0.2522,0.1689,0.7179); rgb(6pt)=(0.254,0.1732,0.7286); rgb(7pt)=(0.2558,0.1773,0.7393); rgb(8pt)=(0.2576,0.1814,0.7501); rgb(9pt)=(0.2594,0.1854,0.761); rgb(11pt)=(0.2628,0.1932,0.7828); rgb(12pt)=(0.2645,0.1972,0.7937); rgb(13pt)=(0.2661,0.2011,0.8043); rgb(14pt)=(0.2676,0.2052,0.8148); rgb(15pt)=(0.2691,0.2094,0.8249); rgb(16pt)=(0.2704,0.2138,0.8346); rgb(17pt)=(0.2717,0.2184,0.8439); rgb(18pt)=(0.2729,0.2231,0.8528); rgb(19pt)=(0.274,0.228,0.8612); rgb(20pt)=(0.2749,0.233,0.8692); rgb(21pt)=(0.2758,0.2382,0.8767); rgb(22pt)=(0.2766,0.2435,0.884); rgb(23pt)=(0.2774,0.2489,0.8908); rgb(24pt)=(0.2781,0.2543,0.8973); rgb(25pt)=(0.2788,0.2598,0.9035); rgb(26pt)=(0.2794,0.2653,0.9094); rgb(27pt)=(0.2798,0.2708,0.915); rgb(28pt)=(0.2802,0.2764,0.9204); rgb(29pt)=(0.2806,0.2819,0.9255); rgb(30pt)=(0.2809,0.2875,0.9305); rgb(31pt)=(0.2811,0.293,0.9352); rgb(32pt)=(0.2813,0.2985,0.9397); rgb(33pt)=(0.2814,0.304,0.9441); rgb(34pt)=(0.2814,0.3095,0.9483); rgb(35pt)=(0.2813,0.315,0.9524); rgb(36pt)=(0.2811,0.3204,0.9563); rgb(37pt)=(0.2809,0.3259,0.96); rgb(38pt)=(0.2807,0.3313,0.9636); rgb(39pt)=(0.2803,0.3367,0.967); rgb(40pt)=(0.2798,0.3421,0.9702); rgb(41pt)=(0.2791,0.3475,0.9733); rgb(42pt)=(0.2784,0.3529,0.9763); rgb(43pt)=(0.2776,0.3583,0.9791); rgb(44pt)=(0.2766,0.3638,0.9817); rgb(45pt)=(0.2754,0.3693,0.984); rgb(46pt)=(0.2741,0.3748,0.9862); rgb(47pt)=(0.2726,0.3804,0.9881); rgb(48pt)=(0.271,0.386,0.9898); rgb(49pt)=(0.2691,0.3916,0.9912); rgb(50pt)=(0.267,0.3973,0.9924); rgb(51pt)=(0.2647,0.403,0.9935); rgb(52pt)=(0.2621,0.4088,0.9946); rgb(53pt)=(0.2591,0.4145,0.9955); rgb(54pt)=(0.2556,0.4203,0.9965); rgb(55pt)=(0.2517,0.4261,0.9974); rgb(56pt)=(0.2473,0.4319,0.9983); rgb(57pt)=(0.2424,0.4378,0.9991); rgb(58pt)=(0.2369,0.4437,0.9996); rgb(59pt)=(0.2311,0.4497,0.9995); rgb(60pt)=(0.225,0.4559,0.9985); rgb(61pt)=(0.2189,0.462,0.9968); rgb(62pt)=(0.2128,0.4682,0.9948); rgb(63pt)=(0.2066,0.4743,0.9926); rgb(64pt)=(0.2006,0.4803,0.9906); rgb(65pt)=(0.195,0.4861,0.9887); rgb(66pt)=(0.1903,0.4919,0.9867); rgb(67pt)=(0.1869,0.4975,0.9844); rgb(68pt)=(0.1847,0.503,0.9819); rgb(69pt)=(0.1831,0.5084,0.9793); rgb(70pt)=(0.1818,0.5138,0.9766); rgb(71pt)=(0.1806,0.5191,0.9738); rgb(72pt)=(0.1795,0.5244,0.9709); rgb(73pt)=(0.1785,0.5296,0.9677); rgb(74pt)=(0.1778,0.5349,0.9641); rgb(75pt)=(0.1773,0.5401,0.9602); rgb(76pt)=(0.1768,0.5452,0.956); rgb(77pt)=(0.1764,0.5504,0.9516); rgb(78pt)=(0.1755,0.5554,0.9473); rgb(79pt)=(0.174,0.5605,0.9432); rgb(80pt)=(0.1716,0.5655,0.9393); rgb(81pt)=(0.1686,0.5705,0.9357); rgb(82pt)=(0.1649,0.5755,0.9323); rgb(83pt)=(0.161,0.5805,0.9289); rgb(84pt)=(0.1573,0.5854,0.9254); rgb(85pt)=(0.154,0.5902,0.9218); rgb(86pt)=(0.1513,0.595,0.9182); rgb(87pt)=(0.1492,0.5997,0.9147); rgb(88pt)=(0.1475,0.6043,0.9113); rgb(89pt)=(0.1461,0.6089,0.908); rgb(90pt)=(0.1446,0.6135,0.905); rgb(91pt)=(0.1429,0.618,0.9022); rgb(92pt)=(0.1408,0.6226,0.8998); rgb(93pt)=(0.1383,0.6272,0.8975); rgb(94pt)=(0.1354,0.6317,0.8953); rgb(95pt)=(0.1321,0.6363,0.8932); rgb(96pt)=(0.1288,0.6408,0.891); rgb(97pt)=(0.1253,0.6453,0.8887); rgb(98pt)=(0.1219,0.6497,0.8862); rgb(99pt)=(0.1185,0.6541,0.8834); rgb(100pt)=(0.1152,0.6584,0.8804); rgb(101pt)=(0.1119,0.6627,0.877); rgb(102pt)=(0.1085,0.6669,0.8734); rgb(103pt)=(0.1048,0.671,0.8695); rgb(104pt)=(0.1009,0.675,0.8653); rgb(105pt)=(0.0964,0.6789,0.8609); rgb(106pt)=(0.0914,0.6828,0.8562); rgb(107pt)=(0.0855,0.6865,0.8513); rgb(108pt)=(0.0789,0.6902,0.8462); rgb(109pt)=(0.0713,0.6938,0.8409); rgb(110pt)=(0.0628,0.6972,0.8355); rgb(111pt)=(0.0535,0.7006,0.8299); rgb(112pt)=(0.0433,0.7039,0.8242); rgb(113pt)=(0.0328,0.7071,0.8183); rgb(114pt)=(0.0234,0.7103,0.8124); rgb(115pt)=(0.0155,0.7133,0.8064); rgb(116pt)=(0.0091,0.7163,0.8003); rgb(117pt)=(0.0046,0.7192,0.7941); rgb(118pt)=(0.0019,0.722,0.7878); rgb(119pt)=(0.0009,0.7248,0.7815); rgb(120pt)=(0.0018,0.7275,0.7752); rgb(121pt)=(0.0046,0.7301,0.7688); rgb(122pt)=(0.0094,0.7327,0.7623); rgb(123pt)=(0.0162,0.7352,0.7558); rgb(124pt)=(0.0253,0.7376,0.7492); rgb(125pt)=(0.0369,0.74,0.7426); rgb(126pt)=(0.0504,0.7423,0.7359); rgb(127pt)=(0.0638,0.7446,0.7292); rgb(128pt)=(0.077,0.7468,0.7224); rgb(129pt)=(0.0899,0.7489,0.7156); rgb(130pt)=(0.1023,0.751,0.7088); rgb(131pt)=(0.1141,0.7531,0.7019); rgb(132pt)=(0.1252,0.7552,0.695); rgb(133pt)=(0.1354,0.7572,0.6881); rgb(134pt)=(0.1448,0.7593,0.6812); rgb(135pt)=(0.1532,0.7614,0.6741); rgb(136pt)=(0.1609,0.7635,0.6671); rgb(137pt)=(0.1678,0.7656,0.6599); rgb(138pt)=(0.1741,0.7678,0.6527); rgb(139pt)=(0.1799,0.7699,0.6454); rgb(140pt)=(0.1853,0.7721,0.6379); rgb(141pt)=(0.1905,0.7743,0.6303); rgb(142pt)=(0.1954,0.7765,0.6225); rgb(143pt)=(0.2003,0.7787,0.6146); rgb(144pt)=(0.2061,0.7808,0.6065); rgb(145pt)=(0.2118,0.7828,0.5983); rgb(146pt)=(0.2178,0.7849,0.5899); rgb(147pt)=(0.2244,0.7869,0.5813); rgb(148pt)=(0.2318,0.7887,0.5725); rgb(149pt)=(0.2401,0.7905,0.5636); rgb(150pt)=(0.2491,0.7922,0.5546); rgb(151pt)=(0.2589,0.7937,0.5454); rgb(152pt)=(0.2695,0.7951,0.536); rgb(153pt)=(0.2809,0.7964,0.5266); rgb(154pt)=(0.2929,0.7975,0.517); rgb(155pt)=(0.3052,0.7985,0.5074); rgb(156pt)=(0.3176,0.7994,0.4975); rgb(157pt)=(0.3301,0.8002,0.4876); rgb(158pt)=(0.3424,0.8009,0.4774); rgb(159pt)=(0.3548,0.8016,0.4669); rgb(160pt)=(0.3671,0.8021,0.4563); rgb(161pt)=(0.3795,0.8026,0.4454); rgb(162pt)=(0.3921,0.8029,0.4344); rgb(163pt)=(0.405,0.8031,0.4233); rgb(164pt)=(0.4184,0.803,0.4122); rgb(165pt)=(0.4322,0.8028,0.4013); rgb(166pt)=(0.4463,0.8024,0.3904); rgb(167pt)=(0.4608,0.8018,0.3797); rgb(168pt)=(0.4753,0.8011,0.3691); rgb(169pt)=(0.4899,0.8002,0.3586); rgb(170pt)=(0.5044,0.7993,0.348); rgb(171pt)=(0.5187,0.7982,0.3374); rgb(172pt)=(0.5329,0.797,0.3267); rgb(173pt)=(0.547,0.7957,0.3159); rgb(175pt)=(0.5748,0.7929,0.2941); rgb(176pt)=(0.5886,0.7913,0.2833); rgb(177pt)=(0.6024,0.7896,0.2726); rgb(178pt)=(0.6161,0.7878,0.2622); rgb(179pt)=(0.6297,0.7859,0.2521); rgb(180pt)=(0.6433,0.7839,0.2423); rgb(181pt)=(0.6567,0.7818,0.2329); rgb(182pt)=(0.6701,0.7796,0.2239); rgb(183pt)=(0.6833,0.7773,0.2155); rgb(184pt)=(0.6963,0.775,0.2075); rgb(185pt)=(0.7091,0.7727,0.1998); rgb(186pt)=(0.7218,0.7703,0.1924); rgb(187pt)=(0.7344,0.7679,0.1852); rgb(188pt)=(0.7468,0.7654,0.1782); rgb(189pt)=(0.759,0.7629,0.1717); rgb(190pt)=(0.771,0.7604,0.1658); rgb(191pt)=(0.7829,0.7579,0.1608); rgb(192pt)=(0.7945,0.7554,0.157); rgb(193pt)=(0.806,0.7529,0.1546); rgb(194pt)=(0.8172,0.7505,0.1535); rgb(195pt)=(0.8281,0.7481,0.1536); rgb(196pt)=(0.8389,0.7457,0.1546); rgb(197pt)=(0.8495,0.7435,0.1564); rgb(198pt)=(0.86,0.7413,0.1587); rgb(199pt)=(0.8703,0.7392,0.1615); rgb(200pt)=(0.8804,0.7372,0.165); rgb(201pt)=(0.8903,0.7353,0.1695); rgb(202pt)=(0.9,0.7336,0.1749); rgb(203pt)=(0.9093,0.7321,0.1815); rgb(204pt)=(0.9184,0.7308,0.189); rgb(205pt)=(0.9272,0.7298,0.1973); rgb(206pt)=(0.9357,0.729,0.2061); rgb(207pt)=(0.944,0.7285,0.2151); rgb(208pt)=(0.9523,0.7284,0.2237); rgb(209pt)=(0.9606,0.7285,0.2312); rgb(210pt)=(0.9689,0.7292,0.2373); rgb(211pt)=(0.977,0.7304,0.2418); rgb(212pt)=(0.9842,0.733,0.2446); rgb(213pt)=(0.99,0.7365,0.2429); rgb(214pt)=(0.9946,0.7407,0.2394); rgb(215pt)=(0.9966,0.7458,0.2351); rgb(216pt)=(0.9971,0.7513,0.2309); rgb(217pt)=(0.9972,0.7569,0.2267); rgb(218pt)=(0.9971,0.7626,0.2224); rgb(219pt)=(0.9969,0.7683,0.2181); rgb(220pt)=(0.9966,0.774,0.2138); rgb(221pt)=(0.9962,0.7798,0.2095); rgb(222pt)=(0.9957,0.7856,0.2053); rgb(223pt)=(0.9949,0.7915,0.2012); rgb(224pt)=(0.9938,0.7974,0.1974); rgb(225pt)=(0.9923,0.8034,0.1939); rgb(226pt)=(0.9906,0.8095,0.1906); rgb(227pt)=(0.9885,0.8156,0.1875); rgb(228pt)=(0.9861,0.8218,0.1846); rgb(229pt)=(0.9835,0.828,0.1817); rgb(230pt)=(0.9807,0.8342,0.1787); rgb(231pt)=(0.9778,0.8404,0.1757); rgb(232pt)=(0.9748,0.8467,0.1726); rgb(233pt)=(0.972,0.8529,0.1695); rgb(234pt)=(0.9694,0.8591,0.1665); rgb(235pt)=(0.9671,0.8654,0.1636); rgb(236pt)=(0.9651,0.8716,0.1608); rgb(237pt)=(0.9634,0.8778,0.1582); rgb(238pt)=(0.9619,0.884,0.1557); rgb(239pt)=(0.9608,0.8902,0.1532); rgb(240pt)=(0.9601,0.8963,0.1507); rgb(241pt)=(0.9596,0.9023,0.148); rgb(242pt)=(0.9595,0.9084,0.145); rgb(243pt)=(0.9597,0.9143,0.1418); rgb(244pt)=(0.9601,0.9203,0.1382); rgb(245pt)=(0.9608,0.9262,0.1344); rgb(246pt)=(0.9618,0.932,0.1304); rgb(247pt)=(0.9629,0.9379,0.1261); rgb(248pt)=(0.9642,0.9437,0.1216); rgb(249pt)=(0.9657,0.9494,0.1168); rgb(250pt)=(0.9674,0.9552,0.1116); rgb(251pt)=(0.9692,0.9609,0.1061); rgb(252pt)=(0.9711,0.9667,0.1001); rgb(253pt)=(0.973,0.9724,0.0938); rgb(254pt)=(0.9749,0.9782,0.0872); rgb(255pt)=(0.9769,0.9839,0.0805)}, mesh/rows=21]
table[row sep=crcr, point meta=\thisrow{c}] {%
%
x y z c\\
-10 -10 1000 1000\\
-10 -9 981 981\\
-10 -8 964 964\\
-10 -7 949 949\\
-10 -6 936 936\\
-10 -5 925 925\\
-10 -4 916 916\\
-10 -3 909 909\\
-10 -2 904 904\\
-10 -1 901 901\\
-10 0 900 900\\
-10 1 901 901\\
-10 2 904 904\\
-10 3 909 909\\
-10 4 916 916\\
-10 5 925 925\\
-10 6 936 936\\
-10 7 949 949\\
-10 8 964 964\\
-10 9 981 981\\
-10 10 1000 1000\\
-9 -10 829 829\\
-9 -9 810 810\\
-9 -8 793 793\\
-9 -7 778 778\\
-9 -6 765 765\\
-9 -5 754 754\\
-9 -4 745 745\\
-9 -3 738 738\\
-9 -2 733 733\\
-9 -1 730 730\\
-9 0 729 729\\
-9 1 730 730\\
-9 2 733 733\\
-9 3 738 738\\
-9 4 745 745\\
-9 5 754 754\\
-9 6 765 765\\
-9 7 778 778\\
-9 8 793 793\\
-9 9 810 810\\
-9 10 829 829\\
-8 -10 676 676\\
-8 -9 657 657\\
-8 -8 640 640\\
-8 -7 625 625\\
-8 -6 612 612\\
-8 -5 601 601\\
-8 -4 592 592\\
-8 -3 585 585\\
-8 -2 580 580\\
-8 -1 577 577\\
-8 0 576 576\\
-8 1 577 577\\
-8 2 580 580\\
-8 3 585 585\\
-8 4 592 592\\
-8 5 601 601\\
-8 6 612 612\\
-8 7 625 625\\
-8 8 640 640\\
-8 9 657 657\\
-8 10 676 676\\
-7 -10 541 541\\
-7 -9 522 522\\
-7 -8 505 505\\
-7 -7 490 490\\
-7 -6 477 477\\
-7 -5 466 466\\
-7 -4 457 457\\
-7 -3 450 450\\
-7 -2 445 445\\
-7 -1 442 442\\
-7 0 441 441\\
-7 1 442 442\\
-7 2 445 445\\
-7 3 450 450\\
-7 4 457 457\\
-7 5 466 466\\
-7 6 477 477\\
-7 7 490 490\\
-7 8 505 505\\
-7 9 522 522\\
-7 10 541 541\\
-6 -10 424 424\\
-6 -9 405 405\\
-6 -8 388 388\\
-6 -7 373 373\\
-6 -6 360 360\\
-6 -5 349 349\\
-6 -4 340 340\\
-6 -3 333 333\\
-6 -2 328 328\\
-6 -1 325 325\\
-6 0 324 324\\
-6 1 325 325\\
-6 2 328 328\\
-6 3 333 333\\
-6 4 340 340\\
-6 5 349 349\\
-6 6 360 360\\
-6 7 373 373\\
-6 8 388 388\\
-6 9 405 405\\
-6 10 424 424\\
-5 -10 325 325\\
-5 -9 306 306\\
-5 -8 289 289\\
-5 -7 274 274\\
-5 -6 261 261\\
-5 -5 250 250\\
-5 -4 241 241\\
-5 -3 234 234\\
-5 -2 229 229\\
-5 -1 226 226\\
-5 0 225 225\\
-5 1 226 226\\
-5 2 229 229\\
-5 3 234 234\\
-5 4 241 241\\
-5 5 250 250\\
-5 6 261 261\\
-5 7 274 274\\
-5 8 289 289\\
-5 9 306 306\\
-5 10 325 325\\
-4 -10 244 244\\
-4 -9 225 225\\
-4 -8 208 208\\
-4 -7 193 193\\
-4 -6 180 180\\
-4 -5 169 169\\
-4 -4 160 160\\
-4 -3 153 153\\
-4 -2 148 148\\
-4 -1 145 145\\
-4 0 144 144\\
-4 1 145 145\\
-4 2 148 148\\
-4 3 153 153\\
-4 4 160 160\\
-4 5 169 169\\
-4 6 180 180\\
-4 7 193 193\\
-4 8 208 208\\
-4 9 225 225\\
-4 10 244 244\\
-3 -10 181 181\\
-3 -9 162 162\\
-3 -8 145 145\\
-3 -7 130 130\\
-3 -6 117 117\\
-3 -5 106 106\\
-3 -4 97 97\\
-3 -3 90 90\\
-3 -2 85 85\\
-3 -1 82 82\\
-3 0 81 81\\
-3 1 82 82\\
-3 2 85 85\\
-3 3 90 90\\
-3 4 97 97\\
-3 5 106 106\\
-3 6 117 117\\
-3 7 130 130\\
-3 8 145 145\\
-3 9 162 162\\
-3 10 181 181\\
-2 -10 136 136\\
-2 -9 117 117\\
-2 -8 100 100\\
-2 -7 85 85\\
-2 -6 72 72\\
-2 -5 61 61\\
-2 -4 52 52\\
-2 -3 45 45\\
-2 -2 40 40\\
-2 -1 37 37\\
-2 0 36 36\\
-2 1 37 37\\
-2 2 40 40\\
-2 3 45 45\\
-2 4 52 52\\
-2 5 61 61\\
-2 6 72 72\\
-2 7 85 85\\
-2 8 100 100\\
-2 9 117 117\\
-2 10 136 136\\
-1 -10 109 109\\
-1 -9 90 90\\
-1 -8 73 73\\
-1 -7 58 58\\
-1 -6 45 45\\
-1 -5 34 34\\
-1 -4 25 25\\
-1 -3 18 18\\
-1 -2 13 13\\
-1 -1 10 10\\
-1 0 9 9\\
-1 1 10 10\\
-1 2 13 13\\
-1 3 18 18\\
-1 4 25 25\\
-1 5 34 34\\
-1 6 45 45\\
-1 7 58 58\\
-1 8 73 73\\
-1 9 90 90\\
-1 10 109 109\\
0 -10 100 100\\
0 -9 81 81\\
0 -8 64 64\\
0 -7 49 49\\
0 -6 36 36\\
0 -5 25 25\\
0 -4 16 16\\
0 -3 9 9\\
0 -2 4 4\\
0 -1 1 1\\
0 0 0 0\\
0 1 1 1\\
0 2 4 4\\
0 3 9 9\\
0 4 16 16\\
0 5 25 25\\
0 6 36 36\\
0 7 49 49\\
0 8 64 64\\
0 9 81 81\\
0 10 100 100\\
1 -10 109 109\\
1 -9 90 90\\
1 -8 73 73\\
1 -7 58 58\\
1 -6 45 45\\
1 -5 34 34\\
1 -4 25 25\\
1 -3 18 18\\
1 -2 13 13\\
1 -1 10 10\\
1 0 9 9\\
1 1 10 10\\
1 2 13 13\\
1 3 18 18\\
1 4 25 25\\
1 5 34 34\\
1 6 45 45\\
1 7 58 58\\
1 8 73 73\\
1 9 90 90\\
1 10 109 109\\
2 -10 136 136\\
2 -9 117 117\\
2 -8 100 100\\
2 -7 85 85\\
2 -6 72 72\\
2 -5 61 61\\
2 -4 52 52\\
2 -3 45 45\\
2 -2 40 40\\
2 -1 37 37\\
2 0 36 36\\
2 1 37 37\\
2 2 40 40\\
2 3 45 45\\
2 4 52 52\\
2 5 61 61\\
2 6 72 72\\
2 7 85 85\\
2 8 100 100\\
2 9 117 117\\
2 10 136 136\\
3 -10 181 181\\
3 -9 162 162\\
3 -8 145 145\\
3 -7 130 130\\
3 -6 117 117\\
3 -5 106 106\\
3 -4 97 97\\
3 -3 90 90\\
3 -2 85 85\\
3 -1 82 82\\
3 0 81 81\\
3 1 82 82\\
3 2 85 85\\
3 3 90 90\\
3 4 97 97\\
3 5 106 106\\
3 6 117 117\\
3 7 130 130\\
3 8 145 145\\
3 9 162 162\\
3 10 181 181\\
4 -10 244 244\\
4 -9 225 225\\
4 -8 208 208\\
4 -7 193 193\\
4 -6 180 180\\
4 -5 169 169\\
4 -4 160 160\\
4 -3 153 153\\
4 -2 148 148\\
4 -1 145 145\\
4 0 144 144\\
4 1 145 145\\
4 2 148 148\\
4 3 153 153\\
4 4 160 160\\
4 5 169 169\\
4 6 180 180\\
4 7 193 193\\
4 8 208 208\\
4 9 225 225\\
4 10 244 244\\
5 -10 325 325\\
5 -9 306 306\\
5 -8 289 289\\
5 -7 274 274\\
5 -6 261 261\\
5 -5 250 250\\
5 -4 241 241\\
5 -3 234 234\\
5 -2 229 229\\
5 -1 226 226\\
5 0 225 225\\
5 1 226 226\\
5 2 229 229\\
5 3 234 234\\
5 4 241 241\\
5 5 250 250\\
5 6 261 261\\
5 7 274 274\\
5 8 289 289\\
5 9 306 306\\
5 10 325 325\\
6 -10 424 424\\
6 -9 405 405\\
6 -8 388 388\\
6 -7 373 373\\
6 -6 360 360\\
6 -5 349 349\\
6 -4 340 340\\
6 -3 333 333\\
6 -2 328 328\\
6 -1 325 325\\
6 0 324 324\\
6 1 325 325\\
6 2 328 328\\
6 3 333 333\\
6 4 340 340\\
6 5 349 349\\
6 6 360 360\\
6 7 373 373\\
6 8 388 388\\
6 9 405 405\\
6 10 424 424\\
7 -10 541 541\\
7 -9 522 522\\
7 -8 505 505\\
7 -7 490 490\\
7 -6 477 477\\
7 -5 466 466\\
7 -4 457 457\\
7 -3 450 450\\
7 -2 445 445\\
7 -1 442 442\\
7 0 441 441\\
7 1 442 442\\
7 2 445 445\\
7 3 450 450\\
7 4 457 457\\
7 5 466 466\\
7 6 477 477\\
7 7 490 490\\
7 8 505 505\\
7 9 522 522\\
7 10 541 541\\
8 -10 676 676\\
8 -9 657 657\\
8 -8 640 640\\
8 -7 625 625\\
8 -6 612 612\\
8 -5 601 601\\
8 -4 592 592\\
8 -3 585 585\\
8 -2 580 580\\
8 -1 577 577\\
8 0 576 576\\
8 1 577 577\\
8 2 580 580\\
8 3 585 585\\
8 4 592 592\\
8 5 601 601\\
8 6 612 612\\
8 7 625 625\\
8 8 640 640\\
8 9 657 657\\
8 10 676 676\\
9 -10 829 829\\
9 -9 810 810\\
9 -8 793 793\\
9 -7 778 778\\
9 -6 765 765\\
9 -5 754 754\\
9 -4 745 745\\
9 -3 738 738\\
9 -2 733 733\\
9 -1 730 730\\
9 0 729 729\\
9 1 730 730\\
9 2 733 733\\
9 3 738 738\\
9 4 745 745\\
9 5 754 754\\
9 6 765 765\\
9 7 778 778\\
9 8 793 793\\
9 9 810 810\\
9 10 829 829\\
10 -10 1000 1000\\
10 -9 981 981\\
10 -8 964 964\\
10 -7 949 949\\
10 -6 936 936\\
10 -5 925 925\\
10 -4 916 916\\
10 -3 909 909\\
10 -2 904 904\\
10 -1 901 901\\
10 0 900 900\\
10 1 901 901\\
10 2 904 904\\
10 3 909 909\\
10 4 916 916\\
10 5 925 925\\
10 6 936 936\\
10 7 949 949\\
10 8 964 964\\
10 9 981 981\\
10 10 1000 1000\\
};
\end{axis}
\begin{axis}[%
width=0.737in,
height=1.524in,
at={(4.654in,0.491in)},
scale only axis,
xmin=-10,
xmax=10,
tick align=outside,
ymin=-10,
ymax=10,
zmin=0,
zmax=1100,
view={-37.5}{30},
axis background/.style={fill=white},
title style={yshift=1ex, font=\tiny\bfseries},
title={u=10},
axis x line*=bottom,
axis y line*=left,
axis z line*=left,
xmajorgrids,
ymajorgrids,
zmajorgrids
]
\addplot3[%
surf,
shader=flat, z buffer=sort, colormap={mymap}{[1pt] rgb(0pt)=(0.2422,0.1504,0.6603); rgb(1pt)=(0.2444,0.1534,0.6728); rgb(2pt)=(0.2464,0.1569,0.6847); rgb(3pt)=(0.2484,0.1607,0.6961); rgb(4pt)=(0.2503,0.1648,0.7071); rgb(5pt)=(0.2522,0.1689,0.7179); rgb(6pt)=(0.254,0.1732,0.7286); rgb(7pt)=(0.2558,0.1773,0.7393); rgb(8pt)=(0.2576,0.1814,0.7501); rgb(9pt)=(0.2594,0.1854,0.761); rgb(11pt)=(0.2628,0.1932,0.7828); rgb(12pt)=(0.2645,0.1972,0.7937); rgb(13pt)=(0.2661,0.2011,0.8043); rgb(14pt)=(0.2676,0.2052,0.8148); rgb(15pt)=(0.2691,0.2094,0.8249); rgb(16pt)=(0.2704,0.2138,0.8346); rgb(17pt)=(0.2717,0.2184,0.8439); rgb(18pt)=(0.2729,0.2231,0.8528); rgb(19pt)=(0.274,0.228,0.8612); rgb(20pt)=(0.2749,0.233,0.8692); rgb(21pt)=(0.2758,0.2382,0.8767); rgb(22pt)=(0.2766,0.2435,0.884); rgb(23pt)=(0.2774,0.2489,0.8908); rgb(24pt)=(0.2781,0.2543,0.8973); rgb(25pt)=(0.2788,0.2598,0.9035); rgb(26pt)=(0.2794,0.2653,0.9094); rgb(27pt)=(0.2798,0.2708,0.915); rgb(28pt)=(0.2802,0.2764,0.9204); rgb(29pt)=(0.2806,0.2819,0.9255); rgb(30pt)=(0.2809,0.2875,0.9305); rgb(31pt)=(0.2811,0.293,0.9352); rgb(32pt)=(0.2813,0.2985,0.9397); rgb(33pt)=(0.2814,0.304,0.9441); rgb(34pt)=(0.2814,0.3095,0.9483); rgb(35pt)=(0.2813,0.315,0.9524); rgb(36pt)=(0.2811,0.3204,0.9563); rgb(37pt)=(0.2809,0.3259,0.96); rgb(38pt)=(0.2807,0.3313,0.9636); rgb(39pt)=(0.2803,0.3367,0.967); rgb(40pt)=(0.2798,0.3421,0.9702); rgb(41pt)=(0.2791,0.3475,0.9733); rgb(42pt)=(0.2784,0.3529,0.9763); rgb(43pt)=(0.2776,0.3583,0.9791); rgb(44pt)=(0.2766,0.3638,0.9817); rgb(45pt)=(0.2754,0.3693,0.984); rgb(46pt)=(0.2741,0.3748,0.9862); rgb(47pt)=(0.2726,0.3804,0.9881); rgb(48pt)=(0.271,0.386,0.9898); rgb(49pt)=(0.2691,0.3916,0.9912); rgb(50pt)=(0.267,0.3973,0.9924); rgb(51pt)=(0.2647,0.403,0.9935); rgb(52pt)=(0.2621,0.4088,0.9946); rgb(53pt)=(0.2591,0.4145,0.9955); rgb(54pt)=(0.2556,0.4203,0.9965); rgb(55pt)=(0.2517,0.4261,0.9974); rgb(56pt)=(0.2473,0.4319,0.9983); rgb(57pt)=(0.2424,0.4378,0.9991); rgb(58pt)=(0.2369,0.4437,0.9996); rgb(59pt)=(0.2311,0.4497,0.9995); rgb(60pt)=(0.225,0.4559,0.9985); rgb(61pt)=(0.2189,0.462,0.9968); rgb(62pt)=(0.2128,0.4682,0.9948); rgb(63pt)=(0.2066,0.4743,0.9926); rgb(64pt)=(0.2006,0.4803,0.9906); rgb(65pt)=(0.195,0.4861,0.9887); rgb(66pt)=(0.1903,0.4919,0.9867); rgb(67pt)=(0.1869,0.4975,0.9844); rgb(68pt)=(0.1847,0.503,0.9819); rgb(69pt)=(0.1831,0.5084,0.9793); rgb(70pt)=(0.1818,0.5138,0.9766); rgb(71pt)=(0.1806,0.5191,0.9738); rgb(72pt)=(0.1795,0.5244,0.9709); rgb(73pt)=(0.1785,0.5296,0.9677); rgb(74pt)=(0.1778,0.5349,0.9641); rgb(75pt)=(0.1773,0.5401,0.9602); rgb(76pt)=(0.1768,0.5452,0.956); rgb(77pt)=(0.1764,0.5504,0.9516); rgb(78pt)=(0.1755,0.5554,0.9473); rgb(79pt)=(0.174,0.5605,0.9432); rgb(80pt)=(0.1716,0.5655,0.9393); rgb(81pt)=(0.1686,0.5705,0.9357); rgb(82pt)=(0.1649,0.5755,0.9323); rgb(83pt)=(0.161,0.5805,0.9289); rgb(84pt)=(0.1573,0.5854,0.9254); rgb(85pt)=(0.154,0.5902,0.9218); rgb(86pt)=(0.1513,0.595,0.9182); rgb(87pt)=(0.1492,0.5997,0.9147); rgb(88pt)=(0.1475,0.6043,0.9113); rgb(89pt)=(0.1461,0.6089,0.908); rgb(90pt)=(0.1446,0.6135,0.905); rgb(91pt)=(0.1429,0.618,0.9022); rgb(92pt)=(0.1408,0.6226,0.8998); rgb(93pt)=(0.1383,0.6272,0.8975); rgb(94pt)=(0.1354,0.6317,0.8953); rgb(95pt)=(0.1321,0.6363,0.8932); rgb(96pt)=(0.1288,0.6408,0.891); rgb(97pt)=(0.1253,0.6453,0.8887); rgb(98pt)=(0.1219,0.6497,0.8862); rgb(99pt)=(0.1185,0.6541,0.8834); rgb(100pt)=(0.1152,0.6584,0.8804); rgb(101pt)=(0.1119,0.6627,0.877); rgb(102pt)=(0.1085,0.6669,0.8734); rgb(103pt)=(0.1048,0.671,0.8695); rgb(104pt)=(0.1009,0.675,0.8653); rgb(105pt)=(0.0964,0.6789,0.8609); rgb(106pt)=(0.0914,0.6828,0.8562); rgb(107pt)=(0.0855,0.6865,0.8513); rgb(108pt)=(0.0789,0.6902,0.8462); rgb(109pt)=(0.0713,0.6938,0.8409); rgb(110pt)=(0.0628,0.6972,0.8355); rgb(111pt)=(0.0535,0.7006,0.8299); rgb(112pt)=(0.0433,0.7039,0.8242); rgb(113pt)=(0.0328,0.7071,0.8183); rgb(114pt)=(0.0234,0.7103,0.8124); rgb(115pt)=(0.0155,0.7133,0.8064); rgb(116pt)=(0.0091,0.7163,0.8003); rgb(117pt)=(0.0046,0.7192,0.7941); rgb(118pt)=(0.0019,0.722,0.7878); rgb(119pt)=(0.0009,0.7248,0.7815); rgb(120pt)=(0.0018,0.7275,0.7752); rgb(121pt)=(0.0046,0.7301,0.7688); rgb(122pt)=(0.0094,0.7327,0.7623); rgb(123pt)=(0.0162,0.7352,0.7558); rgb(124pt)=(0.0253,0.7376,0.7492); rgb(125pt)=(0.0369,0.74,0.7426); rgb(126pt)=(0.0504,0.7423,0.7359); rgb(127pt)=(0.0638,0.7446,0.7292); rgb(128pt)=(0.077,0.7468,0.7224); rgb(129pt)=(0.0899,0.7489,0.7156); rgb(130pt)=(0.1023,0.751,0.7088); rgb(131pt)=(0.1141,0.7531,0.7019); rgb(132pt)=(0.1252,0.7552,0.695); rgb(133pt)=(0.1354,0.7572,0.6881); rgb(134pt)=(0.1448,0.7593,0.6812); rgb(135pt)=(0.1532,0.7614,0.6741); rgb(136pt)=(0.1609,0.7635,0.6671); rgb(137pt)=(0.1678,0.7656,0.6599); rgb(138pt)=(0.1741,0.7678,0.6527); rgb(139pt)=(0.1799,0.7699,0.6454); rgb(140pt)=(0.1853,0.7721,0.6379); rgb(141pt)=(0.1905,0.7743,0.6303); rgb(142pt)=(0.1954,0.7765,0.6225); rgb(143pt)=(0.2003,0.7787,0.6146); rgb(144pt)=(0.2061,0.7808,0.6065); rgb(145pt)=(0.2118,0.7828,0.5983); rgb(146pt)=(0.2178,0.7849,0.5899); rgb(147pt)=(0.2244,0.7869,0.5813); rgb(148pt)=(0.2318,0.7887,0.5725); rgb(149pt)=(0.2401,0.7905,0.5636); rgb(150pt)=(0.2491,0.7922,0.5546); rgb(151pt)=(0.2589,0.7937,0.5454); rgb(152pt)=(0.2695,0.7951,0.536); rgb(153pt)=(0.2809,0.7964,0.5266); rgb(154pt)=(0.2929,0.7975,0.517); rgb(155pt)=(0.3052,0.7985,0.5074); rgb(156pt)=(0.3176,0.7994,0.4975); rgb(157pt)=(0.3301,0.8002,0.4876); rgb(158pt)=(0.3424,0.8009,0.4774); rgb(159pt)=(0.3548,0.8016,0.4669); rgb(160pt)=(0.3671,0.8021,0.4563); rgb(161pt)=(0.3795,0.8026,0.4454); rgb(162pt)=(0.3921,0.8029,0.4344); rgb(163pt)=(0.405,0.8031,0.4233); rgb(164pt)=(0.4184,0.803,0.4122); rgb(165pt)=(0.4322,0.8028,0.4013); rgb(166pt)=(0.4463,0.8024,0.3904); rgb(167pt)=(0.4608,0.8018,0.3797); rgb(168pt)=(0.4753,0.8011,0.3691); rgb(169pt)=(0.4899,0.8002,0.3586); rgb(170pt)=(0.5044,0.7993,0.348); rgb(171pt)=(0.5187,0.7982,0.3374); rgb(172pt)=(0.5329,0.797,0.3267); rgb(173pt)=(0.547,0.7957,0.3159); rgb(175pt)=(0.5748,0.7929,0.2941); rgb(176pt)=(0.5886,0.7913,0.2833); rgb(177pt)=(0.6024,0.7896,0.2726); rgb(178pt)=(0.6161,0.7878,0.2622); rgb(179pt)=(0.6297,0.7859,0.2521); rgb(180pt)=(0.6433,0.7839,0.2423); rgb(181pt)=(0.6567,0.7818,0.2329); rgb(182pt)=(0.6701,0.7796,0.2239); rgb(183pt)=(0.6833,0.7773,0.2155); rgb(184pt)=(0.6963,0.775,0.2075); rgb(185pt)=(0.7091,0.7727,0.1998); rgb(186pt)=(0.7218,0.7703,0.1924); rgb(187pt)=(0.7344,0.7679,0.1852); rgb(188pt)=(0.7468,0.7654,0.1782); rgb(189pt)=(0.759,0.7629,0.1717); rgb(190pt)=(0.771,0.7604,0.1658); rgb(191pt)=(0.7829,0.7579,0.1608); rgb(192pt)=(0.7945,0.7554,0.157); rgb(193pt)=(0.806,0.7529,0.1546); rgb(194pt)=(0.8172,0.7505,0.1535); rgb(195pt)=(0.8281,0.7481,0.1536); rgb(196pt)=(0.8389,0.7457,0.1546); rgb(197pt)=(0.8495,0.7435,0.1564); rgb(198pt)=(0.86,0.7413,0.1587); rgb(199pt)=(0.8703,0.7392,0.1615); rgb(200pt)=(0.8804,0.7372,0.165); rgb(201pt)=(0.8903,0.7353,0.1695); rgb(202pt)=(0.9,0.7336,0.1749); rgb(203pt)=(0.9093,0.7321,0.1815); rgb(204pt)=(0.9184,0.7308,0.189); rgb(205pt)=(0.9272,0.7298,0.1973); rgb(206pt)=(0.9357,0.729,0.2061); rgb(207pt)=(0.944,0.7285,0.2151); rgb(208pt)=(0.9523,0.7284,0.2237); rgb(209pt)=(0.9606,0.7285,0.2312); rgb(210pt)=(0.9689,0.7292,0.2373); rgb(211pt)=(0.977,0.7304,0.2418); rgb(212pt)=(0.9842,0.733,0.2446); rgb(213pt)=(0.99,0.7365,0.2429); rgb(214pt)=(0.9946,0.7407,0.2394); rgb(215pt)=(0.9966,0.7458,0.2351); rgb(216pt)=(0.9971,0.7513,0.2309); rgb(217pt)=(0.9972,0.7569,0.2267); rgb(218pt)=(0.9971,0.7626,0.2224); rgb(219pt)=(0.9969,0.7683,0.2181); rgb(220pt)=(0.9966,0.774,0.2138); rgb(221pt)=(0.9962,0.7798,0.2095); rgb(222pt)=(0.9957,0.7856,0.2053); rgb(223pt)=(0.9949,0.7915,0.2012); rgb(224pt)=(0.9938,0.7974,0.1974); rgb(225pt)=(0.9923,0.8034,0.1939); rgb(226pt)=(0.9906,0.8095,0.1906); rgb(227pt)=(0.9885,0.8156,0.1875); rgb(228pt)=(0.9861,0.8218,0.1846); rgb(229pt)=(0.9835,0.828,0.1817); rgb(230pt)=(0.9807,0.8342,0.1787); rgb(231pt)=(0.9778,0.8404,0.1757); rgb(232pt)=(0.9748,0.8467,0.1726); rgb(233pt)=(0.972,0.8529,0.1695); rgb(234pt)=(0.9694,0.8591,0.1665); rgb(235pt)=(0.9671,0.8654,0.1636); rgb(236pt)=(0.9651,0.8716,0.1608); rgb(237pt)=(0.9634,0.8778,0.1582); rgb(238pt)=(0.9619,0.884,0.1557); rgb(239pt)=(0.9608,0.8902,0.1532); rgb(240pt)=(0.9601,0.8963,0.1507); rgb(241pt)=(0.9596,0.9023,0.148); rgb(242pt)=(0.9595,0.9084,0.145); rgb(243pt)=(0.9597,0.9143,0.1418); rgb(244pt)=(0.9601,0.9203,0.1382); rgb(245pt)=(0.9608,0.9262,0.1344); rgb(246pt)=(0.9618,0.932,0.1304); rgb(247pt)=(0.9629,0.9379,0.1261); rgb(248pt)=(0.9642,0.9437,0.1216); rgb(249pt)=(0.9657,0.9494,0.1168); rgb(250pt)=(0.9674,0.9552,0.1116); rgb(251pt)=(0.9692,0.9609,0.1061); rgb(252pt)=(0.9711,0.9667,0.1001); rgb(253pt)=(0.973,0.9724,0.0938); rgb(254pt)=(0.9749,0.9782,0.0872); rgb(255pt)=(0.9769,0.9839,0.0805)}, mesh/rows=21]
table[row sep=crcr, point meta=\thisrow{c}] {%
%
x y z c\\
-10 -10 1100 1100\\
-10 -9 1081 1081\\
-10 -8 1064 1064\\
-10 -7 1049 1049\\
-10 -6 1036 1036\\
-10 -5 1025 1025\\
-10 -4 1016 1016\\
-10 -3 1009 1009\\
-10 -2 1004 1004\\
-10 -1 1001 1001\\
-10 0 1000 1000\\
-10 1 1001 1001\\
-10 2 1004 1004\\
-10 3 1009 1009\\
-10 4 1016 1016\\
-10 5 1025 1025\\
-10 6 1036 1036\\
-10 7 1049 1049\\
-10 8 1064 1064\\
-10 9 1081 1081\\
-10 10 1100 1100\\
-9 -10 910 910\\
-9 -9 891 891\\
-9 -8 874 874\\
-9 -7 859 859\\
-9 -6 846 846\\
-9 -5 835 835\\
-9 -4 826 826\\
-9 -3 819 819\\
-9 -2 814 814\\
-9 -1 811 811\\
-9 0 810 810\\
-9 1 811 811\\
-9 2 814 814\\
-9 3 819 819\\
-9 4 826 826\\
-9 5 835 835\\
-9 6 846 846\\
-9 7 859 859\\
-9 8 874 874\\
-9 9 891 891\\
-9 10 910 910\\
-8 -10 740 740\\
-8 -9 721 721\\
-8 -8 704 704\\
-8 -7 689 689\\
-8 -6 676 676\\
-8 -5 665 665\\
-8 -4 656 656\\
-8 -3 649 649\\
-8 -2 644 644\\
-8 -1 641 641\\
-8 0 640 640\\
-8 1 641 641\\
-8 2 644 644\\
-8 3 649 649\\
-8 4 656 656\\
-8 5 665 665\\
-8 6 676 676\\
-8 7 689 689\\
-8 8 704 704\\
-8 9 721 721\\
-8 10 740 740\\
-7 -10 590 590\\
-7 -9 571 571\\
-7 -8 554 554\\
-7 -7 539 539\\
-7 -6 526 526\\
-7 -5 515 515\\
-7 -4 506 506\\
-7 -3 499 499\\
-7 -2 494 494\\
-7 -1 491 491\\
-7 0 490 490\\
-7 1 491 491\\
-7 2 494 494\\
-7 3 499 499\\
-7 4 506 506\\
-7 5 515 515\\
-7 6 526 526\\
-7 7 539 539\\
-7 8 554 554\\
-7 9 571 571\\
-7 10 590 590\\
-6 -10 460 460\\
-6 -9 441 441\\
-6 -8 424 424\\
-6 -7 409 409\\
-6 -6 396 396\\
-6 -5 385 385\\
-6 -4 376 376\\
-6 -3 369 369\\
-6 -2 364 364\\
-6 -1 361 361\\
-6 0 360 360\\
-6 1 361 361\\
-6 2 364 364\\
-6 3 369 369\\
-6 4 376 376\\
-6 5 385 385\\
-6 6 396 396\\
-6 7 409 409\\
-6 8 424 424\\
-6 9 441 441\\
-6 10 460 460\\
-5 -10 350 350\\
-5 -9 331 331\\
-5 -8 314 314\\
-5 -7 299 299\\
-5 -6 286 286\\
-5 -5 275 275\\
-5 -4 266 266\\
-5 -3 259 259\\
-5 -2 254 254\\
-5 -1 251 251\\
-5 0 250 250\\
-5 1 251 251\\
-5 2 254 254\\
-5 3 259 259\\
-5 4 266 266\\
-5 5 275 275\\
-5 6 286 286\\
-5 7 299 299\\
-5 8 314 314\\
-5 9 331 331\\
-5 10 350 350\\
-4 -10 260 260\\
-4 -9 241 241\\
-4 -8 224 224\\
-4 -7 209 209\\
-4 -6 196 196\\
-4 -5 185 185\\
-4 -4 176 176\\
-4 -3 169 169\\
-4 -2 164 164\\
-4 -1 161 161\\
-4 0 160 160\\
-4 1 161 161\\
-4 2 164 164\\
-4 3 169 169\\
-4 4 176 176\\
-4 5 185 185\\
-4 6 196 196\\
-4 7 209 209\\
-4 8 224 224\\
-4 9 241 241\\
-4 10 260 260\\
-3 -10 190 190\\
-3 -9 171 171\\
-3 -8 154 154\\
-3 -7 139 139\\
-3 -6 126 126\\
-3 -5 115 115\\
-3 -4 106 106\\
-3 -3 99 99\\
-3 -2 94 94\\
-3 -1 91 91\\
-3 0 90 90\\
-3 1 91 91\\
-3 2 94 94\\
-3 3 99 99\\
-3 4 106 106\\
-3 5 115 115\\
-3 6 126 126\\
-3 7 139 139\\
-3 8 154 154\\
-3 9 171 171\\
-3 10 190 190\\
-2 -10 140 140\\
-2 -9 121 121\\
-2 -8 104 104\\
-2 -7 89 89\\
-2 -6 76 76\\
-2 -5 65 65\\
-2 -4 56 56\\
-2 -3 49 49\\
-2 -2 44 44\\
-2 -1 41 41\\
-2 0 40 40\\
-2 1 41 41\\
-2 2 44 44\\
-2 3 49 49\\
-2 4 56 56\\
-2 5 65 65\\
-2 6 76 76\\
-2 7 89 89\\
-2 8 104 104\\
-2 9 121 121\\
-2 10 140 140\\
-1 -10 110 110\\
-1 -9 91 91\\
-1 -8 74 74\\
-1 -7 59 59\\
-1 -6 46 46\\
-1 -5 35 35\\
-1 -4 26 26\\
-1 -3 19 19\\
-1 -2 14 14\\
-1 -1 11 11\\
-1 0 10 10\\
-1 1 11 11\\
-1 2 14 14\\
-1 3 19 19\\
-1 4 26 26\\
-1 5 35 35\\
-1 6 46 46\\
-1 7 59 59\\
-1 8 74 74\\
-1 9 91 91\\
-1 10 110 110\\
0 -10 100 100\\
0 -9 81 81\\
0 -8 64 64\\
0 -7 49 49\\
0 -6 36 36\\
0 -5 25 25\\
0 -4 16 16\\
0 -3 9 9\\
0 -2 4 4\\
0 -1 1 1\\
0 0 0 0\\
0 1 1 1\\
0 2 4 4\\
0 3 9 9\\
0 4 16 16\\
0 5 25 25\\
0 6 36 36\\
0 7 49 49\\
0 8 64 64\\
0 9 81 81\\
0 10 100 100\\
1 -10 110 110\\
1 -9 91 91\\
1 -8 74 74\\
1 -7 59 59\\
1 -6 46 46\\
1 -5 35 35\\
1 -4 26 26\\
1 -3 19 19\\
1 -2 14 14\\
1 -1 11 11\\
1 0 10 10\\
1 1 11 11\\
1 2 14 14\\
1 3 19 19\\
1 4 26 26\\
1 5 35 35\\
1 6 46 46\\
1 7 59 59\\
1 8 74 74\\
1 9 91 91\\
1 10 110 110\\
2 -10 140 140\\
2 -9 121 121\\
2 -8 104 104\\
2 -7 89 89\\
2 -6 76 76\\
2 -5 65 65\\
2 -4 56 56\\
2 -3 49 49\\
2 -2 44 44\\
2 -1 41 41\\
2 0 40 40\\
2 1 41 41\\
2 2 44 44\\
2 3 49 49\\
2 4 56 56\\
2 5 65 65\\
2 6 76 76\\
2 7 89 89\\
2 8 104 104\\
2 9 121 121\\
2 10 140 140\\
3 -10 190 190\\
3 -9 171 171\\
3 -8 154 154\\
3 -7 139 139\\
3 -6 126 126\\
3 -5 115 115\\
3 -4 106 106\\
3 -3 99 99\\
3 -2 94 94\\
3 -1 91 91\\
3 0 90 90\\
3 1 91 91\\
3 2 94 94\\
3 3 99 99\\
3 4 106 106\\
3 5 115 115\\
3 6 126 126\\
3 7 139 139\\
3 8 154 154\\
3 9 171 171\\
3 10 190 190\\
4 -10 260 260\\
4 -9 241 241\\
4 -8 224 224\\
4 -7 209 209\\
4 -6 196 196\\
4 -5 185 185\\
4 -4 176 176\\
4 -3 169 169\\
4 -2 164 164\\
4 -1 161 161\\
4 0 160 160\\
4 1 161 161\\
4 2 164 164\\
4 3 169 169\\
4 4 176 176\\
4 5 185 185\\
4 6 196 196\\
4 7 209 209\\
4 8 224 224\\
4 9 241 241\\
4 10 260 260\\
5 -10 350 350\\
5 -9 331 331\\
5 -8 314 314\\
5 -7 299 299\\
5 -6 286 286\\
5 -5 275 275\\
5 -4 266 266\\
5 -3 259 259\\
5 -2 254 254\\
5 -1 251 251\\
5 0 250 250\\
5 1 251 251\\
5 2 254 254\\
5 3 259 259\\
5 4 266 266\\
5 5 275 275\\
5 6 286 286\\
5 7 299 299\\
5 8 314 314\\
5 9 331 331\\
5 10 350 350\\
6 -10 460 460\\
6 -9 441 441\\
6 -8 424 424\\
6 -7 409 409\\
6 -6 396 396\\
6 -5 385 385\\
6 -4 376 376\\
6 -3 369 369\\
6 -2 364 364\\
6 -1 361 361\\
6 0 360 360\\
6 1 361 361\\
6 2 364 364\\
6 3 369 369\\
6 4 376 376\\
6 5 385 385\\
6 6 396 396\\
6 7 409 409\\
6 8 424 424\\
6 9 441 441\\
6 10 460 460\\
7 -10 590 590\\
7 -9 571 571\\
7 -8 554 554\\
7 -7 539 539\\
7 -6 526 526\\
7 -5 515 515\\
7 -4 506 506\\
7 -3 499 499\\
7 -2 494 494\\
7 -1 491 491\\
7 0 490 490\\
7 1 491 491\\
7 2 494 494\\
7 3 499 499\\
7 4 506 506\\
7 5 515 515\\
7 6 526 526\\
7 7 539 539\\
7 8 554 554\\
7 9 571 571\\
7 10 590 590\\
8 -10 740 740\\
8 -9 721 721\\
8 -8 704 704\\
8 -7 689 689\\
8 -6 676 676\\
8 -5 665 665\\
8 -4 656 656\\
8 -3 649 649\\
8 -2 644 644\\
8 -1 641 641\\
8 0 640 640\\
8 1 641 641\\
8 2 644 644\\
8 3 649 649\\
8 4 656 656\\
8 5 665 665\\
8 6 676 676\\
8 7 689 689\\
8 8 704 704\\
8 9 721 721\\
8 10 740 740\\
9 -10 910 910\\
9 -9 891 891\\
9 -8 874 874\\
9 -7 859 859\\
9 -6 846 846\\
9 -5 835 835\\
9 -4 826 826\\
9 -3 819 819\\
9 -2 814 814\\
9 -1 811 811\\
9 0 810 810\\
9 1 811 811\\
9 2 814 814\\
9 3 819 819\\
9 4 826 826\\
9 5 835 835\\
9 6 846 846\\
9 7 859 859\\
9 8 874 874\\
9 9 891 891\\
9 10 910 910\\
10 -10 1100 1100\\
10 -9 1081 1081\\
10 -8 1064 1064\\
10 -7 1049 1049\\
10 -6 1036 1036\\
10 -5 1025 1025\\
10 -4 1016 1016\\
10 -3 1009 1009\\
10 -2 1004 1004\\
10 -1 1001 1001\\
10 0 1000 1000\\
10 1 1001 1001\\
10 2 1004 1004\\
10 3 1009 1009\\
10 4 1016 1016\\
10 5 1025 1025\\
10 6 1036 1036\\
10 7 1049 1049\\
10 8 1064 1064\\
10 9 1081 1081\\
10 10 1100 1100\\
};
\end{axis}
\end{tikzpicture}%