91 lines
2.5 KiB
Python
91 lines
2.5 KiB
Python
|
#!/usr/bin/env python3
|
||
|
# coding: utf-8
|
||
|
|
||
|
import json
|
||
|
import pandas
|
||
|
import findspark
|
||
|
findspark.init()
|
||
|
import pyspark
|
||
|
import pyspark.sql
|
||
|
import sys
|
||
|
import gzip
|
||
|
import os
|
||
|
|
||
|
from pyspark import AccumulatorParam
|
||
|
from pyspark.sql.functions import lit
|
||
|
from pyspark.sql import Window
|
||
|
from pyspark.sql.types import ByteType
|
||
|
|
||
|
if len(sys.argv) is not 4:
|
||
|
print(sys.argv[0] + " {cluster} {tmpdir} {maxram}")
|
||
|
sys.exit()
|
||
|
|
||
|
cluster=sys.argv[1]
|
||
|
|
||
|
if os.path.exists("/home/claudio/google_2019/thesis_queries/figure_7/" + cluster + "_priority"):
|
||
|
print("already computed")
|
||
|
sys.exit()
|
||
|
|
||
|
spark = pyspark.sql.SparkSession.builder \
|
||
|
.appName("task_slowdown") \
|
||
|
.config("spark.driver.maxResultSize", "128g") \
|
||
|
.config("spark.local.dir", sys.argv[2]) \
|
||
|
.config("spark.driver.memory", sys.argv[3]) \
|
||
|
.getOrCreate()
|
||
|
sc = spark.sparkContext
|
||
|
|
||
|
df = spark.read.json("/home/claudio/google_2019/instance_events/" + cluster + "/" + cluster + "_instance_events*.json.gz")
|
||
|
#df = spark.read.json("/home/claudio/google_2019/instance_events/" + cluster + "/" + cluster + "_test.json")
|
||
|
|
||
|
try:
|
||
|
df["collection_type"] = df["collection_type"].cast(ByteType())
|
||
|
except:
|
||
|
df = df.withColumn("collection_type", lit(None).cast(ByteType()))
|
||
|
|
||
|
def for_each_task(data):
|
||
|
ts = data[1]
|
||
|
priority = -1
|
||
|
term = -1
|
||
|
min_time = -1
|
||
|
max_time = -1
|
||
|
for t in ts:
|
||
|
if (min_time == -1 or t["time"] <= min_time) and t["priority"] != -1:
|
||
|
priority = t["priority"]
|
||
|
min_time = t["time"]
|
||
|
if (max_time == -1 or t["time"] >= max_time) and t["type"] >= 4 and t["type"] <= 8:
|
||
|
term = t["type"]
|
||
|
max_time = t["time"]
|
||
|
|
||
|
return (term, priority)
|
||
|
|
||
|
|
||
|
def cleanup(x):
|
||
|
return {
|
||
|
"time": int(x.time),
|
||
|
"type": 0 if x.type is None else int(x.type),
|
||
|
"id": x.collection_id + "-" + x.instance_index,
|
||
|
"priority": -1 if x.priority is None else int(x.priority)
|
||
|
}
|
||
|
|
||
|
|
||
|
def sum_rows(xs):
|
||
|
csum = 0
|
||
|
for x in xs:
|
||
|
csum += x[3]
|
||
|
return csum
|
||
|
|
||
|
|
||
|
df2 = df.rdd \
|
||
|
.filter(lambda x: x.collection_type is None or x.collection_type == 0) \
|
||
|
.filter(lambda x: x.time is not None and x.instance_index is not None and x.collection_id is not None) \
|
||
|
.map(cleanup) \
|
||
|
.groupBy(lambda x: x["id"]) \
|
||
|
.map(for_each_task) \
|
||
|
.groupBy(lambda x: x) \
|
||
|
.mapValues(lambda x: len(x)) \
|
||
|
.map(lambda x: str(x[0][0]) + "," + str(x[0][1]) + "," + str(x[1])) \
|
||
|
.coalesce(1) \
|
||
|
.saveAsTextFile(cluster + "_priority")
|
||
|
|
||
|
# vim: set ts=4 sw=4 et tw=80:
|