bachelorThesis/spatial_resource_waste/spatial_resource_waste.ipynb

515 lines
228 KiB
Text
Raw Normal View History

2021-04-13 14:13:15 +00:00
{
"cells": [
{
"cell_type": "code",
2021-05-20 10:33:36 +00:00
"execution_count": 43,
2021-04-13 14:13:15 +00:00
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import sys\n",
"import glob\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"import matplotlib as mpl\n",
2021-05-20 10:33:36 +00:00
"import numpy as np\n",
2021-04-13 14:13:15 +00:00
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
2021-05-20 10:33:36 +00:00
"execution_count": 44,
2021-04-13 14:13:15 +00:00
"metadata": {},
"outputs": [],
"source": [
2021-05-12 13:24:57 +00:00
"DIR = \"/Users/maggicl/Git/bachelorThesis/spatial_resource_waste/\""
2021-04-13 14:13:15 +00:00
]
},
{
"cell_type": "code",
2021-05-20 10:33:36 +00:00
"execution_count": 156,
2021-04-13 14:13:15 +00:00
"metadata": {},
"outputs": [],
"source": [
2021-05-20 10:33:36 +00:00
"NAMES = {4: 'EVICT', 5: 'FAIL', 6: 'FINISH', 7: 'KILL'}\n",
"\n",
2021-04-13 14:13:15 +00:00
"def plot_df(df, cluster, type_of_data):\n",
2021-05-20 10:33:36 +00:00
" \n",
" df = df[df[\"term\"].isin(range(4,8))].sort_values(\"term\")\n",
" \n",
2021-04-13 14:13:15 +00:00
" s = df.sum()\n",
2021-05-20 10:33:36 +00:00
" #print(\"Cluster \" + cluster + \":\")\n",
2021-04-13 14:13:15 +00:00
" df[\"cpu\"] = df[\"cpu\"] / s[\"cpu\"]\n",
" df[\"ram\"] = df[\"ram\"] / s[\"ram\"]\n",
2021-05-12 13:24:57 +00:00
" \n",
" latex = df.copy()\n",
2021-05-20 10:33:36 +00:00
" latex[\"Task termination\"] = latex[\"term\"].apply(lambda x: NAMES[x])\n",
" del latex[\"term\"]\n",
" latex[\"% CPU\"] = (latex[\"cpu\"] * 100).round(2).apply(lambda x: \"%2.02f\" % x) + \"%\"\n",
" del latex[\"cpu\"]\n",
" latex[\"% Memory\"] = (latex[\"ram\"] * 100).round(2).apply(lambda x: \"%2.02f\" % x) + \"%\"\n",
" del latex[\"ram\"]\n",
" #print(latex.to_latex(index=False)) \n",
2021-04-13 14:13:15 +00:00
"\n",
" df2 = df.copy()\n",
2021-05-20 10:33:36 +00:00
" df[\"kind\"] = \"CPU\"\n",
" df[\"percent\"] = df[\"cpu\"] * 100\n",
2021-04-13 14:13:15 +00:00
" del df[\"cpu\"]\n",
" del df[\"ram\"]\n",
" \n",
2021-05-20 10:33:36 +00:00
" df2[\"kind\"] = \"Memory\"\n",
" df2[\"percent\"] = df2[\"ram\"] * 100\n",
2021-04-13 14:13:15 +00:00
" del df2[\"cpu\"]\n",
" del df2[\"ram\"]\n",
" \n",
" df = pd.concat([df, df2])\n",
" \n",
2021-05-20 10:33:36 +00:00
" fig, ax = plt.subplots()\n",
" fig.set_size_inches(4, 4)\n",
" \n",
" colors = plt.cm.Spectral([0.2, 0.4, 0.8, 0.9])\n",
" \n",
" a = pd.plotting.table(ax, latex.set_index(\"Task termination\"), rowColours=colors,\n",
" bbox=[0,-0,1,0.3])\n",
" ax.set_ylim(bottom=-50, top=105)\n",
" print(a)\n",
" \n",
2021-04-13 14:13:15 +00:00
" bottom = [0, 0]\n",
" lines = []\n",
2021-05-20 10:33:36 +00:00
" for t in [4,5,6,7]:\n",
" dft = df[df.term==t]\n",
" line = plt.bar(x=dft[\"kind\"], bottom=bottom, height=dft[\"percent\"], \n",
" color=colors[t-4], width=0.85)\n",
" #ax.bar_label(line, label_type='center', fmt=\"%.02f%%\")\n",
" lines.append(line)\n",
2021-04-13 14:13:15 +00:00
" bottom += df[df.term==t][\"percent\"].values\n",
2021-05-20 10:33:36 +00:00
" #plt.legend(lines, [\"EVICT\", \"FAIL\", \"FINISH\", \"KILL\"],\n",
" # bbox_to_anchor=(1,1))\n",
" if cluster == \"2011\":\n",
" plt.title(\"2011 data (%s resources)\" % type_of_data)\n",
" elif cluster == \"all\":\n",
" plt.title(\"2019 data (%s resources)\" % type_of_data)\n",
" else:\n",
" plt.title(\"Cluster %s (%s resources)\" % (cluster.upper(), type_of_data))\n",
" \n",
" ax.set_xticks([])\n",
" ax.set_yticks([0,20,40,60,80,100])\n",
" fig.savefig('../report/figures/spatial_resource_waste/%s-%s.pgf' % \n",
" (type_of_data, cluster))\n",
" plt.show()\n",
" "
2021-04-13 14:13:15 +00:00
]
},
{
"cell_type": "code",
2021-05-20 10:33:36 +00:00
"execution_count": 157,
2021-04-13 14:13:15 +00:00
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2021-05-20 10:33:36 +00:00
"<matplotlib.table.Table object at 0x7fd57ebc5820>\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARQAAAD7CAYAAACrFWuaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqlklEQVR4nO3dd3xUxfr48c+TQgkl9F41gKRACAHhUsSLkSIiVYkoINWfCl9FQZALKKJYQBFF0YsKiBKkaOCKgCCKopRQBIRIkUiHgKEGQkjm98eerAnpyUk2gef9eu0r2XPmnJ2zkzw7MztzRowxKKWUHdxcnQGl1M1DA4pSyjYaUJRSttGAopSyjQYUpZRtNKAopWyjASUPiciLIjLf1fmwi4gsEJFu+fyaP4jI4Px8zYJGRCqLyF4RKerqvGRGA0ouicjDIhIhIpdE5ISIfCsirW08fx0RMSLiYdc5k527pJXvb7OQthHQGAi3Ox8qY8aYU8A6YKir85IZDSi5ICIjgenAq0BloBbwPvCAC7OVQiaBqCcQB4SISJVMTjUM+NwU4JGQeRF0C1AePsdRBgWaBpQcEhFvYBLwpDFmqTHmsjEm3hiz3BgzKo307UTk6A3bokTkHuv35lZN54KInBKRt6xk662f56zaREsr/UCrGhwjIqtEpHay8xoReVJE9gP7M7iM/sAsYCfwSCaX3An4MdlrpGjO3ViTEpEBIvKniFwUkUMi0jdZ2ozyHiIikSJyXkTeAyS9DFl5WCwi80XkAjBARLxF5GOrtnhMRCaLiLuV3kdEfrTOfUZEFiY7179EZIu1b4uI/CvZPmc53Xjtya57kIgcBr63tg+xrvGiiOwRkSBrezURWSIi0db7MiLZedP7GwDYBNyW/L0qkIwx+sjBA+gIXAc8MkjzIjDf+r0dcPSG/VHAPdbvvwKPWr+XBFpYv9cBTPLXwVEDOgA0BDyA/wC/JNtvgO+AckDxdPJWG0gEfIFngZ0ZXEcJ65wV07q2G/Nppb8ANLD2VQX8Mss7UAG4CPQCPIFnrPd4cAbvbzzQDceHY3HgK+BDKw+VgM3AMCv9AmCclbYY0NraXg6IAR618hRqPS9/YzmlUa5J1z3Pes3iQG/gGNAMR0D0sd5vN2ArMAEoAtwG/Al0yOhvINnr7gS6uvpvP6OH1lByrjxwxhhz3abzxQM+IlLBGHPJGLMxg7SPA1OMMXut138VCLzh02uKMeZvY8yVdM7xKI4gsgcIA/xEpEk6actYPy9m+WocwcpfRIobY04YY37PQt47A78bYxYbY+JxNCdPZvI6vxpjvjbGJAKlrXM8bRw1xtPA20AfK208jn/sasaYq8aYn63t9wH7jTGfGWOuG2MWAJHA/dm43het17wCDAbeMMZsMQ4HjDF/4QgwFY0xk4wx14wxfwL/vSF/Gf0NXOSfsiiQNKDk3Fmggo1t5kFAfSDSqnJ3ySBtbeAdETknIueAv3F8ElZPluZIJq/XD0e7HGPMMRzNmf7ppD1n/SyVyTmxzncZeAhH8DghIt+IyB1ZyHu15Pk2jo/lzK4j+f7aOGo2J5Kd/0McNRWA0dZrbRaR30VkoLW9GvDXDef9i5TvZ2aS56MmcDCNNLWBakl5s/L3Ao7+N8j8b6AU/5RFgeTyTqxC7FccHZrdgMVZSH8Z8Ep6YrXrKyY9N8bsB0JFxA3oASwWkfI4qtM3OgK8Yoz5PIPXS7fz1OofqAeMFZFnrc2lcNQonrux1mWMuSwiB3H8sUendT1AlRuOWQWsEpHiwGQcn8RtMsq7iNTD8c+Y9FySP8/CdR7BUSYV0qo5GmNOAkOsc7cG1ojIeuA4jn/25GoBK7Nyrenk4/Y00hwBDhlj6qV5Ien8DVjvvweOptNvaR1bUGgNJYeMMedxtIVnikg3EfESEU8R6SQib6RxyD6gmIjcJyKeOPoOnOMKROQREaloVd3PWZsTcfwDJ+JobyeZhSMY+FnHeotI72xkvz+OPhZfINB6+ONo/3dK55gVwF3Jnu8A2opILXF0UI9Ndi2VReQBESmB4x/8knUNmeX9GxxNrx7WP9AI0v7nTZMx5gSwGpgmIqVFxE1EbheRu6zX6i0iNazkMTiCQKJ1bfXFMQTAQ0Qest6b/yW71j5W+Qbj6OPJyGzgORFpKg4+VpNuM3BRRJ4XkeIi4i4i/iLSzMpfen8DAM2BKKvpVHC5uhOnsD+AvkAEjk+xkzj+Kf5lbui8s54PAE4Ap4HnSNkpO9/afgn4HeiW7LhJOALLOf7prH0U2IWj8/MI8Emy9AbwSSe/xXD8M92fxr73gcXpHOdv5UuSbZtp5ekAjk/+pE7ZqjiaUOet/T8AvsmOyyjvHXEE3/PAe9Z5MuqUnX/DNm/gA+CodY7tQB9r3xs4Oksv4WiSDE12XGscHabnrZ+tk+27Dce3LJes8p1B6k5Zjxvy8Tjwh3XMbqCJtb0ajs7hk1Y5bMzi38BMYISr/94ze4iVWaUyJSJfAF8aY752dV5uJSJSCUdgbWKMuerq/GREA4pSyjbah6KUso0GFKWUbTSgKKVsowFFKWWbQj2wrUKFCqZOnTquzoZSt5ytW7eeMcZUvHF7oQ4oderUISIiwtXZUOqWIyJpDrDTJo9SyjZ5FlBE5BMROS0iu5NtKyci34nIfutnWWu7iMgMETkgIjuT7h2hlCpc8rKGMgfHMOrkxgBrjWNy1FrrOTjmj9SzHkNxDJ1WShUyeRZQjDHrcUxNT+4BYK71+1wcM3WTts8zDhuBMiJSNa/yppTKG/ndh1LZOGaEgmNyVNJ9IKqT8n4SR8nevSiUUgWAy77lMcYYEcn2RCIRGYp19+9atWpl6Zjg19Zm92VULkWMaZ+r47XMXCO35ZbfNZRTSU0Z6+dpa/sxUt5Ip4a1LRVjzEfGmGBjTHDFiqm+BldKuVB+B5Rl/HObwf78s8bLMqCf9W1PC+B8sqaRUqqQyLMmj4gswHGn9wriWD5iIvAa8KWIDMJxz84HreQrcNxc+AAQCzyWV/lSSuWdPAsoxpjQdHalaqQZx01ZnsyrvCil8oeOlFVK2UYDilLKNhpQlFK20YCilLKNBhSllG00oCilbKMBRSllGw0oSinbaEBRStlGA4pSyjYaUJRSttGAopSyjQYUpZRtNKAopWyjAUUpZRsNKEop22hAUUrZRgOKUso2GlCUUrZxSUARkWdE5HcR2S0iC0SkmIjUFZFN1vrGC0WkiCvyppTKuXwPKCJSHRgBBBtj/AF3oA/wOvC2McYHiAEG5XfelFK546omjwdQXEQ8AC/gBPBvYLG1P/m6x0qpQiLfA4ox5hgwFTiMI5CcB7YC54wx161kuraxUoWQK5o8ZYEHgLpANaAE0DEbxw8VkQgRiYiOjs6jXCqlcsIVTZ57gEPGmGhjTDywFGgFlLGaQKBrGytVKLkioBwGWoiIl4gIjpUE9wDrgF5WmuTrHiulCglX9KFswtH5ug3YZeXhI+B5YKSIHADKAx/nd96UUrmTZ2sbZ8QYMxHH4unJ/Qk0d0F2lFI20ZGySinbaEBRStlGA4pSyjYaUJRSttGAopSyjQYUpZRtNKAopWyjAUUpZRsNKEop22hAUUrZRgOKUso2GlCUUrbRgKKUso0GFKWUbTSgKKVsowFFKWUbDShKKdtoQFFK2UYDilLKNq5a27iMiCwWkUgR2SsiLUWknIh8JyL7rZ9lXZE3pVTOuaqG8g6w0hhzB9AY2AuMAdYaY+oBa63nSqlCxBUrB3oDbbGWyTDGXDPGnMOxmuBcK5mubaxUIeSKGkpdIBr4VES2i8hsESkBVDbGnLDSnAQquyBvSqlccEVA8QCCgA+MMU2Ay9zQvDHGGMCkdbCubaxUweWKgHIUOGqtIAiOVQSDgFMiUhXA+nk6rYN1bWOlCi5XLEV6EjgiIg2sTUlrGy/DsaYx6NrGShVKLlmKFBgOfC4iRXAsQfoYjuD2pYgMAv4CHnRR3pRSOeSqtY13AMFp7Gqfz1lRStlIR8oqpWyjAUUpZRsNKEop22hAUUrZRgOKUso2GlCUUrbRgKKUso0GFKWUbTS
"text/plain": [
"<Figure size 288x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"<matplotlib.table.Table object at 0x7fd57f9d65e0>\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARQAAAD7CAYAAACrFWuaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAq3ElEQVR4nO3de5xNVf/A8c93Lsa4iyEMkaGYi5kxiaKU5FLJCJGH5Fa/p6d6Hj0SihLRFZUuTxRSRqGGLkpKJHfGNbnfB0PGbRhzWb8/9p7THHPBzJ45M/m+X6/zmnP2Xnuftc8+8z1rrb3WXmKMQSmlnODl6Qwopf4+NKAopRyjAUUp5RgNKEopx2hAUUo5RgOKUsoxGlAKkIi8ICLTPZ0Pp4jIDBHpWMjvuUhE+hXmexY1IlJVRH4XET9P5+VSNKDkk4g8JCKrReSMiMSLyHci0tzB/dcWESMiPgWwzzP244iIvCsivrlsEwY0AmKdyoe6PMaYI8DPwABP5+VSNKDkg4gMBMYDLwNVgVrAu8D9HsyWm0sEogrGmDJAKNAMeDyXtI8Cn5oi3BPSyaBbBPPwKdY5KNI0oOSRiJQHRgKPG2PmGGPOGmNSjDHzjDGDsknfUkQOXLRsj4jcZT9vYpd0TtklhjftZIvtv4l2aaKZnb6PXQw+ISLfi8h1mfZrRORxEdkObL/UsRhjjgILgIa5JGsH/JLpPdyqcxeXpESkt4jsEpHTIrJbRHpkSptb3luLyFYROSki7wCSU4bsPMwSkekicgroLSLlRWSyXVo8KCKjRMTbTh8kIr/Y+z4mIjMz7esWEVllr1slIrdkWuc6Txcfe6bj7isi+4Cf7OX97WM8LSJbRCTSXl5dRGaLSIL9uTyZab85fQcAVgDXZ/6siiRjjD7y8ADaAqmATy5pXgCm289bAgcuWr8HuMt+vgzoaT8vAzS1n9cGTOb3wSoB7QAaAD7Ac8BvmdYbrABxDeCfTb7c9glUB9YDfXI4jtJ2+oDsju3ifdrpTwE32OuqAcGXyjtQGTgNdAZ8gf/Yn3G/XD7fFKAj1o+jP/Al8IGdhyrASuBRO/0MYJidtiTQ3F5+DXAC6Gnnqbv9utLF5ymb85px3NPs9/QHugAHgZuwAmIQcJ39vmuA4UAJ4HpgF9Amt+9ApvfdAHTw9Hc/t4eWUPKuEnDMGJPq0P5SgCARqWyMOWOMWZ5L2seAMcaY3+33fxkIv+jXa4wx5k9jzLlc9nNMRBKxvvxngVk5pKtg/z19OQdiSwdCRMTfGBNvjNl8GXlvD2w2xswyxqRgVScPX+J9lhljvjLGpAPl7H3821glxqPAOKCbnTYF6x+7ujHmvDHmV3v5PcB2Y8wnxphUY8wMYCtw3xUc7wv2e54D+gGvGmNWGcsOY8xerAATYIwZaYy5YIzZBXx4Uf5y+w6c5q9zUSRpQMm740BlB+vMfYH6wFa7yH1vLmmvAyaISKIdEP7E+iWskSnN/st4z8rGmApAKWAp8H0O6RLtv2UvY58YY84CD2IFj3gR+UZEbryMvFfPnG9j/Sxf6jgyr78Oq2QTn2n/H2CVVACesd9rpYhsFpE+9vLqwN6L9rsX98/zUjLnoyawM5s01wHVM/Jm528oVvsbXPo7UJa/zkWR5PFGrGJsGZCMVdzO6Zc9s7NY/7gA2PX6gIzXxpjtQHcR8QI6AbNEpBJWcfpi+4HRxphPc3m/y248NcacE5EpwH/tX8djF60/KyI7sb7sCdkdD3DtRdt8D3wvIv7AKKxf4ha55V1E6mH9M2a8lsyvc8p+puf7sc5J5exKjsaYw0B/e9/NgR9FZDFwCOufPbNawPzLOdYc8lE3mzT7gd3GmHrZHkgO3wH78/fBqjqtz27bokJLKHlkjDmJVReeKCIdRaSUiPiKSDsReTWbTbYBJUXkHrEuzz4HuPoViMg/RCTALron2ovTsf6B07Hq2xneB4aISLC9bXkR6ZLXYxGrf0NPrOrF8RySfQvcnul1HHCbiNQSq4F6SKb9VRWR+0WkNNY/+Bn7GC6V92+AYBHpZP8DPUn2/7zZMsbEAz8Ab4hIORHxEpG6InK7/V5dRCTQTn4CKwik28dWX6wuAD4i8iBWA/XXmY61m31+o7DaeHIzCSs4NxZLkF2lWwmcFpHBIuIvIt4iEiIiN9n5y+k7ANAE2GNXnYouTzfiFPcH0ANYjfUrdhjrn+IWc1Hjnf26NxAPHAX+i3uj7HR7+RlgM9Ax03YjsQJLIn811vYENmI1fu4HPsqU3gBBueS5tp3mjP1IxLqCc1Mu24TY+ZJMyyba2+7A+uXPaJStZu/vpL1+EdAw03a55b0tVvA9Cbxj7ye3RtnpFy0rD7wHHLD3sQ7oZq97Fau96AxWlWRApu2aYzWYnrT/Ns+07nqsqyxn7PP7FlkbZX0uysdjwB/2NpuACHt5dazG4cNYQW35ZX4HJgJPevr7fqmH2JlV6pJE5DPgc2PMV57Oy9VERKpgBdYIY8x5T+cnNxpQlFKO0TYUpZRjNKAopRyjAUUp5RgNKEopxxTrjm2VK1c2tWvX9nQ2lLrqrFmz5pgxJuDi5cU6oNSuXZvVq1d7OhtKXXVEJNsOdlrlUUo5psACioh8JCJHRWRTpmXXiMgCEdlu/61oLxcReUtEdojIhox7RyilipeCLKFMwepGndmzwEJjDY5aaL8G6+Y99ezHAKyu00qpYqbAAooxZjHW0PTM7gem2s+nYo3UzVg+zViWAxVEpFpB5U0pVTAKuw2lqrFGhII1OCrjPhA1cL+fxAGu7F4USqkiwGNXeYwxRkSueCCRiAzAvvt3rVq1LmubqLELr/RtVD6tfrZVvrbXc+YZ+T1vhV1COZJRlbH/HrWXH8T9RjqB9rIsjDH/M8ZEGWOiAgKyXAZXSnlQYQeUucDD9vOH+WuOl7lAL/tqT1PgZKaqkVKqmCiwKo+IzMC603tlsaaPGAGMBT4Xkb5Y9+zsaif/FuvmwjuAJOCRgsqXUqrgFFhAMcZ0z2FVlkqasW7KktskU0qpYkB7yiqlHKMBRSnlGA0oSinHaEBRSjlGA4pSyjEaUJRSjtGAopRyjAYUpZRjNKAopRyjAUUp5RgNKEopx2hAUUo5RgOKUsoxGlCUUo7RgKKUcowGFKWUYzSgKKUcowFFKeUYDShKKcd4JKCIyH9EZLOIbBKRGSJSUkTqiMgKe37jmSJSwhN5U0rlXaEHFBGpATwJRBljQgBvoBvwCjDOGBMEnAD6FnbelFL546kqjw/gLyI+QCkgHrgTmGWvzzzvsVKqmCj0gGKMOQi8DuzDCiQngTVAojEm1U6mcxsrVQx5ospTEbgfqANUB0oDba9g+wEislpEVickJBRQLpVSeeGJKs9dwG5jTIIxJgWYA9wKVLCrQKBzGytVLHkioOwDmopIKRERrJkEtwA/A53tNJnnPVZKFROeaENZgdX4uhbYaOfhf8BgYKCI7AAqAZMLO29KqfwpsLmNc2OMGYE1eXpmu4AmHsiOUsoh2lNWKeUYDShKKcdoQFFKOUYDilLKMRpQlFKO0YCilHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjlGA4pSyjEaUJRSjtGAopRyjAYUpZRjNKAopRyjAUUp5RgNKEopx2hAUUo5xlNzG1cQkVkislVEfheRZiJyjYgsEJHt9t+KnsibUirvPFVCmQDMN8bcCDQCfgeeBRYaY+oBC+3XSqlixBMzB5YHbsOeJsMYc8EYk4g1m+BUO5nObaxUMeSJEkodIAH4WETWicgkESkNVDXGxNtpDgNVPZA3pVQ+eCKg+ACRwHvGmAjgLBdVb4wxBjDZbaxzGytVdHkioBwADtgzCII1i2AkcEREqgHYf49mt7HObaxU0eWJqUgPA/tF5AZ7UcbcxnOx5jQGndtYqWLJI1ORAk8An4pICawpSB/BCm6fi0hfYC/Q1UN5U0rlkafmNo4DorJZ1aqQs6KUcpD2lFVKOUYDilLKMRpQlFKO0YCilHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjlGA4pSyjEaUJRSjtGAopR
"text/plain": [
"<Figure size 288x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"<matplotlib.table.Table object at 0x7fd57ecb8f40>\n"
2021-04-13 14:13:15 +00:00
]
},
{
"data": {
2021-05-20 10:33:36 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARQAAAD7CAYAAACrFWuaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqZ0lEQVR4nO3dd3hUVfrA8e+bQm+RtghE0OAKKSQh0kEQEWERAYMCKlVRf7AqKEVZUAEVVxR0VywLKkWKskpwlQ66gLRAQhFYAQ29m1ASCCnn98e9GRKSQMpNJoH38zzzJHPbnDtn5p1z7r3nvmKMQSmlnODh7gIopW4cGlCUUo7RgKKUcowGFKWUYzSgKKUcowFFKeUYDSgFSEReE5HZ7i6HU0TkLRF5oZBf8wsRmVCYr1nUiEhJEdkjIlXdXZbr0YCSTyLSW0QiReSCiBwTkcUi0tLB7dcRESMiXk5t095uCTvg7RWReBGJEZHPRKRONstXBfoAnzhZDnV9xphE4DNglLvLcj0aUPJBRIYBU4A3geqALzAVeMiNxcrgGoFoAdAF6A1UBBoCW4B22SzfD/jBGHPR6TI6xemgW8TKMAfoKyIlC2j7zjDG6CMPD6wv4QWgxzWWeQ2Ybf/fBjh81fwY4D77/8ZAJHAOOAG8Z08/CBj7tS4AzezpA4DdQCywFLgt3XYNMBjYC/yeRbnuAy4CtXOxv6uAx9M97wesvWoZA/jZ/3cCdgHngSPAS+mW6wxEA3HAz0BQunkhwFZ7vfnAPGBCNmXqB6wDJgNngAlASWCS/b6dAD4GStvLVwH+Y7/uH8AawMOeVx/40Z73C9Al3ev8CDyZ3b5n9X5j/ahE2/W5H3gg3edmOnDMfl8mAJ72PD/gJ+AscBqYf9X+7gXucfdn/1oPbaHkXTOgFPCtQ9t7H3jfGFMBuAP4yp7e2v5byRhTzhizXkQeAl4BugNVsb4Yc6/aXlegCdAgi9e6D9hkjDmUi/IFAv/LxfLTgaeNMeWBAKyAhIiEYDXfnwYqY3WhFtnHCUoAC4FZwC3A18DD13mdJsBvWC3EN4CJwJ1AMNYXtCYw1l72ReAw1ntWHes9NCLiDXwHLAOqAX8FvhSRP+dif7vaZWkgIo2BmcBwoBJWHcbYy30BJNtlCwHuB5605423y+AD1AL+cdVr7MZqSRZZGlDyrjJw2hiT7ND2kgA/EalijLlgjNlwjWWfAd4yxuy2X/9NIFhEbku3zFvGmD9M1l2Uyli/kLlRCavVkFNJWF+uCsaYWGPMVnv6IOATY8xGY0yKMWYGkAg0tR/ewBRjTJIxZgGw+Tqvc9QY8w/7fbhkb3+ove/nsd6bnunKVAOrNZdkjFljrJ/+pkA5YKIx5rIxZhVWS6ZXLvY3/fs9EPjMGLPcGJNqjDlijNkjItWxWm4vGGPijTEnsVpX6ct3G3CrMeaSMWbtVa9xHqseiiwNKHl3BqjiYJ95INYv6x4R2Swina+x7G3A+yISJyJxWM13wfo1TnOt1scZrC9WbsQC5XOx/MNYX54DIvKTiDSzp98GvJhWdrv8tYFb7ccR+0ue5sB1Xif9flYFygBb0m17iT0d4B1gH7BMRH4TkbSDnLcCh4wxqVe9bvr383rSl6M2VjfnardhBcxj6cr3CVarCGAEVj1uEpFfRGTAVeuXx+qSFVkaUPJuPdYva9ccLh+P9WEHQEQ8ufJBxxiz1xjTC+vD9TawQETKYvXPr3YIqztRKd2jtDHm53TLXGsY+QqgsYjUymHZAbZjBbzs9udP6Rc2xmw2xjxk789CrnThDgFvXFX2MsaYuVitppoiIuk25XudcqXfz9NYx4b80227ojGmnF2m88aYF40xt2MdkB4mIu2Ao0BtEUn/ffDFOsaRaV+BDPuaRTkOYXVbr3YI6zNTJV35Khhj/O3yHTfGPGWMuRWrSzhVRPzSrV8f2HatN8PdNKDkkTHmLFbf/EMR6SoiZUTEW0Q6isjfs1jlV6CUiPzF7rP/DesAIgAi8riIVLV/JePsyanAKfvv7em29THwsoj42+tWFJEeuSj7CmA58K2INBIRLxEpLyLPZPGrmOYH4J50z7cB/iISLCKlsA5Ap+1LCRF5TEQqGmOSsA5Mpv36/wt4RkSaiKWs/Z6UxwrSycBz9nvZHetgdU73K9Xe/mQRqWaXpaaIdLD/7ywifnbAOguk2OXaCCQAI+zXbQM8iHVAGKyDq93tOvbDak1ey3Sgv4i0ExEPuwx3GWOOYR0jeVdEKtjz7hCRe+zy9UgX5GOxglRq2n5gHVe6VlfY/dx9VLi4P4DHsM7OxAPHge+B5va817DP8tjP+2H9Cp8EXiLjWZ7Z9vQLWGcZuqZbbxxWYIkDmtrTngB2YH1ZD2H12dOWd51tuUa5SwCvY3UB4rGa+NMA32yWr4J1QLN0ummjsVoFh4DH017X3vYSrC/FOazjIC3TrfeAPS3Ofj++Bsrb88KAKK6c5ZnPtc/yXH2mqRTWcZPf7NfeDTxnzxtqv+fx9r6MSbeeP1fOsOwCul2178vsMq2z6/Xqszx+V5WjG1ar7rz9Hnewp1cEPrJf/6y9rz3teX/HahVdwOoyDUq3veHYZ/6K8kPswip1XSLyJnDSGDPF3WW5mdjXnmwDWhvrQG6RpQFFKeUYPYailHKMBhSllGM0oCilHKMBRSnlGLePzsyPKlWqmDp16ri7GErddLZs2XLaGJPp/izFOqDUqVOHyMhIdxdDqZuOiGQ5JEK7PEopxxRYQLHv/nVSRHamm3aLiCy37xK2XER87OkiIh+IyD4R2S4ioQVVLqVUwSnIFsoXWJdYpzcKWGmMqQes5Mot7ToC9ezHIKxLk5VSxUyBBRRjzH+xhtWn9xAww/5/BldG6j4EzDSWDUAlEcnt8HqllJsV9jGU6sYacQnWQLrq9v81yXg/icPk7l4USqkiwG1neYwxRkRyPZBIRAZhdYvw9b3erTIsYRNX5vZlVD5FjsruXtc5o3XmHvmtt8JuoZxI68rYf9NGTh7BustVmlpcublNBsaYT40xYcaYsKpVi3yaEqVuKoUdUBYBfe3/+wIR6ab3sc/2NAXOpusaKaWKiQLr8ojIXKzUEVVE5DDwKtYdyb8SkYFYN/R5xF78B6z7j+7DunNW/4Iql1Kq4BRYQDHW/VGzkqmTZqybsgwuqLIopQqHXimrlHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjlGA4pSyjEaUJRSjtGAopRyjAYUpZRjNKAopRyjAUUp5RgNKEopx2hAUUo5RgOKUsoxGlCUUo7RgKKUcowGFKWUYzSgKKUc45aAIiJDReQXEdkpInNFpJSI1BWRjXZ+4/kiUsIdZVNK5V2hBxQRqQk8B4QZYwIAT6An8DYw2RjjB8QCAwu7bEqp/HFXl8cLKC0iXkAZ4BhwL7DAnp8+77FSqpgo9IBijDkCTAIOYgWSs8AWIM4Yk2wvprmNlSqG3NHl8QEeAuoCtwJlgQdysf4gEYkUkchTp04VUCmVUnnhji7PfcDvxphTxpgk4BugBVDJ7gKB5jZWqlhyR0A5CDQVkTIiIliZBHcBq4Fwe5n0eY+VUsWEO46hbMQ6+LoV2GGX4VNgJDBMRPYBlYHphV02pVT+FFhu42sxxryKlTw9vd+Axm4ojlLKIXqlrFLKMRpQlFKO0YCilHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjlGA4pSyjEaUJRSjtGAopRyjAYUpZRjNKAopRyjAUUp5RgNKEopx2hAUUo5RgOKUsoxGlCUUo7RgKKUcoy7chtXEpEFIrJHRHaLSDMRuUVElovIXvuvjzvKppTKO3e1UN4Hlhhj7gIaAruBUcBKY0w9YKX9XClVjLgjc2BFoDV2mgxjzGVjTBxWNsEZ9mKa21ipYsgdLZS6wCngcxGJEpFpIlIWqG6MOWYvcxyo7oayKaXywR0BxQsIBT4yxoQA8VzVvTHGGMBktbLmNlaq6HJHQDkMHLYzCIKVRTAUOCEiNQDsvyezWllzGytVdLkjFelx4JCI/NmelJbbeBFWTmPQ3MZKFUt
2021-04-13 14:13:15 +00:00
"text/plain": [
2021-05-20 10:33:36 +00:00
"<Figure size 288x288 with 1 Axes>"
2021-04-13 14:13:15 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
2021-05-20 10:33:36 +00:00
"<matplotlib.table.Table object at 0x7fd577b8ef10>\n"
2021-04-13 14:13:15 +00:00
]
},
{
"data": {
2021-05-20 10:33:36 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARQAAAD7CAYAAACrFWuaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAApuklEQVR4nO3deXwURfr48c+Tg/sI9woBQQNshIQEgsKKCGgIsKiAiIDLISLrb0XXCxD5iogoqCDggRcqKJhwLHIoBDSKoEIgkBAQkUOR+zScCZCjfn90Z0jIQY5OJpHn/XrNKzPV1T3VU5Nnqqu7usQYg1JKOcHD3QVQSv11aEBRSjlGA4pSyjEaUJRSjtGAopRyjAYUpZRjNKAUIREZJyJz3F0OJ4lIuIj0KOb3XC0iQ4vzPUsaEakjIr+ISFl3lyU3GlAKSUT6i0iMiJwTkcMiskJE2jm4/YYiYkTEqwi2ec5+HBWRL0Uk9CrrBQItgCVOlUXljTHmKPAdMMzdZcmNBpRCEJGngGnAK0AdoAEwA7jHjcXK5CqByMcYUwkrSHwNfCEig3PJ/29grinBV0M6GXhLYBnmYtVByWWM0UcBHkBV4BxwXy55xgFz7OcdgANXLN8L3Gk/vxmIAc4AR4E37PR9gLHf6xzQ1k4fAvwCJAArgeszbNcAjwK7gN+zKVdDO4/XFenP2O/tkcP+/Aa0y27/stsuMNhe5yzwO/BAhry5lT8U2AGcBt4GvgeG5vIZLwTm2J/dULtuPgIOAweBCYCnnd/P3t5p4AQwL8O2/gFstJdtBP6RXV1lU7fp+/2QXV9r7PSH7X08C2wHWtrpdYH/Acftz+XxDNvN9ntgL/MCEjN+ViXt4fYClNYH0AVIufKf8oo8Gb90Hcg9oKwDBtjPKwFt7OdZ/vmxWkC7AX/7S/Z/wE8ZlhusFkd1oHw25cqyTTv9BjvdP5t1KtrLamW3f1du185/BmhqL7sOaHa18gM17X/A3oA38KT9OecWUJKBHlgt7vLAF8D7dhlqAxuAf9v5w4Exdt5y2AHS/qwSgAF2mfrZr2tcWVfZ1G36fn9qv2d54D6sYNYaEKxAdr39vpuAsUAZ+zP/DQjL7XuQ4X3jgbvd/f3P6aGHPAVXAzhhjElxaHvJgJ+I1DTGnDPGrM8l7yPARGPML/b7vwIEicj1GfJMNMb8aYxJykcZDtl/q2ezzMf+ezYf20sDmotIeWPMYWPMz3kofzfgZ2PMQmNMMtYh5ZGrvM86Y8xiY0waUMXexhPGmPPGmGPAVKCvnTcZ6x+7rjHmgjHmBzv9n8AuY8xnxpgUY0w4Vivprnzs7zj7PZOwWkqvGWM2GstuY8wfWAGmljFmvDHmkjHmN+DDK8qX2/fgLJfrosTRgFJwJ4GaDh4vPwQ0AXaIyEYR6Z5L3uuB6SJySkROAX9i/QrWy5BnfwHKkL7+n9ksO2X/rZyXDRljzgP3YwWPwyLylYj83V6cW/nrZiy7sX6Wr7YvGZdfj9WyOZxh++9jtVQARtrvtUFEfhaRIXZ6XeCPK7b7B5k/06vJWI76wJ5s8lwP1E0vm12+57D64ODq34PKXK6LEsftHVil2DrgIlZTe2Ee8p8HKqS/EBFPoFb6a2PMLqCfiHgAvYCFIlIDqyl9pf3Ay8aYubm8X0E6TnsCx4Bfs2zMmPMisgfry37cTs60T8DfrlhnJbBSRMpj9WN8CNyWW/lFpDHWP2P6a8n4OgcZ93U/Vr3UzK71aIw5gtW3gX027hsRWYPVOrv+iuwNgMi87GsO5bgxmzz7sfq1Gme7Izl8D+zP3wvr0GlLduuWBNpCKSBjzGms4+B3RKSHiFQQEW8R6Soir2Wzyk6gnIj8U0S8sfoNXNcUiMi/RKSW3Ww/ZSenYf3zpmEda6d7DxgtIs3sdauKyH0F3Rf7GofhwAvAaLsM2VkO3J7hdRzQXkQaiEhVYPQV27xHRCpi/YOfs/fjauX/CmgmIr3sf6DHyf6fN1vGmMPAKmCKiFQREQ8RuVFEbrff6z4R8bWzJ2AFgTR735rYlwF4icj9wE3Alxn2ta9dxyFYfTy5mQk8IyKtxOJnH9JtAM6KyCgRKS8iniLSXERa2+XL6XsAVoftXvvQqWRydydOaX8AD2D1yp/HOtb/CvvsAFk7LQdjnXk4hnVGZS+XO2Xn2OnngJ+BHhnWG48VWE5xubN2ALAVq+NzP/BxhvwG8MulzA25fObovP2+y4EuV9nX5nbZJEPaO3a5dmP98qd3yl7H5bMpp4DVwE0Z1sut/F2wAnBez/LMuSKtKvAucMDeRizQ1172GlZn6TmsQ5JhGdZrh9Vhetr+m/GM1g1AtL3eV8CbZO2UvbKT+xGs1t45YBsQbKfXxeocPoIV1Nbn8XvwDhnOCJXEh9gFVSpPRORzYL4xZrG7y3ItEZHaWIE12Bhzwd3lyYkGFKWUY7QPRSnlGA0oSinHaEBRSjlGA4pSyjGl+sK2mjVrmoYNG7q7GEpdczZt2nTCGFPryvRSHVAaNmxITEyMu4uh1DVHRLK9uE4PeZRSjimygCIiH4vIMRHZliGtuoh8LSK77L/V7HQRkTdFZLeIxItIy6Iql1Kq6BRlC2UW1iXUGT0LRBlrYFSU/RqgK9DYfgzDumxaKVXKFFlAMcasIesw+HuA2fbz2VgjddPTPzWW9YCPiFxXVGVTShWN4u5DqWOs0aBgDYxKvwdEPTLfS+IA+bsPhVKqBHDbWR5jjBGRfA8kEpFh2Hf+btCgQZ7WCZkUld+3UYUU8+wdhVpf68w9Cltvxd1COZp+KGP/PWanHyTzTXR87bQsjDEfGGNCjDEhtWplOQ2ulHKj4g4oS4FB9vNBXJ7fZSkw0D7b0wY4neHQSClVShTZIY+IhGPd6b2miBzAuhvYJGC+iDyEdb/OPnb25Vg3Ft6NNU3Ag0VVLqVU0SmygGKM6ZfDoiwHaca6KcujRVUWpVTx0CtllVKO0YCilHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjlGA4pSyjEaUJRSjtGAopRyjAYUpZRjNKAopRyjAUUp5RgNKEopx2hAUUo5RgOKUsoxGlCUUo7RgKKUcowGFKWUY9wSUETkSRH5WUS2iUi4iJQTkUYiEm3PbzxPRMq4o2xKqYIr9oAiIvWAx4EQY0xzwBPoC7wKTDXG+AEJwEPFXTalVOG465DHCygvIl5ABeAw0AlYaC/POO+xUqqUKPaAYow5CEwG9mEFktPAJuCUMSbFzqZzGytVCrnjkKcacA/QCKgLVAS65GP9YSISIyIxx48fL6JSKqUKwh2HPHcCvxtjjhtjkoFFwK2Aj30IBDq3sVKlkjsCyj6gjYhUEBHBmklwO/Ad0NvOk3HeY6VUKeGOPpRorM7XzcBWuwwfAKOAp0RkN1AD+Ki4y6aUKpwim9s4N8aYF7AmT8/oN+BmNxRHKeUQvVJWKeUYDShKKcdoQFFKOUYDilLKMRpQlFKO0YCilHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjlGA4pSyjEaUJRSjtGAopRyjAYUpZRjNKAopRyjAUUp5RgNKEopx2hAUUo5xl1zG/uIyEIR2SEiv4hIWxGpLiJfi8gu+281d5RNKVVw7mqhTAcijTF/B1oAvwDPAlHGmMZAlP1aKVWKuGPmwKpAe+xpMowxl4wxp7BmE5xtZ9O5jZUqhdzRQmkEHAc+EZFYEZkpIhWBOsaYw3aeI0AdN5RNKVUI7ggoXkBL4F1jTDBwnisOb4wxBjDZraxzGytVcrkjoBwADtgzCII1i2BL4KiIXAdg/z2W3co6t7FSJZc7piI9AuwXkaZ2Uvrcxkux5jQGndtYqVLJLVORAo8Bc0WkDNYUpA9iBbf5IvIQ8AfQx01lU0oVkLvmNo4DQrJZdEcxF0Up5SC9UlYp5RgNKEopx2hAUUo5RgOKUsoxGlCUUo7RgKKUcowGFKWUYzSgKKUcowFFKeUYDShKKcdoQFFKOUYDilLKMRpQlFKO0YCilHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjnGXXMbe9qTfH1
2021-04-13 14:13:15 +00:00
"text/plain": [
2021-05-20 10:33:36 +00:00
"<Figure size 288x288 with 1 Axes>"
2021-04-13 14:13:15 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
2021-05-20 10:33:36 +00:00
"<matplotlib.table.Table object at 0x7fd57edc4fd0>\n"
2021-04-13 14:13:15 +00:00
]
},
{
"data": {
2021-05-20 10:33:36 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARQAAAD7CAYAAACrFWuaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAArW0lEQVR4nO3dd3gVVfrA8e+bQiC00KVF0ICGFJOAlB9dpYpIiUpkBUREXVd0lbKIwqq4YGEFLKurroCshLoSLKiACBZK6IhIkUgLEDChJYSU8/tjJpcbkiAhk9xE3s/z3AfuzJm5Z+65eeecmXPmiDEGpZRygpenM6CU+uPQgKKUcowGFKWUYzSgKKUcowFFKeUYDShKKcdoQPmDEJEhIvJtCX5eLRHZKSIVSvAzG4mIERGfkvrM0khEHhORlzydj/xoQCkEEfETkfdF5FcROS0im0Wkx0VpbrX/0FJF5GsRudZt3d0i8r29bmU++79DRLaLyBk7XbNiOo6/i8jsIu7mb8AMY0yaE3lShfIuMFBEans6IxfTgFI4PsABoCNQFXgGmCcijQBEpCawCHgWqA7EA3Pdtv8NmApMvnjHItIE+C/wMBAALAHiSuPZWET8gMFAUYNSsSkt31tx5MMYcw74HBjk9L6LzBijryK8gK1Af/v/w4Hv3dZVBNKAGy/aZhiw8qJlfwE+dXvvZW97awGfWwOIA04B64AXgG/d1k/DCn6ngA1Ae3t5d+A8kAGcAbbYy+8HfgJOA78AD13imDsAey5algDc5vb+78Bs+//lsYLPCSAFWA/UsddVBd4HEoFDwETA217nDbwKHLfz9ChgAJ8C8pUAjLHLJB3rBNAa+N7+3C1AJ7f0Q+z9ngb2AQPdvvtngF+BY8AsoKq9rhNwsKBjt497gX28p+yyrg58ABwGkoGP3bbtBWy28/c9EO62boz9nZwGfnb/LQADga89/fu/+KU1lCIQkTpAU+BHe1EI1o8WAGPMWWCvvfyydnnR/wUILSDtm8A5oC4w1H65Ww9EYP2YPwLmi0h5Y8xS4B/AXGNMJWPMTXb6Y1g/7ipYweU1EYkq4LPDsH7gl2swVuBoiBUIH8YKlgAzgEwgCIgEumL9EQI8aOcpEmgBRF/GZ8UAt2PV8uoAn2IFqerASGChff2nIjAd6GGMqQz8H9YfNliBZgjQGbgOqAS8UYjjvRMrqARg1To/BPyxfge1gdcARCQS+A/wENb38g5WrdRPRG7AOsncbOevG1bgyvETcBOljAaUKyQivlg/lpnGmJ324krAyYuSngQqX8YulwEdRaSTiJQDngbKYf0QL/5sb6A/MN4Yc9YYsx2Y6Z7GGDPbGHPCGJNpjJkC+AE3FPThxphPjTF7jeUb4EugfQHJA7DOmpcrA+sPJsgYk2WM2WCMOWUH5J7AE/ZxHMP6Yxtgb3c3MNUYc8AY8xsw6TI+a7qdPg34E/CZMeYzY0y2MeYrrGZoTzttNhAqIhWMMYnGmJwTw0Dgn8aYX4wxZ4CxwIBCNF9+MMZ8bIzJxvquegAPG2OSjTEZ9vcLVo32HWPMWvt7mYlVs2oNZGGVWTMR8TXGJBhj9rp9xmmsIF2qaEC5AiLihXXWOY91FslxBusM764Kl/HHZwelwVhnwkSgJrADOJhP8lpcuJ6T49eL8jhSRH4SkZMikoL146t5iWPqISJrROQ3O33PS6RP5vKCZI4PgS+AWBE5LCIv2wH5WsAXSBSRFPtz38E6iwPUu9QxFsA9/bXAXTn7tvffDqhr1x7vwaotJYrIpyJyo9vnun/Wr1jfd53LPF73PDQEfjPGJOeT7lrgqYvy1xCoZ4zZAzyB1YQ6JiKxIlLPbdvK5D15eZwGlEISEcFq89fBunaS4bb6R9yqoXa1+nouNIkuyRizwBgTaoypAUwAGmE1XS6WhNVMaOi2LNDtc9sDo7HO8NWMMQFYP76cJlWuIeb2RdaFWNcr6tjpPyN3E8zdVqymnruz5K5NXeN2XBnGmOeMMc2wmha9sC4oHsA6I9c0xgTYryrGmJwmYmJBx3gJ7sd2APjQbd8BxpiKxpjJdr6+MMZ0wWo27sS6ewLWtY5r3fYTiPV9H734OO3aYq3fyUN1EQnIJ68HgBcvyp+/MWaOnb+PjDHt7LwYwP1WcTBuzevSQgNK4f0LqzDvMHlvmf4PqwrdX0TKA+OBrTlNIhHxtpf7AF4iUt4+U2Ovb26nqQX8G4hza065GGOysO4m/V1E/O3by4PdklTG+gNIAnxEZDy5a05HgUZ2TQusppWfnT7TvhXe9RLfwTogQETquy3bjNUs8BWRXNc7RKSziITZf3ynsJpA2caYRKym1RQRqSIiXiJyvYh0tDedB4wQkQYiUg3rVnVhzAbuEJFuOd+93aRsICJ1ROROO+inY9Uus+3t5gB/FZHGIlKJC9ecMoFdQHkRud0uu2fs7y5f9jF+DrwlItXs76eDvfpd4GERaSWWivZ+K4vIDSJyix3sz2Fdc8p223VHe7+li6evCpelFxfOFOewfoA5r4FuaW7DOtulASuBRm7rhtjbu79muK3/Fqt59BtW1b/iJfJSC/iEfO7yYN0d+Y+9LhGrtpLAhTsRNezPSgY22ssexQo0KVhNlFhg4iU+/xVgjNv764C19vfxKdYFz5y7PDFYF3HP2p8xHftODVZT7F9YTbuTwCZggL3OB+uaygmsuzCXc5fntouWtQK+sb/TJDtvgVi1km/sz0yxy6qZvY0X1snggL3NbKyanns5JmJdyB5J3rs8sy/KQ3Wsa1xH7e98kdu67li10BR7n/OxTgjhdrnm/B4+wWoKgXXX7CD2nbLS9BI7g0oVil2LWg1EGu3cVqJE5DGgoTFmtKfzcjENKEopx+g1FKWUYzSgKKUcowFFKeUYDShKKceUihGZV6pmzZqmUaNGns6GUledDRs2HDfGXNyhr2wHlEaNGhEfH+/pbCh11RGRfIdBaJNHKeWYYgsoIvIfETkmItvdllUXka9EZLf9bzV7uYjIdBHZIyJbLzFsXilVihVnDWUGVrdid38DlhtjmgDLuTA2owfQxH4Nx+qKrZQqY4otoBhjVmGNQXB3Jxee2zET6OO2fJaxrMEaeFa3uPKmlCoeJX0NpY6xRl8CHOHC8yXqk/sZEgftZUqpMsRjd3mMMUZECj2QSESGYzWLCAy8nMdjQIvJywv7MaqI4v92a5G21zLzjKKWW0nXUI7mNGXsf4/Zyw+R+0E6DexleRhj/m2MaWGMaVGrVp7b4EopDyrpgBLHhQcBDQYWuy0fZN/taQ2cdGsaKaXKiGJr8ojIHKwpB2qKyEGsRxpOxprH5gGs53TebSf/DOsZpnuAVKynriulyphiCyjGmJgCVuVppBnroSyPFldelFIlQ3vKKqUcowFFKeUYDShKKcdoQFFKOUYDilLKMRpQlFKO0YCilHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjlGA4pSyjEaUJRSjtGAopRyjAYUpZRjNKAopRyjAUUp5RgNKEopx3gkoIjIX0XkRxHZLiJzRKS8iDQWkbX2/MZzRaScJ/KmlLpyJR5QRKQ+MAJoYYwJBbyBAcBLwGvGmCAgGXigpPOmlCoaTzV5fIAKIuID+AOJwC3AAnu9+7zHSqkyosQDijHmEPAqsB8rkJwENgApxphMO5nObaxUGeSJJk814E6gMVAPqAh0L8T2w0UkXkTik5KSiimXSqkr4Ykmz23APmNMkjEmA1gEtAUC7CYQ6NzGSpVJnggo+4HWIuIvIoI1k+AO4Gsg2k7jPu+xUqqM8MQ1lLVYF183AtvsPPwbGAM8KSJ7gBrA+yWdN6VU0RTb3MaXYoyZgDV5urtfgJYeyI5SyiHaU1Yp5RgNKEopx2hAUUo5RgOKUsoxGlCUUo7RgKKUcowGFKWUYzSgKKUcowFFKeUYDShKKcdoQFFKOUYDilLKMRpQlFKO0YCilHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjnGU3MbB4jIAhHZKSI/iUgbEakuIl+JyG7732qeyJtS6sp5qoYyDVhqjLkRuAn
2021-04-13 14:13:15 +00:00
"text/plain": [
2021-05-20 10:33:36 +00:00
"<Figure size 288x288 with 1 Axes>"
2021-04-13 14:13:15 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
2021-05-20 10:33:36 +00:00
"<matplotlib.table.Table object at 0x7fd57f9a31c0>\n"
2021-04-13 14:13:15 +00:00
]
},
{
"data": {
2021-05-20 10:33:36 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARQAAAD7CAYAAACrFWuaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAApbklEQVR4nO3dd3wVVfr48c+TCkF6U5qAoSbBEALCCohIABGRolQBFyzsWvYnfJEmoAICKi6sC+taVsDVhOoCihRBBVE6AQGVokiHgAkGAiHl/P6YySUdkszNTeR5v1555d4pZ87Mufe5c87MmSPGGJRSyglens6AUuqPQwOKUsoxGlCUUo7RgKKUcowGFKWUYzSgKKUcowElFyLykoj819P5cIqIRIpId0/nozCJyBER6eDpfHiSiDQRkW8LY1s3fUARkf4isl1ELorIKRH5XERaO5h+bRExIuLjVJrp0r7FzvfnN7BsE+BOYJnT+XAXEWknIsc9nY/izhizB4gTkQfdva2bOqCIyHBgJvAqUBWoBcwBHvJgtjK4TiDqBSQCESJy63WSegr4yORwJ6M7Al5xIyLeRSAP7iqHj7A+A+5ljLkp/4CywEXgkVyWeQn4r/26HXA80/wjQAf7dQtgO/A7cAZ4055+FDD2ti4CrezpQ4AfgFhgNXB7unQN8DRwEPgll/ytB6YAO4H/u87+/gy0Tvf+MWAT8HfgPDAZ8AfesPN8BngbKJlunZHAKeCknX8DBNrzvgIez5T+N+neNwTWAr8BPwG9083rAuwH4oETwP8BpYDLQGq6Y1cN60dwNHDYzvdCoEK6tAYCv9rzxqUvo2yOyVzgX8BK4BLQwd7GEiAG+AV4Lt3y2ZaxPa8bsA+Is49Fo0zlGZhpu5PTf66AUcBp4EPAGxhr72M8sAOomZ/jmG5edft4+rv1e+XpL7an/oDOQDLgk8syL3HjAeU7YKD9+hagpf26tv2B8km33kPAIaAR4AO8CHyb6QO4FqhAui90pm3fbn/ZGgMjgD257EcpO83K6aY9Zu//s3YeSmIFl+X2dksDK4Cp6Y7XGSDYTu9jbjCg2MsfA/5sb6spcA5obM8/BbSxX5cHwnI55n8DNgM1sALgv4FIe15jrMDT1p73pr2PuQWUC8DdWIEqAOvLOwHwA+piBeJO1ynj+lgBKQLwBV6wy9cvXXnmFlCSgel2nktiBe7vgQaAYFVVK+b3OKbb7u9AE3d+r27mKk9F4JwxJtmh9JKAQBGpZIy5aIzZnMuyw7C+qD/Y238VCBWR29MtM9UY85sx5nIOaQzECiL7gSggSESa5rBsOft/fKbpJ40xb9l5uAI8CTxvbzfezldfe9newAfGmL3GmEtYwfZGdQWOGGM+MMYkG2N2YZ0FPGLPTwIai0gZY0ysMWZnLmkNA8YZY44bYxLtfDxsVxUeBj41xmyw543HCrq5WWaM2WSMSQVCsILuK8aYq8aYn4F30x2DnMq4D/CZMWatMSYJ6yyvJPCnGzw+qcBEY0yiXd6PAy8aY34ylt3GmPMU/DjGc+2z4BY3c0A5D1RysM46FOuX6kcR2SYiXXNZ9nZglojEiUgc1umrYJ2Wpjl2ne0NwqoXY4w5AXwNDM5h2Tj7f+lM09NvozL2L3S6fK2yp4NVFUi//K/XyV96twN3paVrpz0ASGv36YV1uv6riHwtIq2uk9Yn6dL5AUjBagPLkEc78J2/Tt7S79PtQLVM+Rxrpw05l3E10h0POzgdI2N55ibGGHMl3fuaWNWdzAp6HEtz7bPgFjdzQ9x3WA2a3YHFN7D8JawvHOBqwEv7smGMOQj0ExEvoCewWEQqYp3uZnYMmGKM+SiX7eXYDVxE/gTUA8aIyAh7cmkgWET+L/NZlzHmkogcxvoyxOSwjXNYdewgO0Bldgrrg56mVqb5GY4P1z7kYO3v18aYiOz2xxizDXhIRHyBZ7DaRWqS87EbYozZlHmGiJzCqkamvQ/AOhPNTfptHMNqs6qXQz5zKuOTWGc3adsVO/9pxzGBrMcm/dWrzPt5DLgD2JvN9PwcR0SkOlY17qfs1nXKTXuGYoy5gFVXni0i3UUkQER8ReR+EXktm1UOACVE5AG7wF7EqvMCICKPikhl+9cpzp6civUFTsWqj6d5GysYBNnrlhWRR7hxg7HaWBoDofZfMNZp9v05rLMSuCenBO18vwv8XUSq2PmqLiKd7EUWAo+JSGP7izoxUxLRQE/7OAZi/Zqn+RSoLyID7WPsKyLNRaSRiPiJyAARKWtXF37nWjXlDFBRRMqmS+ttYEpa9VBEKotI2lW5xUBXEWktIn7AK+TtM74ViBeRUSJSUkS8RSRYRJrb28qpjBcCD4jIffZnYwTWj1XavR/RQH87vc7kUg6294BJIlJPLE3swJXf44i9zfV2VdB93NlAUxz+sE4Zt2P9wp4GPgP+ZM97CbtR1lxraDwFnMW6EnGEa42y/7WnX8Rq7e+ebr1XsAJLHNca8gZiNbz9jvXL8590y2doxMuU3xJYV4YezGbeHGBxDusF2/mSdPvyTTZpv4rVEPk7VnUi/VWO0fYxyu4qTyVgDVY9fZN97NJf5WlgH9sYrGrIeqxA6IdVtYq1t7mNjFej/mMvH8e1qzzDsX5p47GqBq+mW34w1lWqG73KMznTtGpApL2fsVgNwDdSxj2wrrBcwKp+BqWbF24vH491FSeSTFd5MuXBG+sH6xd7nW1AjQIex8+Abu7+PqV9uNRNQEQ+BhYaY/7nUHoGqGeMOeREeso97Jsa/22Mya1typltaUBR+aUBRWV207ahKKWcp2coSinH6BmKUsoxGlCUUo4p1je2VapUydSuXdvT2VDqprNjx45zxpjKmacX64BSu3Zttm/f7ulsKHXTEZFsu15olUcp5Ri3BRQR+Y+InBWRvemmVRCRtSJy0P5f3p4uIvIPETkkIntEJMxd+VJKuY87z1DmYj1DI73RwDpjdb5aZ78Hq/9JPfvvSayH3iilihm3BRRjzAasbvnpPQTMs1/Pw+rpmzZ9vrFsBsqJyG3uyptSyj0Kuw2lqjHmlP36NNeeM1GdjM+lOM6NP0tCKVVEeOwqjzHG2H1B8kREnsSqFlGrVuZHcmQvfNq6vG5GFdD20fcVaH0tM88oaLkV9hnKmbSqjP3/rD39BBkf3lODaw+nycAY844xJtwYE165cpbL4EopDyrsgLKca48pHMy1MWKWA4Psqz0tgQvpqkZKqWLCbVUeEYnEenhMJbEGa5oITAMWishQrGdw9rYXX4n1LMxDWI/L+7O78qWUch+3BRRjTL8cZmWppBmry/PT7sqLUqpw6J2ySinHaEBRSjlGA4pSyjEaUJRSjtGAopRyjAYUpZRjNKAopRyjAUUp5RgNKEopx2hAUUo5RgOKUsoxGlCUUo7RgKKUcowGFKWUYzSgKKUcowFFKeUYDShKKcdoQFFKOUYDilLKMR4JKCLyvIjsE5G9IhIpIiVEpI6IbLHHN14gIn6eyJtSKv8KPaCISHXgOSDcGBMMeAN9genA340xgUAsMLSw86aUKhhPVXl8gJIi4gMEAKeA9sBie376cY+VUsVEoQcUY8wJ4A3gKFYguQDsAOKMMcn2Yjq2sVLFkCeqPOWBh4A6QDWgFNA5D+s/KSLbRWR7TEyMm3KplMoPT1R5OgC/GGNijDFJwFLgbqCcXQUCHdtYqWLJEwHlKNBSRAJERLBGEtwPfAk8bC+TftxjpVQx4Yk2lC1Yja87ge/tPLwDjAKGi8ghoCLwfmHnTSlVMG4b2zg3xpiJWIOnp/cz0MID2VFKOUTvlFVKOUYDilLKMRpQlFKO0YCilHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjlGA4pSyjEaUJRSjtGAopRyjAYUpZRjNKAopRyjAUUp5RgNKEopx2hAUUo5RgOKUsoxGlCUUo7x1NjG5URksYj8KCI/iEgrEakgImtF5KD9v7wn8qaUyj9PnaHMAlYZYxoCdwI/AKOBdcaYesA6+71SqhjxxMiBZYG22MNkGGOuGmPisEYTnGcvpmMbK1UMeeIMpQ4
2021-04-13 14:13:15 +00:00
"text/plain": [
2021-05-20 10:33:36 +00:00
"<Figure size 288x288 with 1 Axes>"
2021-04-13 14:13:15 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
2021-05-20 10:33:36 +00:00
"<matplotlib.table.Table object at 0x7fd57eb56130>\n"
2021-04-13 14:13:15 +00:00
]
},
{
"data": {
2021-05-20 10:33:36 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARQAAAD7CAYAAACrFWuaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjjElEQVR4nO3dd3wVVfr48c+TQgJIB1GaoAGVEA0QEBZQVBBERUAQ4gooTX/W7+ICAiIuxAVFBVZhXSvBkiCIFEUEsYAIUoMUkS6hhYAJLRgIOb8/ZnK5qaTMzc0lz/v1yiu5M2dmzszJfeacmTlzxBiDUko5wc/bGVBKXT40oCilHKMBRSnlGA0oSinHaEBRSjlGA4pSyjEaUPIgIi+JyMfezodTRCRGRLp5Ox/FSUT2iUgHb+fDm0TkJhH5uTi2VeoDiog8JCLrROS0iBwWka9FpK2D668vIkZEAjywztP2T4KITBeRwDyWuQm4GZjvVD48TUTai8gBb+fD1xljfgWSReQ+T2+rVAcUERkKTAH+DdQE6gHTgfu9mK1MLhGIKhtjrgDCgNbAk3mkfQz4xOTyJKOTAc9XiYh/CciDp8rhE6z/Ac8yxpTKH6AScBrolUeal4CP7b/bAweyzN8HdLD/bgmsA04CCcAb9vT9gLG3dRpobU8fAPwGJAHfANe4rddgBYedwN4c8lXfThPgNu1V4J089mUP0Nbt8yPASmAycByIAoKA1+w8JwBvA2XdlhkGHAYO2fk3QIg97wdgUJb1/+T2+QZgKfAn8DvwoNu8LsA24BRwEPgnUB44C6S7HbtaWCfB54Hddr4/A6q6rasv8Ic9b7R7GeVwTGYA/wUWAWeADvY2PgcSgb3AM27pcyxje15XYCuQbB+LG7OUZ0iW7Ua5/18BI4AjwEeAPzDK3sdTwHqgbmGOo9u82vbxDPLo98rbX2xv/QCdgTTcvpQ5pHmJ/AeUVUBf++8rgFb23/XJ/uW/H9gF3AgEAC8AP2f5B1wKVMXtC+02P9M67S/BJmBALvtR3k5fw23aI/b+P23noSxWcFlgb7cCsBCY4Ha8EoAm9vo+JZ8BxU4fDzxqb6spcAxobM8/DLSz/64CNMvjmD8LrAbqYAXA/wEx9rzGWIHnVnveG/Y+5hVQTgBtsAJVOawv74tAGeBarEDc6RJl3AgrIHUEAoHhdvmWcSvPvAJKGvCKneeyWIF7M3A9IFhN1WqFPY5u2z0J3OTJ71VpbvJUA44ZY9IcWt95IEREqhtjThtjVueR9nGsL+pv9vb/DYSLyDVuaSYYY/40xpzNYz3HRCQZ62x0BpiTS7rK9u9TWaYfMsa8aefhL2AI8A97u6fsfPWx0z4IfGiM2WKMOYMVbPPrXmCfMeZDY0yaMWYjVi2glz3/PNBYRCoaY5KMMRvyWNfjwGhjzAFjTKqdj552U6En8KUxZrk9bwxWDScv840xK40x6VhNxxrGmHHGmHPGmD3Au27HILcy7g18ZYxZaow5j1XLKwv8LZ/HJx0Ya4xJtct7EPCCMeZ3Y9lkjDlO0Y/jKS7+L3hEaQ4ox4HqDrZZB2KdqbaLyFoRuTePtNcAU0Uk2Q4If2KdiWq7pYnPxzarG2MqY51ZV2I1nXKSbP+ukGW6+zZq2OtZ75avxfZ0sGpB7un/yEf+MlwD3JKxXnvdfweusuc/gFVd/0NEfhSR1pdY1xdu6/kNuIB1DSxTHu3Ad/wSeXPfp2uAWlnyOcpeN+RexrVwOx52cIonc3nmJdEY85fb57pYzZ2sinocK3Dxf8EjSvOFuFVAKtCN3M/s7s5gfeEA1wW8jC8bxpidQKSI+AE9gDkiUg2ruptVPPCyMeaTPLaX727gxpizIjID+Kd99jyWZf4ZEdmN9WVIzGUbx7Da2KHGmIM5bOYw1j96hnpZ5mc6Plz8Jwdrf380xnTMJf9rgfvtu1RPYV0XqUvux26AMWZl1hkichirGZnxuRxWTTQv7tuIx7pm1TCXfOZWxoewajcZ2xU7/xnHMYXsx8b97lXW/YwHrgO25DC9MMcREamN1Yz7PadlnVJqayjGmBNYbeVpItJNRMqJSKCI3C0ir+awyA4gWETusQvsBaw2LwAi8rCI1LDPTsn25HSsL3A6Vns8w9vASBEJtZetJCK9KCQRCcK6GHmE3M/Ii4DbcluHne93gckicqW93toi0slO8hnwiIg0tr+oY7OsIg7oYR/HEKyzeYYvgUYi0tc+xoEi0kJEbhSRMiLydxGpZDcXTnKxmZIAVBORSm7reht4OaN5KCI1RCTjrtwc4F4RaSsiZYBxFOx/fA1wSkRGiEhZEfEXkSYi0sLeVm5l/Blwj4jcaf9vPId1ssp49iMOeMheX2fyKAfbe8B4EWkolpvswFXY44i9ze/spqDnePICjS/8YFUZ12GdYY8AXwF/s+e9hH1R1ly80HgYOIp1J2IfFy/KfmxPP411tb+b23LjsAJLMhcv5PXFuvB2EuvM84Fb+kwX8XLIc30y3zlKBn4EWuSxTBM7X+K2Lz9lSROMdd1kj52v38h8l+N5+xjldJenOrAEq52+0j527nd5rrePbSJW0PsOCMc6ay7Gutt1ElhL5rtRH9jpk7l4l2co1pn2FFbT4N9u6ftj3aXK712eqCzTagEx9n4mYV0Azk8Zd8e6w3LCLotQt3kRdvpTWHdxYshylydLHvyxTlh77WXWAnWKeBy/Arp6+vuU8c+lSgER+RT4zBgzz6H1GaChMWaXE+tTnmE/1Pg/Y0xe16ac2ZYGFFVYGlBUVqX2GopSynlaQ1FKOUZrKEopx2hAUUo5xqcfbKtevbqpX7++t7OhVKmzfv36Y8aYGlmn+3RAqV+/PuvWrfN2NpQqdUQkx64X2uRRSjnGYwFFRD4QkaMissVtWlURWSoiO+3fVezpIiL/EZFdIvKriDTzVL6UUp7jyRrKDKx3aLh7HlhmrM5Xy+zPAHcDDe2fIVgvvVFK+RiPBRRjzHKsbvnu7gei7b+jsXr6ZkyfaSyrgcoicrWn8qaU8ozivoZS0xhz2P77CBffM1GbzO+lOED+3yWhlCohvHaXxxhj7L4gBSIiQ7CaRdSrl/WVHDmLmLisoJtRRbTu+TuLtLyWmXcUtdyKu4aSkNGUsX8ftacfJPPLe+pw8eU0mRhj3jHGRBhjImrUyHYbXCnlRcUdUBZgva8C+/d8t+n97Ls9rYATbk0jpZSP8FiTR0RisF4eU12swZrGAhOBz0RkINY7OB+0ky/CehfmLqzX5T3qqXwppTzHYwHFGBOZy6xsjTRjdXnOa5AqpZQP0CdllVKO0YCilHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjlGA4pSyjEaUJRSjtGAopRyjAYUpZRjNKAopRyjAUUp5RgNKEopx2hAUUo5RgOKUsoxGlCUUo7RgKKUcowGFKWUY7wSUETkHyKyVUS2iEiMiASLSAMR+cUe33iWiJTxRt6UUoVX7AFFRGoDzwARxpgmgD/QB3gFmGyMCQGSgIHFnTelVNF4q8kTAJQVkQCgHHAYuAOYY893H/dYKeUjij2gGGMOAq8B+7ECyQlgPZBsjEmzk+nYxkr5IG80eaoA9wMNgFpAeaBzAZYfIiLrRGRdYmKih3KplCoMbzR5OgB7jTGJxpjzwFygDVDZbgKBjm2slE/yRkDZD7QSkXIiIlgjCW4Dvgd62mncxz1WSvkIb1xD+QXr4usGYLOdh3eAEcBQEdkFVAPeL+68KaWKxmNjG+fFGDMWa/B0d3uAll7IjlLKIfqkrFLKMRpQlFKO0YCilHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjlGA4pSyjEaUJRSjtGAopRyjAYUpZRjNKAopRyjAUUp5RgNKEopx2hAUUo5RgOKUsoxGlCUUo7RgKKUcoy3xjauLCJzRGS7iPwmIq1FpKqILBWRnfbvKt7Im1Kq8LxVQ5kKLDbG3ADcDPwGPA8sM8Y0BJbZn5VSPsQbIwdWAm7FHibDGHPOGJOMNZpgtJ1MxzZWygd5o4bSAEgEPhSRjSLynoiUB2oaYw7baY4
2021-04-13 14:13:15 +00:00
"text/plain": [
2021-05-20 10:33:36 +00:00
"<Figure size 288x288 with 1 Axes>"
2021-04-13 14:13:15 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
2021-05-20 10:33:36 +00:00
"<matplotlib.table.Table object at 0x7fd57ee57910>\n"
2021-04-13 14:13:15 +00:00
]
},
{
"data": {
2021-05-20 10:33:36 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARQAAAD7CAYAAACrFWuaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhyElEQVR4nO3deXwV1f3/8dcnCYRFdigqi6ABFUhliSgVFRfEokVBFLACCkj5tX5tq19E5OdSjAU3Cv0KX1uXAtoSBFFAERGqBS3IjixSFkH2RQw7AiHn+8dMrjckgSxzc3PJ+/l43EcyM2fmnplz7+fOOTNnjjnnEBEJQly0MyAi5w4FFBEJjAKKiARGAUVEAqOAIiKBUUARkcAooJyBmT1jZm9HOx9BMbNhZva7aOejOJnZZ2bWL9r5iCYzq21mX5tZYqTfq9QHFDO718wWm9lhM9tpZh+ZWdsAt9/AzJyZJQS1TX+7Zf2At97MjpjZZjN708wa5JG+FtAL+EuQ+YikSB270sY5txv4FOgf6fcq1QHFzB4BRgJ/BGoD9YExwB1RzFY2Z/gyTQY6AfcCVYArgCXATXmkvx+Y4Zw7VsD3KTVKwjGIYB7+DvwqQtv+kXOuVL7wvoSHgbvPkOYZ4G3//3bAttOWbwZu9v9vDSwGDgK7gRH+/C2A89/rMNDGn98H+BpIBz4GLgrbrgN+A6wHNuWSr5uBY0C9AuzvP4H7wqbbAduAQcAu4C28H5jHgY3APuAdoHrYOj2Bb/1lQ07b/7FA6unbD5u+EHgX2AtsAh4OWxbksWsPrAUOAK8A/wL6naF8JwNv++/dz/9cvAHsBLYDqUC8nz7J394B4DtgYti2fgYs8pctAn6W2+ckl89VA38f+/r7O9ef/6C/j4eANUDLwh5Hf1kCcDT8WEXkexXtL3a0XsCtQAaQcIY04QWf7Qty+gcFmA/09P8/D7j6tA9MQth6dwAbgMv9gv7/wL/DljvgE6A6UD6XfA0H/lXA/d0LXBk23c7f/+eBRKA88FtgAVDXn/cXYIKfvgnel/o6f9kIf/2zBhS8QLUEeAooC1wMfAN0CPLYATX9L2BXoAzwez+PZwooJ4E7/TyWB97z97si8BNgIfArP/0EvEAaB5QD2vrzq+MFt55+nnr40zVO/5zk8rnK2sfx/nuWB+7GC2ZXAoYXyC4q7HEMe9+vgE6R/F6V5ipPDeA751xGQNs7CSSZWU3n3GHn3IIzpB0ADHPOfe2//x+B5mZ2UViaYc65713uVZQaeL+gBVEV78sWLhN42jl33H+fAcAQ59w259xxvA9+V/80vCvwgXNurr/sSX/9/LgSqOWcG+qcO+Gc+wZ4DejuLw/q2HUEVjvnJjvnTuJVZ3edJW/znXPvO+cygcr+Nn7nnDvinNsD/Om0fF4EXOic+8E597k//zZgvXPuLedchnNuAt5Z0i/yeXwAnvHf8xjemdILzrlFzrPBOfctRT+Oh/A+BxFTmgPKPqBmgHXWvkBjYK2ZLTKz28+Q9iJglJntN7P9wPd4v0R1wtJsPcP6+4ALCpi/dKDSafP2Oud+OC1f74Xl62vgFF770oXheXLOHfHzkR8XARdmbdff9hP+diG4Y3d6Hh1nPo6ctvwivDObnWHb/wvemQrAY/57LTSz1WbWx59/IV5VMNy3ZC/PswnPRz28aufpinocKwH7C5CnAot6I1QUzQeO453uTs5H+iNAhawJM4sHamVNO+fWAz3MLA7oAkw2sxp4p7On2wo855z7+xne70zdwGcDvzWzus65bfnIO3inu43x6vd5vcdWoI9z7ovTVzaznXjVjKzpCnhnSlmyHR/g/NO2u8k51yi3jAV17MysEd6XMWvawqfzEP4eW/E+EzVzO3N1zu3Ca9vAvxI428zmAjvwvuzh6gMz/f/PdGzyyscluaQp1HF0zh3xfziTgBW5rRuUUnuG4pw7gFcXHW1md5pZBTMrY2Y/N7MXclllHVDOzG4zszJ4dffQdX0zu8/Mavmnzvv92Zl4bReZePXdLK8Cg82sqb9uFTO7uwB5n43XxvKembUyswQzq2RmA8J+NU83A7j+LJt+FXguq+plZrXMLOuK12TgdjNra2ZlgaFk//wsBzqaWXUzOx/4XdiyhcAhMxtkZuXNLN7MmpnZlf77BHXsPgSamlkX/wv0MLl/eXPlnNsJzAJeNrPKZhZnZpeY2fX+e91tZnX95Ol4QSAT79g29m9BSDCzbnhtTh+EHZvu/ucrBa/6eCavA//tl62ZWZJfJoU9juA12G72q06RE8kGmlh4Ab/Eaxk/glff/hC/hZ6wxjN/+n68tos9wH+TvVH2bX/+YWA1cGfYekPxvhz7+bHBsSewEq9FfivwZlh6BySdJd9lgT/gNVAewTvFfh2on0f6mnhXdcr70+3I2cgcBzwC/Aevvr0R+GPY8t54VyJyu8pTDpjo789XeA2ip1/lmeAf43S8xt9IHLtb8YJ/fq/yvH3avCrA//rH6gCwDOjuL3sBr7H0sH9s+oet1xavwfSA/7dt2LKLgS/99T4E/kzORtmE0/IxwC+Hw8AqoEURj+Nowq4IRepl/ptJKWBmfwT2OOdGBrS9zXhf1tlBbE8iw8x+ghdYW7jsbWaBK81tKKWOc+6JaOdBip/zrlZdftaEASi1bSgiEjxVeUQkMDpDEZHAKKCISGBiulG2Zs2arkGDBtHOhkips2TJku+cc7VOnx/TAaVBgwYsXrw42tkQKXXMLNcb5FTlEZHARCyg+E8P22Nmq8LmVTezT8x7ytgnZlbNn29m9mcz22BmX5lZy0jlS0QiJ5JnKGPxboMO9zgwx3mdm+b40wA/Bxr5r/54tz6LSIyJWEBxzs3F61oe7g5gnP//OLyevlnzxzvPAqCqmRW0e76IRFlxt6HUdl6PTvA6N2U9x6EO2Z8HsY2CPUtCREqAqF3lcc45Myvwbbpm1h//6d3169fP1zopw+cU9G2kiBY/ntezsvNHZRYdRS234j5D2Z1VlfH/7vHnbyf7g3Dq+vNycM791TmX4pxLqVUrx2VwEYmi4g4o0/CeqYH/d2rY/F7+1Z6rgQNhVSMRiRERq/KY2QS8h/jUNLNtwNN4T2t/x8z64j0Q6B4/+Qy8hwNvwHvU/wORypeIRE7EAopzrkcei3JU0pzX5fk3kcqLiBQP3SkrIoFRQBGRwCigiEhgFFBEJDAKKCISGAUUEQmMAoqIBEYBRUQCo4AiIoFRQBGRwCigiEhgFFBEJDAKKCISGAUUEQmMAoqIBEYBRUQCo4AiIoFRQBGRwCigiEhgohJQzOz3ZrbazFaZ2QQzK2dmDc3sS39844lmVjYaeRORwiv2gGJmdYCHgRTnXDMgHugOPA/8yTmXBKQDfYs7byJSNNGq8iQA5c0sAagA7ARuBCb7y8PHPRaRGFHsAcU5tx14CdiCF0gOAEuA/c65DD+ZxjYWiUHRqPJUA+4AGgIXAhWBWwuwfn8zW2xmi/fu3RuhXIpIYUSjynMzsMk5t9c5dxKYAlwDVPWrQKCxjUViUjQCyhbgajOrYGaGN5LgGuBToKufJnzcYxGJEdFoQ/kSr/F1KbDSz8NfgUHAI2a2AagBvFHceRORoonY2MZn4px7Gm/w9HDfAK2jkB0RCYjulBWRwCigiEhgFFBEJDAKKCISGAUUEQmMAoqIBEYBRUQCo4AiIoFRQBGRwCigiEhgFFBEJDAKKCISGAUUEQmMAoqIBEYBRUQCo4AiIoFRQBGRwCigiEhgFFBEJDDRGtu4qplNNrO1Zva1mbUxs+pm9omZrff/VotG3kSk8KJ1hjIKmOmcuwy4AvgaeByY45xrBMzxp0UkhkRj5MAqwHX4w2Q450445/bjjSY4zk+msY1FYlA0zlAaAnuBv5nZMjN73cwqArWdczv9NLuA2lHIm4gUQTQCSgLQEvhf51wL4AinVW+ccw5wua2ssY1FSq5oBJRtwDZ/BEHwRhFsCew2swsA/L97cltZYxuLlFzRGIp0F7DVzC71Z2WNbTwNb0xj0NjGIjEpKkORAv8F/N3MyuINQfoAXnB7x8z6At8
2021-04-13 14:13:15 +00:00
"text/plain": [
2021-05-20 10:33:36 +00:00
"<Figure size 288x288 with 1 Axes>"
2021-04-13 14:13:15 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
2021-05-20 10:33:36 +00:00
"<matplotlib.table.Table object at 0x7fd57f9b1040>\n"
2021-04-13 14:13:15 +00:00
]
},
{
"data": {
2021-05-20 10:33:36 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARQAAAD7CAYAAACrFWuaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlrUlEQVR4nO3deXwURfr48c+TgwSQGxaVQ5CAQhKBAAoCggcGj0XAIMeKKCD68/x6ICILKOCCK3Ksgq4XRFGCIBricoqr4IGcAQKyHILcEDGcwUCS+v3RnWFykmR6MhnyvF+vvDLTXd1d3TXzTFV3V5cYY1BKKScE+DoDSqlLhwYUpZRjNKAopRyjAUUp5RgNKEopx2hAUUo5RgNKAUTkZRGZ5et8OElEZotId1/noySJyB4Ruc3X+fAlEblORH709nbKfEARkX4islZETovIIRFZJCIdHFx/AxExIhLkhXWetv+OiMhXItLlIstdBzQH4p3Ki7eJSGcR2e/rfPg7Y8wm4LiI/NWb2ynTAUVEngWmAP8AagP1genAPT7MVjYXCURVjTGXYQWJZcAXIvJgAekfAT4x+dzN6GTQ81ciElgK8uCtcvgE6zPgPcaYMvkHVAFOA70KSPMyMMt+3RnYn2P+HuA2+/X1wFrgJHAEmGRP3wsYe1ungXb29IHAL0AKsAS4ym29Bngc2AHsziNfDew0QTmmP29vOyCf/fkV6OD2/kHgB2AycAwYB4QAE+18HwHeAcq7LTMUOAQctPfBAGH2vG+BwTnW/73b+2uxAt8fwP+A+9zm3QlsBU4BB+x9qQicBTLdjt+VWD+ELwK77Hx/BlR3W1d/4Dd73gj3csrjmMwE3gYWAmeA2+xtfA4kA7uBp9zS51nO9rxuwBbguH0smuYo07Ac2x3n/tkChgGHgY+BQOAlex9PAeuAesU5jm7z6tjHM8Rr3ytff7F99Qd0BdLJ8aXMkeZlCh9QfgL6268vA9rarxuQ48uPVQPaCTQFgoC/Az/m+PAtA6rj9mV2m59rnfb0q+3pTfNYpqI9r5bbtAftY/CknY/yWMFlgb3tSkACMN7tmB0BIuz1fUohA4qdfh/wkL2tlsDvQDN7/iGgo/26GhBVwHF/GlgF1MUKgP8GZtvzmmEFnpvseZPsfSwooJwA2mMFqgpYX95RQDn7mP4KRF+knJtgBaQuQDDwgl3G5dzKtKCAkg68Zue5PFbg3gxcAwhWLbRGcY+j23ZPAtd563tVlps8NYDfjTHpDq3vPBAmIjWNMaeNMasKSPso1pf0F3v7/wBaiMhVbmnGG2P+MMacLUIeDtr/q+cxr6r9/1TOZYwxb9r5+BMYAjxjb/uUnbc+dtr7gBnGmCRjzBmsgFtYdwN7jDEzjDHpxpgNWLWAXvb880AzEalsjEkxxqwvYF2PAiOMMfuNMWl2PmLspkIM8JUxZoU9byRWDacg8caYH4wxmUAkVtAdY4w5Z4z5FXjP7RjkV869gf8YY5YZY85j1fLKAzcW8vhkAqONMWl2mQ8G/m6M+Z+xbDTGHMPz43iKC58Fx5XlgHIMqOlge3UQ1q/UNhFZIyJ3F5D2KmCqiBwXkeNYVVfBqpJm2VeMPGQt/0ce847b/yvlmO6+nVrYv9BueVtsTwerKeCe/rci5O0q4Ias9drr/htwuT3/Xqzq+m8i8p2ItLvIur5wW88vQAbWebBsebQD37GL5M19n64CrsyRz5fsdUP+5XwlbsfDDk77yF6mBUk2xvzp9r4eVnMnJ0+PYyUufBYcV5ZPwv0EpAHdgXmFSH8G68sGuE7eZX3RMMbsAPqKSADQE5gnIjWwqro57QNeNcZ8UsD2itMNvAdwFKtdnX1lxpwRkV1YX4bkfLbzO1YbO9wYcyCP9R/C+qBnqZ9jfrZjxIUPOVj7/J0xJs8rUcaYNcA9IhIMPIF1XqQe+R+/gcaYH3LOEJFDWE3JrPcVsGqjBXHfxj6s81aN88lnfuV8EKt2k7VdsfOfdRxTyX1s3K9e5dzPfUAjICmP6cU5johIHaxmXK7Ph1PKbA3FGHMCq508TUS6i0gFEQkWkTtE5J95LLIdCBWRu+zC+jtWexcAEblfRGrZv0zH7cmZWF/eTKy2eJZ3gOEiEm4vW0VEelFMIlJbRJ4ARgPD7TzkZSHQKb/12Mu9B0wWkb/Y664jItF2ks+AB0Wkmf1FHZ1jFYlAT/tYhmH9mmf5CmgiIv3t4xwsIm1EpKmIlBORv4lIFbu5cJILzZQjQA0RqeK2rneAV7OaiCJSS0SyrszNA+4WkQ4iUg4YQ9E+56uBUyIyTETKi0igiESISBt7W/mV82fAXSJyq/35eA7rByvr3o9EoJ+9vq4UUA6294GxItJYLNfZgau4xxF7m9/YTUHv8NbJGX/5w6oursX6dT0M/Ae40Z73MvZJWXPhJOMhrFrA82Q/KTvLnn4a60x/d7flxmAFluNcOInXH+uk20msX50P3dJnO4GXR54bcOHK0Rl7uwuBrhfZ1wg7b+K2P9/nSBOKdd7kVztvv5D9KseL9nHK6ypPTWApVjv9B/v4uV/lucY+vslYzZBvgBZYv5qLsa54nQTWkP1q1Id2+uNcuMrzLNYv7SmspsE/3NIPwLpKVdirPONyTLsSmG3vZwrWCeDClHMPrCssJ4DvsGp6WfNa2+lPYV3FmU2Oqzw58hCI9aO1215mDVDXw+P4H6CbN79PWR8sVUaIyKfAZ8aYLx1anwEaG2N2OrE+5R32TY3/NsYUdG7K8+1oQFGe0ICi3JXZcyhKKedpDUUp5RitoSilHKMBRSnlGL++sa1mzZqmQYMGvs6GUmXOunXrfjfG1Mo53a8DSoMGDVi7dq2vs6FUmSMieXa70CaPUsoxXgsoIvKhiBwVkSS3adVFZJmI7LD/V7Oni4j8S0R2isgmEYnyVr6UUt7jzRrKTKznZ7h7EVhurI5Xy+33AHcAje2/IVgPvFFK+RmvBRRjzApyd6O/B4i1X8di9fTNmv6RsawCqorIFd7Km1LKO0r6HEptY8wh+/VhLjxjog7Zn0mxn8I/R0IpVUr47CqPMcbY/UCKRESGYDWLqF8/5+M48tZ6wvKibkZ5aO2Lt3q0vJaZb3habiVdQzmS1ZSx/x+1px8g+4N76nLhwTTZGGPeNca0Nsa0rlUr12VwpZQPlXRAWYD1rArs//Fu0x+wr/a0BU64NY2UUn7Ca00eEZmN9eCYmmIN1DQamAB8JiKDsJ6/eZ+dfCHWczB3Yj0q7yFv5Usp5T1eCyjGmL75zMrVSDNWl+fHvZUXpVTJ0DtllVKO0YCilHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjlGA4pSyjEaUJRSjtGAopRyjAYUpZRjNKAopRyjAUUp5RgNKEopx2hAUUo5RgOKUsoxGlCUUo7RgKKUcowGFKWUY3wSUETkGRHZIiJJIjJbREJFpKGI/GyPbzxHRMr5Im9KqeIr8YAiInWAp4DWxpgIIBDoA7wGTDbGhAEpwKCSzptSyjO+avIEAeVFJAioABwCbgHm2fPdxz1WSvmJEg8oxpgDwERgL1YgOQGsA44bY9LtZDq2sVJ+yBdNnmrAPUBD4EqgItC1CMsPEZG1IrI2OTnZS7lUShWHL5o8twG7jTHJxpjzwHygPVDVbgKBjm2slF/yRUDZC7QVkQoiIlgjCW4F/gvE2Gncxz1WSvkJX5xD+Rnr5Ot6YLOdh3eBYcCzIrITqAF8UNJ5U0p5xmtjGxfEGDMaa/B0d78C1/sgO0oph+idskopx2hAUUo5RgOKUsoxGlCUUo7RgKKUcowGFKWUYzSgKKUcowFFKeUYDShKKcdoQFFKOUYDilLKMRpQlFKO0YCilHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjlGA4pSyjG+Gtu4qojME5FtIvKLiLQTkeoiskxEdtj/q/kib0qp4vNVDWUqsNgYcy3QHPgFeBFYboxpDCy33yul/IgvRg6sAtyEPUyGMeacMeY41miCsXYyHdtYKT/kixpKQyAZmCEiG0TkfRGpCNQ2xhyy0xwGavsgb0o
2021-04-13 14:13:15 +00:00
"text/plain": [
2021-05-20 10:33:36 +00:00
"<Figure size 288x288 with 1 Axes>"
2021-04-13 14:13:15 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
2021-05-20 10:33:36 +00:00
"<matplotlib.table.Table object at 0x7fd57f9c6d60>\n"
2021-04-13 14:13:15 +00:00
]
},
{
"data": {
2021-05-20 10:33:36 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARQAAAD7CAYAAACrFWuaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAoq0lEQVR4nO3de5xN9f748dd7LoYpd3IwRAYxF2NM4hBKGqkjpNAJHeT0+5JOCiEqjcPpZrpwdEfKiBQqlyi5HLnOGJfEkNwZmnEbl7l8fn/sNbs95sLMrD3bzvv5eOzH7L3WZ639Weuz570/n89en/URYwxKKWUHH09nQCn156EBRSllGw0oSinbaEBRStlGA4pSyjYaUJRSttGAcgUi8qKIzPR0PuwgIv8UkVhP56Mkicg0EYnxdD48SUQCRGSniFR193tpQAFE5BER2SgiZ0XkiIgsEpHWNu6/jogYEfFzwz7PXvbokU/6UsDzwKt25aEkWMcY7Ol8eDNjzEXgI+A5d7/XdR9QRGQoEAv8G6gG1AamAA94MFs5XCEQVTDG3OjymJ1PugeAncaYQ0V4j+vCtXAO3JiHz4C+IhLgpv0D13lAEZHywDhgkDFmnjHmnDEm3Riz0BgzLI/07UTk4GXL9onI3dbz5lZN57SIHBORN6xkK62/qVYtoqWVvp+I/CwiKSKyRERudtmvEZFBIrIb2G3D4d4L/Oiy/+waTn8R2Q98fxV56mBVnU+JyDsi8qOIDLDW5WgaXl4rE5HyIvKhVQM8JCIxIuJrrQu29nVKRE6IyGxrefZ52+Ja+xKR+0UkQURSReR/IhLu8r5NRWSziJyx9lM6vxMiIo+JyBoRmSQiJ4EXrebBayKy3yrDqSJSxkpfRUS+tt73dxFZJSI+1rpGIrLCWrddRDq7vM+K7PPk8r6rXV7nKmsRecA6xtMiskdEOhb1PAIYYw4CKUCL/D8ixXddBxSgJY4P3Jc27e9N4E1jTDmgHvC5tbyN9Te7NrFWRB4ARgHdgKrAKmDWZfvrAtwONLYhb2HAL3ksbws0AqILypOIVAHm4Wg2VQH2AK0K8f7TgAwgGGgK3ANk/5O9DCwFKgJBwNsAxpjs89Yku/YlIk1xVN//CVQG3gUWWIGgFPAV8AlQCZgDPHiFfN0O7MVROx0PTAQaABFWXmsCY620zwAHcZybajjOlRERf2ChdQw3AU8Cn4pIw0Kcny5WXhqLSHNgBjAMqIDj87PPSjeNQp5HFz8DTQqRp0K73gNKZeCEMSbDpv2lA8EiUsUYc9YY81MBaZ8AJhhjfrbe/99AhGuNwFr/uzHmfAH7OWF9K2Y/GuWTrgJwJo/lL1o1s/NXyFMnYLsxZq4xJh1HM/FoAflyEpFq1vb/st7rODAJ6GklSQduBmoYYy4YY1bnsyuAgcC7xph1xphMY8x04CKOb94WgD8Qa9U05wIbrpC9w8aYt63jvWDt/2nrvJ+xzoFrPqsDN1v7X2Ucg+FaADcCE40xl4wx3wNfA72u5vxYXMu6P/CRMeY7Y0yWMeaQMWanDefxDI7Pgdtc7wHlJFBF7Gu39sfx7bZTRDaIyP0FpL0ZeDM7EAC/A4LjGzHbgat4zyrGmAouj5/zSZcClM1juet7FJSnGq5prX+kq8lf9n79gSMu+34Xx7c5wHDrfdZbzYV+V9jXM65BFKhl5a8GcMjkHPH62xXy5noMVYFAYJPLvhdby8HRoZ0ELBWRvSKS3clZAzhgjMm67H1dy/JKXPNRC0cN8HLFPY9lgdRC5KnQPN4J5WFrcXy7dQHmXkX6czg+cABYbVfnT3HGmN1AL6td3Q2YKyKVgbyGdB8AxhtjPi3g/ewcCp6II9gV9B755klE6uP4oGe/FtfXXHZugL9ctt+LOIJfrtqgMeYo8Li139bAMhFZaYxJyiO/2Xkcn0ce2wI1RURcgkpt8v7ndL69y/MTwHkgJK/Oa6vG8gyOgBYKfC8iG4DDQC0R8XEJKrWBXdbzgs5NXvk4gKPJfLninsdGwOt57Nc213UNxRhzCkf7eLKIdBGRQBHxF5F7ReSVPDbZBZQWkfusdvPzgLPXXEQeFZGq1ocq1VqcBSRbf29x2ddUYKSIhFjblheRh+w+Rhff4ugvKUhBefoGCBGRblaNbgg5/zESgDYiUlscnd0js1cYY47gaNu/LiLlRMRHROpZAQAReUhEgqzkKTj+ubL/MY+R87y9DzwhIreLww1WeZTF8QWRAQyxyrEb0PxqT5BVbu8Dk0TkJitvNUUk2np+v9XxKcApINPK5zogDRhuvW874G9AnMu56WZ9voJx1GQL8iHwDxFpb52rmiJya3HOo4jUxNGvVFAzvPiMMdf9A/g7sBHHN8lRHP88f7XWvQjMdEn7GHAEOA48i6Oz7G5r3Uxr+VlgO9DFZbtxOAJLKtDCWtYb2AqcxvHt85FLegMEF5DnOlaas5c9huaT3h/Yj6N97bq932XpCspTRxxB9RTwDo5fjQa4rJ9sHV8Sjm9K5/6B8sB/cXRqngLigZ7WuleAQ1b+9wADXfb5hHW+U4GHXfKxwVp2BEfna1lrXZS17zPAbOsRk885eQxYfdmy0jj6TfZa5+BnYIi17mmrvM9ZxzHGZbsQ63ycAnYAXV3WVcERCM4Aa3B8pla7rM9V1kBXHLXKM9b5jC7meRwGvOHu/yWx3kxdB0RkINDYGPMvm/a3Akew/cCO/Sn3EMe1J1uANsbRkes213sfynXFGPOep/OgSp5xXCl7a0m813Xdh6KUspc2eZRSttEailLKNhpQlFK28epO2SpVqpg6dep4OhtKXXc2bdp0whiT6/4qXh1Q6tSpw8aNGz2dDaWuOyKS55AGbfIopWzjtoAiIh+JyHER2eayrJKIfCciu62/Fa3lIiJviUiSiCSKSKS78qWUch931lCm4bhE2tVzwHJjTH1gOX/cku5eoL71GIjj0mKllJdxW0AxxqzEMfzd1QPAdOv5dByjfLOXzzAOPwEVRKS6u/KmlHKPku5DqWYcIybBMQivmvW8JjnvB3GQwt1LQil1DfDYrzzGGCMihb5M1xrgNhCgdu3aV7VN1MTlhX0bVUwbn2tfrO21zDyjuOVW0jWUY9lNGetv9sjHQ+S8WU+QtSwXY8x7xpgoY0xU1apun2ZEKVUIJR1QFgB9red9gfkuy/tYv/a0AE65NI2UUl7CbU0eEZkFtMNxz9aDwAs47ij+uYj0x3HPzYet5N/iuPluEo47X/3DXflSSrmP2wKKMSa/O37naqQZx5DnQe7Ki1KqZOiVskop22hAUUrZRgOKUso2GlCUUrbRgKKUso0GFKWUbTSgKKVsowFFKWUbDShKKdtoQFFK2UYDilLKNhpQlFK20YCilLKNBhSllG00oCilbKMBRSllGw0oSinbaEBRStlGA4pSyjYeCSgi8rSIbBeRbSIyS0RKi0hdEVlnzW88W0RKeSJvSqmiK/GAIiI1gSFAlDEmFPAFegL/ASYZY4KBFKB/SedNKVU8nmry+AFlRMQPCASOAHcBc631rvMeK6W8RIkHFGPMIeA1YD+OQHIK2ASkGmMyrGQ6t7FSXsgTTZ6KwANAXaAGcAPQsRDbDxSRjSKyMTk52U25VEoVhSeaPHcDvxpjko0x6cA8oBVQwWoCgc5trJRX8kRA2Q+0EJFAEREcMwnuAH4AultpXOc9Vkp5CU/0oazD0fm6Gdhq5eE9YAQwVESSgMrAhyWdN6VU8bhtbuOCGGNewDF5uqu9QHMPZEcpZRO9UlYpZRsNKEop22hAUUrZRgOKUso2GlCUUrbRgKKUso0GFKWUbTSgKKVsowFFKWUbDShKKdtoQFFK2UYDilLKNhpQlFK20YCilLKNBhSllG00oCilbKMBRSllGw0oSinbaEBRStnGU3MbVxCRuSKyU0R+FpGWIlJJRL4Tkd3W34qeyJtSqug8VUN5E1hsjLkVaAL8DDwHLDfG1AeWW6+VUl7EEzMHlgfaYE2TYYy5ZIxJxTGb4HQrmc5trJQX8kQNpS6QDHwsIvEi8oGI3ABUM8YcsdIcBap5IG9KqWLwREDxAyK
2021-04-13 14:13:15 +00:00
"text/plain": [
2021-05-20 10:33:36 +00:00
"<Figure size 288x288 with 1 Axes>"
2021-04-13 14:13:15 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
2021-05-20 10:33:36 +00:00
"<matplotlib.table.Table object at 0x7fd57869c6d0>\n"
2021-04-13 14:13:15 +00:00
]
},
{
"data": {
2021-05-20 10:33:36 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARQAAAD7CAYAAACrFWuaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjKElEQVR4nO3dd3wU1drA8d+TLr2KSBE0oJLkSomUS1cRRUVAEPBSlKbv1avvRREQEYV4QUEBFa6vlWAhSJGAAqKIgghSQxUpUkJvoQYTkpz3j5ks6aTMZrPk+X4++0l25syZM3N2n50zM2eOGGNQSikn+Hi6AEqpa4cGFKWUYzSgKKUcowFFKeUYDShKKcdoQFFKOUYDylWIyKsi8rmny1FQIlJPRNaJiHi6LIVFRB4XkV88XQ5PE5E5InJ/YaxLAwogIo/ZX7YLInJERBaJSAsH868lIkZE/NyQ54U0r005LDIGmGC86MYjEflJRAZ4uhzXgDeAiMJYUbEPKCIyGJgE/AeoAtQEpgIPe7BY6VwlEJUzxpSyX3dks3xVoC0wLx/5FwtFYR+IxfHvpDFmDVBGRMKdzjurlRXbF1AWuAB0yyHNq8Dn9v9tgIMZ5u8D7rH/bwysA84Bx4C37ekHAGOv6wLQzJ7eD/gdiAO+A25Kk68BngZ2AXuzKFctO41fLrazD/BDFuUeCmwGEgA/oCnwK3AG2AS0SZO+NvAzcB74HngvD/vFBxgG7AFOAV8BFex5QcDn9vQzwFqswP46kAz8Ze+z9+z0t9nrPw38ATyaZp0Vgfn2/l+DdVT2Szb7JHX/9bfrZ3lOdQIIMBE4bue/BQhN8zmaDpwA9gMvAz4ZPz9Z1Rvwk72tK4FLQDAQkmYbjwEv5Xc/plnvh8Aot3+nPP2l9uQLuA9IIocvJXkLKKuA3vb/pYCmWX2I7GkPA7uB27G+zC8Dv6aZb+wPVQXguhy+ELkJKOOBKVmUOwaoAVwHVLM/jB3sD247+33lNNv2NhAItMIKLLndL88Bq4Hq9vL/B8yw5z0JLABKAL5AI6CMPe8nYECaPEsCscAT9j5rAJwE6tnzo+wvWUkgFDjE1QPKdDv9dTnVCdAeWA+UwwoutwNV7XnTgWigtJ3vTqB/xs9PVvVmb+MBrCDiZ+dxBHgeK0iUBpoUZD/a8wcDc939nSruTZ6KwEljTJJD+V0GgkWkkjHmgjFmdQ5pnwLGGmN+t9f/H6C+iNyUJs1YY8xpY8ylHPI5KSJn7NcL2aQphxUAMnrHGBNr598LWGiMWWiMSTHGfI91tNVBRGoCdwIjjTEJxpjlWB/e3HoKGGGMOWiMScD6knW1mxmXseoh2BiTbIxZb4w5l00+DwL7jDGfGmOSjDEbgTlANxHxBR4BXjHGXDTGbAUic1G2V+30l8i5Ti5jfblvA8ROc8Rebw9guDHmvDFmH/AW0DsP+2eaMWabvc4HgaPGmLeMMX/Zef7mwH48j/U5cKviHlBOAZUcbD/3B+oCO0RkrYg8mEPam4DJqcEA6/BWsI4UUsXmYp2VjDHl7NeEbNLEYX0ZMkqb/01YX8wzacrUAqgK3AjEGWMupkm/PxdlS5v312ny/R2rOVMF+AyraRElIodF5E0R8c8hnyYZyvgP4AagMtYvfNptyk0ZM+6DLOvEGPMjVjNvCnBcRD4QkTJAJcA/w7r2k74e81KGGlhNmqwUZD+WxmoKuVVxDyirsM4fdMpl+otYh5QA2L9OlVPfG2N2GWN6AtdjnVmfLSIlsQ5xM4oFnkwTDMoZY64zxvyaJo1TV2Q2YwW6jNLmHwt8lqE8JY0x47AOwcvb25KqZpr/c9wvdt73Z8g7yBhzyBhz2RjzmjGmHvB3rF/oPlmULzWfnzPkU8oY8z9Y5y+SsL6QWZUxOxn3QbZ1Yox5xxjTCKiHtT+HYDW5LmN92dOu91BW+wYr+F2tDDdnU9b87kewmmg5XQV0RLEOKMaYs8ArwBQR6SQiJUTEX0TuF5E3s1hkJxAkIg/Y0f9lrLYsACLSS0QqG2NSuPJrkIL1YU8h/QflfWC4iITYy5YVkW5Ob6Pte6ChiATlkOZz4CERaS8iviISJCJtRKS6MWY/VvPnNREJsC+pP5Rm2Rz3C9a2vp7anBORyiLysP1/WxEJs4PQOawvZ4q93DHS77NvgLoi0tuuJ38RuVNEbjfGJANzgVfteqwH9M3jfsq2Tuz1NLG37yLWyeIUe71f2dtX2t7Gwfb+BOs8VSsRqSkiZYHhVynDN0BVEflfEQm082xSwP0I0BpYlMf9kXfuPknjDS+sw+Z1WB+Uo8C3wN9N1ifVHsf6xT4OvED6k4+f29MvANuATmmWG40VWM5w5WRtb6yrBeewfn0+SZPeYLWHsytzLXJ5UtZOPwvonua9q9xppjXBupJz2i7rt0BNe97NwAp729Jd5cnFfvHB+pL9gdWW3wP8x57X055+ESuAvMOVE5bNsIJVHNb5HoBb7XKdwGqy/gjUt+dVxvpC5uUqj1+G6VnWCXA31pHeBayjki+AUva88nbdn7CXeQX7Ko89f4pd77uBgWQ+KTsgQxlCgaX2dh8FhhVwP94JbCiM75LYK1TXOPsXOxJobByodBF5FSvg9SpoXsq9RGQO8LExZqG71+Xxm3lU4TDGbMf6pVLFjDHmkcJaV7E+h6KUcpY2eZRSjtEjFKWUYzSgKKUc49UnZStVqmRq1arl6WIoVeysX7/+pDGmcsbpXh1QatWqxbp16zxdDKWKHRHJsluDNnmUUo5xW0ARkU9E5LiIbE0zrYKIfC8iu+y/5e3pIiLviMhuEdksIg3dVS6llPu48whlGtbzRtIaBiw1xtTBurV4mD39fqCO/RoE/NeN5VJKuYnbAoqxnplxOsPkh7nyjIpIrvTyfRiYbiyrgXJiPbZQKeVFCvscShVjzBH7/6NYz3EA69kRaZ8JcZC8PU9CKVUEeOwqjzHGiEieb9MVkUFYzSJq1szN4y4gfNzSvK5GFdC6YXcXaHmtM88oaL0V9hHKsdSmjP33uD39EOkfjFOdKw+oSccY84ExJtwYE165cqbL4EopDyrsgDKfKw+96Yv1YN/U6X3sqz1NgbNpmkZKKS/htiaPiMzAehp6JRE5CIwCxgFfiUh/rOduPmonX4j1tPXdQDzWU82VUl7GbQHFWM9WzUqmRpr9wJ+n3VUWpVTh0DtllVKO0YCilHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjlGA4pSyjEaUJRSjtGAopRyjAYUpZRjNKAopRyjAUUp5RgNKEopx2hAUUo5RgOKUsoxGlCUUo7RgKKUcowGFKWUYzwSUETk3yKyTUS2isgMEQkSkdoi8ps9vvFMEQnwRNmUUvlX6AFFRKoBzwLhxphQwBfoAbwBTDTGBANxQP/CLptSqmA81eTxA64TET+gBHAEuAuYbc9PO+6xUspLFHpAMcYcAiYAB7ACyVlgPXDGGJNkJ9OxjZXyQp5o8pQHHgZqAzcCJYH78rD8IBFZJyLrTpw44aZSKqXywxNNnnuAvcaYE8aYy8BcoDlQzm4CgY5trJRX8kRAOQA0FZESIiJYIwluB5YBXe00acc9Vkp5CU+cQ/kN6+TrBmCLXYYPgKHAYBHZDVQEPi7ssimlCsZtYxvnxBgzCmvw9LT+BBp7oDhKKYfonbJKKcdoQFFKOUYDilLKMRpQlFKO0YCilHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjlGA4pSyjEaUJRSjtGAopRyjAYUpZRjNKAopRyjAUUp5RgNKEopx2hAUUo5RgOKUsoxnhrbuJyIzBaRHSLyu4g0E5EKIvK9iOyy/5b3RNmUUvnnqSOUycBiY8xtwB3A78AwYKkxpg6w1H6vlPIinhg5sCzQCnuYDGNMojHmDNZogpF2Mh3bWCkv5IkjlNrACeBTEdkoIh+JSEmgijHmiJ3mKFDFA2VTShWAJwKKH9AQ+K8xpgFwkQzNG2OMAUxWC+vYxkoVXZ4IKAeBg/YIgmCNItgQOCYiVQHsv8ezWljHNlaq6PLEUKRHgVgRudWelDq28Xy
2021-04-13 14:13:15 +00:00
"text/plain": [
2021-05-20 10:33:36 +00:00
"<Figure size 288x288 with 1 Axes>"
2021-04-13 14:13:15 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
2021-05-20 10:33:36 +00:00
"<matplotlib.table.Table object at 0x7fd57f9a3fd0>\n"
2021-04-13 14:13:15 +00:00
]
},
{
"data": {
2021-05-20 10:33:36 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARQAAAD7CAYAAACrFWuaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAoGUlEQVR4nO3deXwURfr48c+TE8J9CwQEDAiERO5jAQUlgAjIpRgUUMHjt3j8FhcRUFEJwoq64Aqr6xVQJAiigIsIgi6IImc4RCWgyBUwYMIVCCSp7x/dGSYnOXoyiTzv1yuvzPRRXd0180xXd1WXGGNQSikn+Hg7A0qpPw8NKEopx2hAUUo5RgOKUsoxGlCUUo7RgKKUcowGlDyIyHMi8oG38+EkEVkgIgO8nY/iJCIHRKSHt/PhTSISLiLfeno7V31AEZFhIrJFRM6KSLyIfC4iXRxMv4GIGBHxcypNO90AEXlWRH4WkXMicsTOe8881gkHbgCWOpkXTxKRbiJy2Nv5KO2MMTuBJBHp58ntXNUBRUTGAjOBF4FaQH1gDnC7F7OVSR6BaDFWPkcAVYCGwCzgtjySewiYb3Jpzeh00CuNRMS3BOTBU+UwH+sz4DnGmKvyD6gEnAXuyGOZ54AP7NfdgMNZ5h8Aetiv2wNbgNPAceBVe/pBwNjbOgt0sqffD/wIJAJfANe6pWuAMUAc8GsO+eoBnAeCC7jPvwBd3N7fC2wA/gmcBKKAQOBlO9/HgTeAsm7rjAPigaP2PhggxJ73NTA6S/rfuL1vCqwG/gB+Bu50m9cH2AOcAY4AfwfK2fuZ7nb86mD9ED4F7Lfz/RFQ1S2t4cBv9rxJ7uWUwzGJBv4NrADO2ce2DvAxkAD8CjzmtnyO5WzP6w/8ACTZx6JZljINybLdKPfPFjAeOAa8D/gCE+19PANsBeoV5ji6zatrH89Aj32vvP3F9tYf0BtIBfzyWOY58h9QvgOG26/LAx3t1w3sD5Of23q3A/uAZoAf8DTwbZYP32qgKm5fZrf504GvC7i/5ex0a7hNu9c+Bo/a+SiLFVyW2duuACwHprkds+NACzu9D8lnQLGXPwTcZ2+rFXACaG7Pjwe62q+rAK3zOO6PAxuBYKwA+CawwJ7XHCvw3GjPe9Xex7wCyimgM1agCsL68j4LBACNsAJxryuUcxOsgBQB+ANP2mUc4FameQWUVOAfdp7LYgXuXcD1gGBVVasV9ji6bfc0EO6p79XVXOWpBpwwxqQ6lN4lIEREqhtjzhpjNuax7MNYX9If7e2/CLQUkWvdlplmjPnDGHM+h/WrY/2SASAiVUUkSUROiciFXLZZ2f5/Jsv0o8aYf9n5uAA8CPzN3vYZO2932cveCbxnjNltjDmHFXDzqy9wwBjznjEm1RizHess4A57/iWguYhUNMYkGmO25ZHWw8AkY8xhY0yKnY8hdlVhCPCZMWadPe8ZrDOcvCw1xmwwxqQDYVhB9wVjzEVjzC/AW27HILdyHgr81xiz2hhzCessryzwl3wen3RgsjEmxS7z0cDTxpifjWWHMeYkRT+OZ7j8WXDc1RxQTgLVHayvjsL6lfpJRDaLSN88lr0WmGUHgSSsU1fBOiXNcCiP9U8CtTPe2F/+ykAbrF+4nCTZ/ytkme6+nRrYv9BueVtpTwerKuC+/G955DGra4EOGenaad8NXGPPH4x1uv6biPxPRDpdIa1P3NL5EUjDug6WKY924Dt5hby579O1QJ0s+Zxopw25l3Md3I6HHZwOkblM85JgjHH/MaiHVd3JqqjHsQKXPwuOu5ovwn0HpAADsC5wXsk5rC8b4Lp4l/FFwxgTB0SKiA8wCFgsItWwTnWzOgRMNcbMz2N7eXUDXwM8KiLBxph83QExxpwTkf1YX4aEXLZzAquOHWqMOZJDMvFYH/QM9bPMz3SMuPwhB2uf/2eMicglf5uB20XEH3gE67pIPXI/fvcbYzZknSEi8VhVyYz3QVhno3lx38YhrOtWjXPJZ27lfBTr7CZju2LnP+M4JpP92LiXXdb9PARcB+zOYXphjiMiUherGvdzTus64ao9QzHGnMKqJ88WkQEiEiQi/iJyq4i8lMMqe4EyInKbXVhP43Y2ICL3iEgN+5cpyZ6cjvXlTceqi2d4A5ggIqH2upVE5A7yyRizCvgK+FREOti3kP2BjldYdQVwUx7ppmOd3v9TRGraeasrIr3sRT4C7hWR5vYXdXKWJGKBQfaxDMH6Nc/wGdBERIbbx9lfRNqJSDM7/3eLSCW7unCay9WU40A1EankltYbwNSMKqKI1BCRjDtzi4G+ItJFRAKAFyjY53wTcEZExotIWRHxFZEWItLO3lZu5fwRcJuI3GKXxRNYP1gZbT9igWF2er3JoxxsbwNTRKSxWMLtwFXY44i9zbV2VdAzPHVxprT8YZ0ubsH6dT0G/Bf4iz3vOeyLsubyRcZ44HesuxAHuHxR9gN7+lmsK/0D3NZ7ASuwJHH5It5wrItup7F+dd51Wz7TBbxc8h1g5y8O69fvMPA50DOPdVrYeRO3/fkmyzJlsK6b/GLn7Ucy3+V4yj5OOd3lqQ6swqqnb7Dz536X53r7+CZgVUPWAi3tfVmJdcfrNLCZzHej3rWXT+LyXZ6xWL+0Z7CqBi+6LT8S6y5Vfu/yRGWZVgdYYO9nItYF4PyU80CsOyyngP9hnellzGtrL38G6y7OArLc5cmSB1+sH61f7XU2Y9/VK8Jx/C/Q35Pfp4wPlrpKiMiHwEfGmE8dSs8AjY0x+5xIT3mG3ajxTWNMXtemir4dDSiqKDSgKHdX7TUUpZTz9AxFKeUYPUNRSjlGA4pSyjGlumFb9erVTYMGDbydDaWuOlu3bj1hjKmRdXqpDigNGjRgy5Yt3s6GUlcdEcmx24VWeZRSjvFYQBGRd0XkdxHZ7TatqoisFpE4+38Ve7qIyGsisk9EdopIa0/lSynlOZ48Q4nGen6Gu6eANcbqeLXGfg9wK9DY/nsQ64E3SqlSxmMBxRizDqtbvrvbgbn267lYPX0zps8zlo1AZRGpjVKqVCnuayi1jDHx9utjXH7GRF0yP5PiMPl/joRSqoTw2l0eY4yx+4EUiIg8iFUton79rI/jyFnb6WsKuhlVRFueuqVI62uZeUdRy624z1COZ1Rl7P+/29OPkPnBPcFcfjBNJsaY/xhj2hpj2taoke02uFLKi4o7oCzDelYF9v+lbtNH2Hd7OgKn3KpGSqlSwmNVHhFZgPXgmOpiDdQ0Getp7R+JyCis52/eaS++Aus5mPuwHhZ0n6fypZTyHI8FFGNMZC6zslXSjNXleYyn8qKUKh7aUlYp5RgNKEopx2hAUUo5RgOKUsoxGlCUUo7RgKKUcowGFKWUYzSgKKUcowFFKeUYDShKKcdoQFFKOUYDilLKMRpQlFKO0YCilHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjnGKwFFRP4mIj+IyG4RWSAiZUSkoYh8b49vvFBEAryRN6VU4RV7QBGRusBjQFtjTAvAF7gL+AfwT2NMCJAIjCruvCmlisZbVR4/oKyI+AFBQDxwM7DYnu8+7rFSqpQo9oBijDkCvAwcxAokp4CtQJIxJtVeTMc2VqoU8kaVpwpwO9AQqAOUA3oXYP0HRWSLiGxJSEjwUC6VUoXhjSpPD+BXY0yCMeYSsAToDFS2q0CgYxsrVSp5I6AcBDqKSJCICNZIgnuAr4Ah9jLu4x4rpUoJb1xD+R7r4us2YJedh/8A44GxIrIPqAa8U9x5U0oVjcfGNs6LMWYy1uDp7n4B2nshO0oph2hLWaWUYzSgKKUcowFFKeUYDShKKcdoQFFKOUYDilLKMRpQlFKO0YCilHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjlGA4pSyjEaUJRSjtGAopRyjAYUpZRjNKAopRyjAUUp5RhvjW1cWUQWi8hPIvKjiHQSkaoislpE4uz/VbyRN6VU4XnrDGUWsNIY0xS4AfgReApYY4xpDKyx3yulShFvjBxYCbgRe5gMY8xFY0wS1miCc+3FdGxjpUohb5yhNAQ
2021-04-13 14:13:15 +00:00
"text/plain": [
2021-05-20 10:33:36 +00:00
"<Figure size 288x288 with 1 Axes>"
2021-04-13 14:13:15 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
2021-05-20 10:33:36 +00:00
"<matplotlib.table.Table object at 0x7fd57ea812e0>\n"
2021-04-13 14:13:15 +00:00
]
},
{
"data": {
2021-05-20 10:33:36 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARQAAAD7CAYAAACrFWuaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkvElEQVR4nO3deXgURfrA8e+bgwSQG0QgIGhAlyQaDhGWQxQixyqXKAQVEARvdlcfRGAVlbjEc8EVfq6KEnQlyKERl0tZXVgEOYMEZAkIcoVwhTMQSFK/P7ozTi7M0ZPJkPfzPHky011dXX3MO1U9XV1ijEEppZzg5+0CKKWuHBpQlFKO0YCilHKMBhSllGM0oCilHKMBRSnlGA0olyEiL4rIJ94uh1NEJEhEtotIA2+XpayISFMRMSIS4O2yeJOIPCUir3p6PRU+oIjIEBHZICJnRSRFRJaISCcH83f8hC4sTxGZJSIxl1l0NLDSGJPiVFk87UoL6l70PnC/iFztyZVU6IAiIk8DU4G/AvWBJsAMoK8Xi5WLw9+sjwIfX2Zd/g6uy+eUl1qMJ8phjLkALAGGOp133hVVyD+gBnAWuPcyaV4EPrFfdwUO5Jm/F+huv24HbABOA6nAW/b0fYCx13UW6GBPHwH8BKQBy4Br3fI1wBNAMrCngHI1tdME5Jk+C4gpZFuaAOfdl7HT/x+wGDgHdAcaAguAo8AeYIxb+sr2MmnAdmCs+z6xyxRaWHmAu4BE4CTwPXCT27xxwEHgDPA/oBvQE7gIXLL33Ra3YzcTSLGXiQH87Xn+wBvAMeBnez/m21d5juE44EcgAwgA2tvlOwlsAbq6pR9u53vG3j/329P9gL8AvwBHgNlAjSKeOy8C84FPsM6fh4HawEfAIXt/f1HS/eg2737gW49+rrz9wfbWn32yZhZ2orkd6KIGlDXAg/brq4D29uumeU9orBrQLuB39gn8F+B7t/kG+No+qSoXUK58edrTZ1F4QPkDsK2A9KeAjvYHogqwEXgBqARcZ394etjpY4FVdrkaA0kUMaAArewP2q1YH/ph9v4LAm4A9gMN3bbv+rzHwC3fz4F/AFWBq4F1wCP2vEeBHXb5agPfFrSv8hzDRDt9ZaARcBzobe+TKPt9PXt9p4Eb7GUbAGH26xH2Mb3OPv4LgY+LeO68iBU0+9nrrAz8C5gL1AICgdtKsx/t962BE578XFXkJk8d4JgxJtOh/C4BoSJS1xhz1hiz9jJpHwWmGGN+stf/VyBSRK51SzPFGHPCGHP+MvkcE5GTOX/AkMukrYn1rZVXgjFmtTEmG4gA6hljXjbGXDTG/IzV9h5sp70PeMUu137g7cusL6/RwD+MMT8YY7KMMXFYNYL2QBbWB6KliAQaY/YaY3YXlImI1Mf6sP/JGHPOGHME+FueMk41xuw3xpwAphShbG/b6c8DDwCLjTGLjTHZxpivsWqeve202UC4iFQ2xqQYY7bZ0+/HqpX+bIw5C4wHBhej+bLGGPOFfRxqAr2AR40xacaYS8aY/9jpSrMfz2DV7jymIgeU40BdB9urI4EWwA4RWS8id10m7bXANLdAcAIQrG/HHPuLsM66xpiaOX/Ap5dJmwZUK2C6+3quBRrmCVITsK4vgdUcck//SxHK6J73M3nyboz1bboL+BPWN/UREYkXkYaXyScQSHHL5x9YNZWSljHvPrg3Tzk7AQ2MMeeAQVhfCCki8i8RudFtve7r+gWr9lmfonEvQ2OsmkRaAelKsx+rYdVIPaYiB5Q1WJG9XxHTn8NqEgCuC5j1ct4bY5KNMdFYJ/arwHwRqYpV3c5rP1YVvabbX2VjzPduaZzuBv4j0KyAAOq+nv1Y12zcy1XNGJPz7ZyCdfLmaJInr3Tc9hFwTZ68X8mTdxVjzBwAY8ynxphOWB8Yg7UP85YvJ58McgfT6saYsCKWsSB598HHecpZ1RgTa5dzmTEmCqu5swOrBgfWtQ73GmYTrCZ1Kr9x7hRShtoiUrOAspZ0P4LVxN7yWzujNCpsQDHGnMK6VjBdRPqJSBURCRSRXiLyWgGL7ASCReQPIhKIdd0jKGemiDwgIvXsKutJe3I21sXNbKy2dY53gfEiEmYvW0NE7nV6G90ZYw5gtfHbXSbZOuCMiIwTkcoi4i8i4SJyiz3/M7vctUQkBHgqz/KJwBB7uZ7AbW7z3gceFZFbxVLV3pfVROQGEblDRIKAC1gXj7Pt5VKBpiLiZ29HCrAceFNEqouIn4hcLyI56/oMGCMiISJSC3iumLvqE+BuEelhb0ewiHS186svIn3tL4oMrAvFOeWcA/xZRJqJyFVYzdi5dpP2sudOXvY2LgFm2Ps6UES6lHI/gnU8lhRzfxRLhQ0oAMaYN4GnsQ7wUazo/yTwRQFpTwGPAx9gXUU/BxxwS9IT2CYiZ4FpwGBjzHljTDrwCrDarqK2N8Z8jvXNES8ip7EubvbyzFbm8g/gwcJmGmOysH5BiMT6BeMY1vbmtLtfwqrK78H6UOf9CfqPwN1YAfV+3PajMWYDMAp4B6v5tQvrFxOwPlyx9voOY9Xyxtvz5tn/j4vIJvv1UKyLxtvtvOZj1RjA+sAtw/om3oR1cbTI7GtDfbGaejnnxFisz4of1vlyCKuZehvwmL3oh1j7YyXW/rmAHXCLcO4U5EGs63I7sC7C/snOq0T7UUSCsa4DxRVnfxSX2Fd/VQVgf3NtxvopsdQ3t4lIV6xfYEJKm5fyLBF5CmhsjHnWk+spFzfyqLJhjMkAWnq7HKrsGWP+XhbrqdBNHqWUs7TJo5RyjNZQlFKO0YCilHKMT1+UrVu3rmnatKm3i6FUhbNx48Zjxpi8N+f5dkBp2rQpGzZs8HYxlKpwRKTALg3a5FFKOcZjAUVEPhSRIyKS5Dattoh8LSLJ9v9a9nQRkbdFZJeI/CgirT1VLqWU53iyhjIL63Z0d88BK4wxzYEV/NrPohfQ3P4bjfXQH6WUj/FYQDHGrMTq7+CuL7/2JYjj156+fYHZxrIWqCkV6EHKSl0pyvoaSn23PiSH+fVZEY3I/TyIA+R+NohSygd47VceY4wRkWLfpisio7GaRTRpUpRHXUDb2BXFXY0qpQ3PdSvV8nrMvKO0x62sayipOU0Z+/8Re/pBcj8UJ8Selo8x5j1jTFtjTNt69fL9DK6U8qKyDihfYj1UF/t/gtv0ofavPe2BU050r1dKlS2PNXlEZA7W077risgBYBLWw18+E5GRWA/quc9Ovhjr4S+7sB4j+JCnyqWU8hyPBRT7+aoFyddIM1aX5yc8VRalVNnQO2WVUo7RgKKUcowGFKWUYzSgKKUcowFFKeUYDShKKcdoQFFKOUYDilLKMRpQlFKO0YCilHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjlGA4pSyjEaUJRSjtGAopRyjAYUpZRjvBJQROTPIrJNRJJEZI6IBItIMxH5wR7feK6IVPJG2ZRSJVfmAUVEGgFjgLbGmHDAHxgMvAr8zRgTCqQBI8u6bEqp0vFWkycAqCwiAUAVIAW4A5hvz3cf91gp5SPKPKAYYw4CbwD7sALJKWAjcNIYk2kn07GNlfJB3mjy1AL6As2AhkBVoGcxlh8tIhtEZMPRo0c9VEqlVEl4o8nTHdhjjDlqjLkELAQ6AjXtJhDo2MZK+SRvBJR9QHsRqSIigjWS4HbgW2CgncZ93GOllI/wxjWUH7Auvm4CttpleA8YBzwtIruAOsDMsi6bUqp0PDa28eUYYyZhDZ7u7megnReKo5RyiN4pq5RyjAYUpZRjNKAopRyjAUUp5RgNKEopx2hAUUo5RgOKUsoxGlCUUo7RgKKUcowGFKWUYzSgKKUcowFFKeUYDShKKcdoQFFKOUYDilLKMRpQlFKO0YCilHKMBhSllGM0oCilHOOtsY1rish8EdkhIj+JSAcRqS0iX4tIsv2/ljfKppQqOW/VUKYBS40xNwI3Az8BzwErjDHNgRX2e6WUD/HGyIE1gC7Yw2QYYy4aY05ijSYYZyfTsY2V8kHeqKE0A44CH4nIZhH5QESqAvWNMSl2msNAfS+
2021-04-13 14:13:15 +00:00
"text/plain": [
2021-05-20 10:33:36 +00:00
"<Figure size 288x288 with 1 Axes>"
2021-04-13 14:13:15 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
2021-05-20 10:33:36 +00:00
"<matplotlib.table.Table object at 0x7fd57f588190>\n"
2021-04-13 14:13:15 +00:00
]
},
{
"data": {
2021-05-20 10:33:36 +00:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARQAAAD7CAYAAACrFWuaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAoxElEQVR4nO3dd3wVVfr48c+TCqE3ESmCG0pIAiH0L70rKgJBmhQXFN2fZVdcREABFQVENKi4rm1BVIIgGnARVFRElN4EZCkS6RAhIBAIKef3x0wuNw1IMsnNNc/79bqv5M6cmTkz597nnjMzZ44YY1BKKSf4eDoDSqk/Dw0oSinHaEBRSjlGA4pSyjEaUJRSjtGAopRyjAaUIkJE7hWRHwpxe1VEZLeIlCysbXqaiHQUkcOezoenichMEflbQay7WAUUEQkUkXdF5DcROSciW0XktkxputhftEQR+VZEbnab119EfrTnfZfN+u8UkR0ict5O17CA9mOyiHyQz9U8Ccwxxlx0Ik+FQUTmiMgUT+fjT+AlYLyIBDi94mIVUAA/4BDQASgHPAV8LCK1AUSkMrAYeBqoCGwEFrgtfxqIBqZlXrGI1AU+BB4EygNLgSUi4lcge5IPIhIIDAeyDUpiKW6fjQyKSrmJiK/T6zTGHAN2A72cXjfGmGL9ArYDUfb/o4Af3eaVAi4CDTItcx/wXaZpDwP/dXvvYy/bJYftVgKWAH8A64HngB/c5s/CCn5/AJuAdvb0W4HLQDJwHthmT/8r8AtwDvgVeOAq+9we2Jdp2nfA88AaO9/BQAPgK6xA+j+g//XkH6gNGMAv0/rvc3s/ws5vArACuNmeLsArwEl73T8DYXbZJNv7fh5Yaqe/CfgEiAcOAI+6baMkMMfexi5gDHD4KsfFAA8Be4ED9rQ7gK3AGeBHoJFb+rHAEfuY/y+9rIFArB+eo/YrGgi0593rXs5u2w22/58D/AtYBlwAugI1sX7o4oFTwOt5PY5uy00A/uP498nTX2hPvoCqwCXsgIH1Jf5XpjQ7sAOO27ScAsoyt/e+9rr/nsO2Y4CPsYJWmP3BdA8oQ7C+tH7A48BxoIQ9bzLwQab13Q78xf4gdQASgcgctv0QbsHPnvYdcBAItbdZDiug/dV+3wT4HWh4rfxzjYAC3AXsA0LsdT+FHciBHlgBtLy9LyFANXPlyzbFbZ0+dtqJQABwC1Yw7WHPnwasxqpt1rTL8loB5Ss7fUl7n08CLe3yHA7EYQWM+vbxucltn/9i//8ssBa4AaiCFYies+fdy7UDylmgjb1/pYBtWMGhFFACaJuf42jP7wtsdvo7VWyrtSLij9VEmWuM2W1PLo1VmO7OAmWuY5VfAx3sE38BwHisD3lQNtv2BaKAicaYC8aYHcBc9zTGmA+MMaeMMSnGmJlc+RBnyxjzX2PMfmNZBXwJtMsheXmsX9XM5hhjdhpjUrBqQnHGmP/YediCVRO4+3ryfw0PAlONMb/Y23oBiLDPVyVjHe8GgNhpjuWwnuZAFWPMs8aYy8aYX4G3gYH2/P7A88aY08aYQ8Cr15G3qXb6i1i1on8bY9YZY1KNMXOBJKAVkIpVJg1FxN8YE2eM2W+v4x7gWWPMSWNMPPAMMDQXxyfWGLPGGJMGNMKqhY2xj/UlY0z6yfv8HMdzWJ8DRxXLgGKfH5iHVX1+2G3WeaBspuRlyf7Ll4EdlIYDrwPHgMpY1ezsripU4cr5nHS/ZcrjP0XkFxE5KyJnsGoMla+yT7eJyFoROW2n73mV9AlkHyTd83Mz0FJEzqS/sL4oN15P/q/hZmCW23pPY/2KVjfGfIN1DGcDJ0XkLRHJXCbu67kpUx7HY9U8wfoi5jaPmY/B45nWXxOrVrIP+AdWbfGkiMSIyE1u23Xf1m/2tOvlnoeawG92wMgsP8exDFYzzlHFLqCIiADvYn3ooowxyW6zdwKN3dKWwmpG7LyedRtjFhljwowxlYBJWNXgDdkkjQdSsD4s6Wq5bbcd8ATWL2wFY0x5rJqSpG8q0z4FYtUeXgKq2umXuaXPbDtQL7tdcPv/ELDKGFPe7VXaGPO3a+Ufq+0PGWtnN2Za9wOZ1l3SGPMjgDHmVWNMU6Chnc8x2e23vZ4DmdZTxhjT055/7Cp5zEnmY/B8pvUHGWPm2/n8yBjTFuuLbYDp9nJH7Wnu2z1q/3/B/biIiPtxySkPtXI4SZzX4whWE2jbVY5DnhS7gIJ1wisEuNNkvWT6KRAmIlEiUgKrbb49vUkkIr72dD/AR0RK2E0n7PlN7TRVgLeAJW7NKRdjTCrWSbbJIhJkX14e7pakDNYXNh7wE5GJZKw5nQBqu12JCcCqfscDKfal8O5XOQbrgfIiUv0qaT4H6onIUBHxt1/NRSTkWvm3q/lHgCH28RiBFZjTvQmME5FQ+7iVE5G77f+bi0hL+7hewDoPlea237dk2o9zIjJWREra2woTkeb2/I/t7VQQkRrAI1fZ3+y8DTxo50dEpJSI3C4iZUSkvoh0toP5JawT2en5nA88Jda9PpWxPkfpV9S2AaEiEmF/liZfIw/rsQLjNHv7JUSkjT0vr8cRrPNsX+TyeFyb0ydlivKLK78kl7CaN+mve9zSdMW6pHYR60Ribbd599rLu7/muM3/Aat5dBr4N1DqKnmpgvWlze4qiS/wnj3vGFZtJQ7oas+vZG8rAfvEGtaJ1hNY1dh5WCdNp1xl+zOAsW7vv8PtKow9rT7wX65cXfgGiLhW/u35t2FddTkDzARWkfEqz1CsKw9/YP3SvmdP74JVgzqPdRL4Q6C0Pa8uV664fGZPuwnrC3zcPh5r3Y5TEPC+nf56r/IEZ5p2K1Yt84xdFguxAn4je7/Ty/tzrpygLYF1vuaY/XoV+4S6PX+CvW+HsE6+Zz4pOyVTHmoBn9ll8Dvwaj6PYzWspniA098xsTegihm7FrUaaGIcuLlNRO7FChht87suVbBEZCaw3xjzhtPrLhI376jCZ6xmSQNP50MVPmPM4wW17uJ4DkUpVUC0yaOUcozWUJRSjtGAopRyjFeflK1cubKpXbu2p7OhVLGzadOm340xVTJP9+qAUrt2bTZu3OjpbChV7IhItt0YtMmjlHJMgQUUEXlPRE6KyA63aRVF5CsR2Wv/rWBPFxF5VUT2ich2EYksqHwppQpOQdZQ5mDdtuzuSWClMaYusNJ+D9Zt2nXt1yis/jZKKS9TYAHFGPM9Vh8Hd3dx5bkZc4HebtPfN5a1WB3XqhVU3pRSBaOwz6FUNVce8nKcK8+tqE7GZ0ActqcppbyIx67yGGOMiOT6Nl0RGYXVLKJWret5vAU0m7Yyt5tR+bTxyS75Wl7LzDPyW26FXUM5kd6Usf+etKcfIeODcGrY07IwxrxljGlmjGlWpUqWy+BKKQ8q7ICyhCsP4hkOxLpNH2Zf7WkFnDU5P0dUKVVEFViTR0TmAx2BymKN1jYJ6ynkH4vISKznbPa3ky/DegbqPqyntf+1oPKllCo4BRZQjDGDcpiVpZFmrC7PDxVUXpRShUPvlFVKOUYDilLKMRpQlFKO0YCilHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjlGA4pSyjEaUJRSjtGAopRyjAYUpZRjNKAopRyjAUUp5RgNKEopx2hAUUo5RgOKUsoxGlCUUo7xSEARkcdEZKeI7BCR+SJSQkTqiMg6e3zjBSIS4Im8KaXyrtADiohUBx4FmhljwgBfYCAwHXjFGBMMJAAjCztvSqn88VSTxw8oKSJ+QBBwDOgMLLLnu497rJTyEoUeUIwxR4CXgINYgeQssAk4Y4xJsZPp2MZKeSFPNHkqAHcBdYCbgFLArblYfpSIbBSRjfHx8QWUS6VUXniiydMVOGCMiTfGJAOLgTZAebsJBDq2sVJeyRMB5SDQSkSCRESwRhLcBXwL9LPTuI97rJTyEp44h7IO6+TrZuBnOw9vAWOB0SKyD6gEvFvYeVNK5U+BjW18NcaYSViDp7v7FWjhgewopRyid8oqpRyjAUUp5RgNKEopx2hAUUo5RgOKUsoxGlCUUo7RgKKUcowGFKW
2021-04-13 14:13:15 +00:00
"text/plain": [
2021-05-20 10:33:36 +00:00
"<Figure size 288x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"<matplotlib.table.Table object at 0x7fd57ee64b50>\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARQAAAD7CAYAAACrFWuaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqLklEQVR4nO3dd3hUVfrA8e+bBAKhS6+CBgRSCBCaiIIICIsK0kWERcTdH+qqSFdRBMEVJLpYFnUFRKkiZVVUiohIJ0NARMqKUgKGDlKSwPn9cW+GSTIJKTeZhLyf55knmVvPvWfmnXPOveceMcaglFJO8PN1ApRSNw4NKEopx2hAUUo5RgOKUsoxGlCUUo7RgKKUcowGlDxCRAaIyA+5uL/yIrJbRIrm1j59TURai8ghX6fD10Rkioj8PSe2XaACiogEisiHIvKbiJwTEZeIdEyxTFv7i3ZBRFaLyM0e83qKyI/2vO+8bH+6iPwiIldFZEAOHsdLIjI7m5sZCcwwxlx0Ik25QURmiMh4X6fjBjAZGC0ihZ3ecIEKKEAAcBC4CygFPA/MF5GaACJSDlgEvADcBGwB5nmsfxKIAialsf3twP8B25xPunNEJBDoD3gNSmIpaJ+NZEQkwNdpABARf6e3aYyJBXYD9zu9bYwxBfoFxADd7P8HAz96zCsGXATqplhnEPBdOtv8ARhwnf2WBZYCZ4FNwCvADx7z38QKfmeBrUAre/q9QDyQAJwHttvT/wr8DJwD/gc8ns6+7wT2pZj2HTABWGcfczBQF/gWK5D+AvTMSPqBmoABAlJsf5DH+4F2ek8BXwM329MFmAr8YW97BxBq502CfezngWX28lWAz4A44FfgKY99FAVm2PvYBQwDDqVzXgwwBNgL/GpP6wy4gNPAj0C4x/IjgMP2Of8FaGtPD8T64Tliv6KAQHveAM989thvsP3/DOBd4EvgT+AeoDrWD10ccAKYltXz6LHeGOAjx79Pvv5C+/IFVAQuYQcMrC/xuymW2YkdcDymORFQ5gLzsYJWqP3B9AwoD2N9aQOAocBRoIg97yVgdort/QW41f4g3QVcABqlse8hwBcppn0H/A6E2PsshRXQ/mq/bwgcB+pfL/1cJ6AADwD7gHr2tp/HDuRAB6wAWto+lnpAZXveDGC8xzb97GVfBAoDt2AF0w72/EnAWqzSZnU7L68XUL61ly9qH/MfQDPAH6tUdwArYNxmn58qHsd8q/3/OGADUAEojxWIXrHnDeD6AeUM0NI+vmJYJd+p9v9FgDuycx7t+Q8C25z+ThXYYq2IFAI+AWYaY3bbk4tjZaanM0AJh/ftD3QDXjTG/GmM2QnM9FzGGDPbGHPCGJNojJnCtQ+xV8aYL4wx+41lDfAN0CqNxUtj/aqmNMMY85MxJhGrJHTAGPORnYZorJJAj4yk/zr+Bkw0xvxs7+tVIMJur0rAOt91AbGXiU1jO02A8saYccaYeGPM/4D3gd72/J7ABGPMSWPMQeCtDKRtor38RaxS0b+NMRuNMVeMMTOBy0Bz4ApWntQXkULGmAPGmP32NvoC44wxfxhj4oCXgX6ZOD9LjDHrjDFXgXCsUtgw+1xfMsYkNd5n5zyew/ocOKpABhS7feBjrOLzEx6zzgMlUyxeEu9fvuwoz7X2nCS/pUjjcyLys4icEZHTWCWGcmltUEQ6isgGETlpL98pneVP4T1IeqbnZqCZiJxOemF9USplJP3XcTPwpsd2T2L9ilY1xqwCpgFvA3/YDd0p88RzO1VSpHE0VskTrC9iZtOY8hwMTbH96lilkn3A01ilxT9EZK6IVPHYr+e+frOnZZRnGqoDv9kBI6XsnMcSWNU4RxW4gCIiAnyI9aHrZoxJ8Jj9E9DAY9liWNWInxxORhyQiPVhSVLDY7+tgOFYv7BljDGlsUpKYi+SrIu43cj6GVbrfUV7+S89lk8pBqjjZbrndg8Ca4wxpT1exY0xf79e+rHq/gBBHtMqpdj24ym2XdQY8yOAMeYtY0xjoL6dzmHejtvezq8ptlPCGNPJnh+bThrTkvIcTEix/SBjzBw7nZ8aY+7A+mIb4DV7vSP2NM/9HrH//9PzvIiI53lJKw010mgkzup5BKsKtD2d85AlBS6gYDV41QPuM6kvmX4OhIpINxEpglU3j0mqEomIvz09APATkSJ21Ql7fmF7vgCF7PmpzrEx5gpWI9tLIhIkIvWx6udJSmB9YeOAABF5keQlp2NATY9tF8YqfscBifal8PbpnINNQGkRqZrOMv8F6ohIPxEpZL+aiEi966XfLuYfBh62z9lArMCc5D1glIiE2OetlIj0sP9vIiLN7PP6J1Yb11WP474lxXGcE5ERIlLU3leoiDSx58+391NGRKoBT6ZzvN68D/zNTo+ISDER+YuIlBCR20TkbjuYX8JqyE5K5xzgebHu9SmH9TlKuqK2HQgRkQj7s/LSddKwCSswTrL3X0REWtrzsnoewWpn+yqT5+P6nG6Uycsvrv2SXMKq3iS9+noscw/WJbWLWA2JNT3mDbDX93zN8Jj/nZf5rdNIS3msL623qyT+wH/sebFYpZUDwD32/LJYDb+nsBvWsBpaj2EVYz/GajQdn865eB0YkSLtg1IscxvwBdeuLqwCIq6Xfnt+R6yrLqeBKcAakl/l6Yd15eEs1i/tf+zpbbFKUOexGoE/AYrb82pz7YrLYntaFawv8FH7fGzwOE9BwCx7+Yxe5QlOMe1eYLO9jVhgAVbAD7eP+xxWVeO/XGugLYLVXhNrv97CblC354+xj+0gVuN7ykbZ8SnSUANYbOfBceCtbJ7HysAhoLDT3zGxd6AKGBEpj3UFpKFx4OY2+0a+QcaqAqg8TESmAPuNMe84ve08cfOOyn3GqpbU9XU6VO4zxgzNqW0XxDYUpVQO0SqPUsoxWkJRSjlGA4pSyjH5ulG2XLlypmbNmr5OhlIFztatW48bY8qnnJ6vA0rNmjXZsmWLr5OhVIEjIl67MWiVRynlmBwLKCLyHxH5Q0R2eky7SUS+FZG99t8y9nQRkbdEZJ+IxIhIo5xKl1Iq5+RkCWUG1m3LnkYCK40xtYGV9nuwbtOubb8GY/W3UUrlMzkWUIwx32P1cfD0ANeemzET6OIxfZaxbMDquFY5p9KmlMoZud2GUtFce8jLUa49t6IqyZ8BccieppTKR3x2lccYY0Qk07fpishgrGoRNWpk5PEWEDlpZWZ3o7Jpy8i22Vpf88w3sptvuV1COZZUlbH//mFPP0zyB+FUs6elYoyZboyJNMZEli+f6jK4UsqHcjugLOXag3j6A0s8pj9iX+1pDpwxaT9HVCmVR+VYlUdE5gCtgXJijdY2Fusp5PNF5FGs52z2tBf/EusZqPuwntb+15xKl1Iq5+RYQDHG9EljVqpKmrG6PA/JqbQopXKH3imrlHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjlGA4pSyjEaUJRSjtGAopRyjAYUpZRjNKAopRyjAUUp5RgNKEopx2hAUUo5RgOKUsoxGlCUUo7RgKKUcowGFKWUYzSgKKUc45OAIiLPiMhPIrJTROaISBERqSUiG+3xjeeJSGFfpE0plXW5HlBEpCrwFBBpjAkF/IHewGvAVGNMMHAKeDS306aUyh5fVXkCgKIiEgAEAbHA3cBCe77nuMdKqXwi1wOKMeYwMBn4HSuQnAG2AqeNMYn2Yjq2sVL5kC+qPGWAB4BaQBWgGHBvJtYfLCJbRGRLXFxcDqVSKZUVvqjy3AP8aoyJM8YkAIuAlkBpuwoEOraxUvmSLwLK70BzEQkSEcEaSXAXsBrobi/jOe6xUiqf8EUbykasxtdtwA47DdOBEcCzIrIPKAt8mNtpU0plT46NbZweY8xYrMHTPf0PaOqD5CilHKJ3yiqlHKMBRSnlGA0oSinHaEBRSjnGJ42yua1xy2O+ToJSBYKWUJRSjtGAopRyTIGo8qj8R6up+ZOWUJRSjtGAopRyjAYUpZRjNKAopRyjAUUp5RgNKEopx2hAUUo5RgOKUsoxGlCUUo7RgKKUcowGFKWUY3w1tnFpEVk
"text/plain": [
"<Figure size 288x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"<matplotlib.table.Table object at 0x7fd57f0c5b50>\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARQAAAD7CAYAAACrFWuaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAoA0lEQVR4nO3dd3hUVfrA8e+bhCIIBJEeMGjohCQQEUSQIiKIClIEUWm2XdQV/YGwqLgKggXE1XVdRamaUCWg0gSxIB1CEZEi0QRCiBTpJCTn98e9GSYkgZSbzAy8n+eZJ5lbz50z895z7j3nHjHGoJRSTvDzdAKUUlcODShKKcdoQFFKOUYDilLKMRpQlFKO0YCilHKMBpQrhIj0F5Efi3B/FUVkp4hcU4T7DBYRIyIBRbVPbyQiT4vIG55OR3Y0oOSBiJQQkU9E5HcROSEisSLS6aJl2ts/tNMi8q2I3OA2r5eI/GTPW5nN9j8SkV9FJF1E+hficbwiIjMKuJnhwBRjzBkn0qTy5GOgr4hU8nRCLqYBJW8CgHjgdqAc8CIwS0SCAUTkemAe8BJwHbABmOm2/hFgIjAuh+1vAf4ObHI+6c4RkRJAP6CgQanQeEsppjDSYYw5CywCHnF62wVmjNFXAV7AVqC7/f/jwE9u80oDZ4B6F63zKLDyEtv8Eeh/mf1WABYAx4F1wGvAj27z38UKfseBjUAre/pdQAqQCpwEttjTBwC/ACeA34AnLrHv1sCei6bFAXe4vX8FmGH/XxIr+BwGjgHrgcr2vHLAJ0AisB8YDfjb8/yBt4E/7TQNBgwQkEO64oAX7Dw5h3UCaA78ZO93C9DGbfn+9nZPAPuAvvZ0P6yTxe/AIWAaUM6e1wZIyOnY7eOeYx/vcTuvrwMmAweAo8B8t3W7ALF2+n4CGrvNe8H+TE4AvwLt3eb1Bb719Pf/4pdXRHFfJSKVgTrAz/akhlhfWgCMMadEZK89fafDu/8PcBaoCtQClmD9KDKsB14F/gL+AcwWkWBjzGIReR0IMcY85Lb8Iawv929YAWORiKw3xmRXWgrF+oLnVj+swFED64cejhVoAabY+w7BCsBfYgXC/wGP2WmKAE4Bc3Oxrz7A3VhBqDLwFfAwsBhoD8wVkXrAaeDfwM3GmF9FpCrWDx+sQNMfaMuFgPK+vZ3cuA/oiVWCKIEVYE5ifQ9OArcCiEgE8ClwD1Zp9iFggYjUBYKBp+z0HbBLwf5u+/gFCMtleoqMVnnySUSKAZ8BU40xGcHiWqwfsLu/gDIO79sf6A68bIw5ZYzZDkx1X8YYM8MYc9gYc94YMx7ri103p20aY74yxuw1lu+ApUCrHBYPxDpr5lYqVokqxBiTZozZaIw5bgfkzsCz9nEcAt4Betvr9QImGmPijTFHgLG52Ne/7eXPYP1AvzbGfG2MSTfGLMP64Xa2l00HGonINcaYRGNMxomhLzDBGPObMeYkMALonYfqy2pjzHxjTDrWZ9UJeNIYc9QYk2p/vmCVaP9njFlrfy5TsQJucyANK88aiEgxY0ycMWav2z5OYAVpr6IBJR9ExA+YjlV1eMpt1kmg7EWLlyVvP77cqMiF6zkZfr8ojf8nIr+IyF8icgzry3d9ThsUkU4iskZEjtjLd77E8kfJW5CcjlWCihaRAyLyph2QbwCKAYkicsze7/+AjIuN1S51jDlwX/4GoGfGtu3t3wZUNcacAh4AnrT3/5VdcsnYr/u+fsf6vCvn8njd01ADOGKMOZrNcjcAz1+UvhpANWPMHuBZrCrUIRGJFpFqbuuWIevJy+M0oOSRiAhWnb8y1rWTVLfZP+NWDBWR0sBNXKgSOSUZOI/15ctQ022/rYBhWGf48saYQKwvn9iLZOpibl9knYt1vaKyvfzXbstfbCtWVc/dKaCU2/sqGf/YZ+V/GWMaYBX3u2BVB+KxzsjXG2MC7VdZY0xDe9XEnI7xEtyPLR6Y7rbtQGNMaWPMODtdS4wxHbCqjTux7p6Ada3jBrft1MT6vJMuPk67tFjxMmm4TkQCs0lrPDDmovSVMsZE2en73Bhzm50WA7jfKq6PW/XaW2hAybv/YmXmPSbrLdMvsIrQ3UWkJPAysDWjSiQi/vb0AMBPREraZ2rs+cXt+QIUs+dnySNjTBrW3aRXRKSUiDTAuk6RoQzWDyAZCBCRl8lcckoCgt22XRyreJ0MnLdvhd95ic9gHRAoItXdpsViVQuKiUgk0MPtuNqKSKj94zuOVQVKN8YkYlWtxotIWRHxE5GbROR2e9VZwDMiEiQi5bFuVefFDOAeEemY8dmLSBt7e5VF5D476J/DKl2m2+tFAUNEpJaIXAu8Dsw0xpwHdgElReRuO+9etD+7bNnHuAj4QETK259Pa3v2x8CTInKLWErb2y0jInVFpJ0d7M9iXXNKd9v07fZ2vYunrwr70osLZ4qzWF/AjFdft2XuwDrbnQFWAsFu8/rb67u/prjNX5nN/DY5pKUi1gXMLHd5sC7efWrPS8QqrcRx4U5EBaw7SUeBTfa0wViB5hhWFSUaGH2Jz+It4AW39zcCa+3P4yusC54Zd3n6YF3EPWXv49/Yd2qwqmL/BRKwSlGbgd72vACsayqHsS445+Yuzx0XTbsF+A7rln2ynbaaWKWS7+x9HrM/+wb2On5YJ4N4e50ZWCU993xMxLpg+39kvcsz46I0XId1jSvJ/sznuc27C+sC+jF7m7OxTgiN7Xw9Yaf9S6yqEFh3zRKw75R500vsBCqVJyJSEfgBiDDauK1IicjTQA1jzDBPp+ViGlCUUo7RayhKKcdoQFFKOUYDilLKMRpQlFKO8em+PNdff70JDg72dDKUuups3LjxT2PMxQ36fDugBAcHs2HDBk8nQ6mrjohk2w1CqzxKKccUWkARkU9F5JCIbHebdp2ILBOR3fbf8vZ0EZF/i8geEdkqIk0KK11KqcJTmCWUKVjNit0NB5YbY2oDy7nQN6MTUNt+PY7VFFsp5WMKLaAYY77H6oPg7j4uPLdjKtDVbfo0Y1mD1fGsamGlTSlVOIr6GkplY/W+BDjIhedLVCfzMyQS7GlKKR/isbs8xhgjInnuSCQij2NVi6hZMzePx4DIccvzuhtVQBuGty/Q+ppnnlHQfCvqEkpSRlXG/nvInr6fzA/SCbKnZWGM+cgYE2mMiaxYMcttcKWUBxV1QFnAhQcB9QNi3KY/Yt/taQ785VY1Ukr5iEKr8ohIFNaQA9eLSAIwCms8mlkiMgjrOZ297MW/xnqG6R6sp5EPKKx0KaUKT6EFFGNMnxxmZamkGeuhLIMLKy1KqaKhLWWVUo7RgKKUcowGFKWUYzSgKKUcowFFKeUYDShKKcdoQFFKOUYDilLKMRpQlFKO0YCilHKMBhSllGM0oCilHKMBRSnlGA0oSinHaEBRSjlGA4pSyjEaUJRSjtGAopRyjAYUpZRjPBJQRGSIiPwsIttFJEpESopILRFZa49vPFNEinsibUqp/CvygCIi1YFngEhjTCPAH+gNvAG8Y4wJAY4Cg4o6bUqpgvFUlScAuEZEAoBSQCLQDphjz3cf91gp5SOKPKAYY/YDbwN/YAWSv4CNwDFjzHl7MR3bWCkf5IkqT3ngPqAWUA0oDdyVh/UfF5ENIrIhOTm5kFKplMoPT1R57gD2GWOSjTGpwDygJRBoV4FAxzZWyid5IqD8ATQXkVIiIlgjCe4AvgV62Mu4j3uslPIRnriGshbr4usmYJudho+AF4DnRGQPUAH4pKjTppQqmEIb2/hSjDGjsAZPd/cb0MwDyVFKOURbyiqlHKMBRSnlGA0oSinHaEBRSjlGA4pSyjEaUJRSjtGAopRyjAYUpZRjNKAopRyjAUUp5RgNKEopx2hAUUo5RgOKUsoxHultrNTlNG2Z5OkkqHzQEopSyjEaUJRSjtGAopRyjAYUpZRjNKAopRzjqbGNA0VkjojsFJFfRKSFiFwnIstEZLf9t7wn0qaUyj9PlVDeBRYbY+oBYcAvwHBguTGmNrDcfq+U8iGeGDmwHNAae5gMY0yKMeYY1miCU+3FdGxjpXyQJ0ootYBkYLK
"text/plain": [
"<Figure size 288x288 with 1 Axes>"
2021-04-13 14:13:15 +00:00
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
2021-05-20 10:33:36 +00:00
"\n",
"dft = None\n",
2021-04-13 14:13:15 +00:00
"for cluster in \"abcd\":\n",
" df = pd.read_csv(glob.glob(DIR + cluster + \"_actual/part-*\")[0], header=None,\n",
" names=[\"term\", \"cpu\", \"ram\"])\n",
2021-05-20 10:33:36 +00:00
" plot_df(df, cluster, \"used\")\n",
" if dft is None:\n",
" dft = df\n",
" else:\n",
" dft = dft.append(df)\n",
"\n",
"dft = dft.groupby(\"term\").sum().reset_index()\n",
"plot_df(dft, \"all\", \"used\")\n",
"\n",
"dft = None\n",
2021-04-13 14:13:15 +00:00
"for cluster in \"abcdefgh\":\n",
" data = None\n",
" with open(DIR + cluster + \"_res_micros_requested.json\", \"r\") as f:\n",
" data = json.loads(f.read())\n",
" dfd = {'term': [], 'cpu': [], 'ram': []}\n",
2021-05-20 10:33:36 +00:00
" for term in [4,5,6,7]:\n",
2021-04-13 14:13:15 +00:00
" dfd['term'].append(term)\n",
" dfd['cpu'].append(float(data[\"cpu-\" + (\"None\" if term == -1 else str(term))]))\n",
" dfd['ram'].append(float(data[\"ram-\" + (\"None\" if term == -1 else str(term))]))\n",
2021-05-12 13:24:57 +00:00
" df = pd.DataFrame(dfd, columns=['term', 'cpu', 'ram'])\n",
2021-05-20 10:33:36 +00:00
" if dft is None:\n",
" dft = df\n",
" else:\n",
" dft = dft.append(df)\n",
" plot_df(df, cluster, \"requested\")\n",
" \n",
"dft = dft.groupby(\"term\").sum().reset_index()\n",
"plot_df(dft, \"all\", \"requested\")\n",
"\n",
"dfr2011 = {'term': [4,5,6,7], 'cpu': [28.2, 31.7, 13.9, 26.2], 'ram': [30.4,23.5, 17.3, 28.8]}\n",
"dfr2011 = pd.DataFrame(dfr2011, columns=dfr2011.keys())\n",
"dfa2011 = {'term': [4,5,6,7],'cpu': [19.2, 13.7, 23.2, 43.9], 'ram': [21.0,14.2,32.1,32.7]}\n",
"dfa2011 = pd.DataFrame(dfa2011, columns=dfa2011.keys())\n",
"\n",
"plot_df(dfr2011, \"2011\", \"requested\")\n",
"plot_df(dfa2011, \"2011\", \"used\")"
2021-04-13 14:13:15 +00:00
]
2021-05-12 13:24:57 +00:00
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
2021-04-13 14:13:15 +00:00
}
],
"metadata": {
"kernelspec": {
2021-05-12 12:15:49 +00:00
"display_name": "Python 3",
2021-04-13 14:13:15 +00:00
"language": "python",
2021-05-12 12:15:49 +00:00
"name": "python3"
2021-04-13 14:13:15 +00:00
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
2021-05-12 12:15:49 +00:00
"version": "3.8.3"
2021-04-13 14:13:15 +00:00
}
},
"nbformat": 4,
"nbformat_minor": 5
}