52 lines
1.4 KiB
Python
52 lines
1.4 KiB
Python
|
#!/usr/bin/env python3
|
||
|
# coding: utf-8
|
||
|
|
||
|
import os
|
||
|
import json
|
||
|
import pandas as pd
|
||
|
import findspark
|
||
|
findspark.init()
|
||
|
import pyspark
|
||
|
import pyspark.sql
|
||
|
import sys
|
||
|
import gzip
|
||
|
from pyspark import AccumulatorParam
|
||
|
from pyspark.sql.functions import lit
|
||
|
from pyspark.sql import Window
|
||
|
from pyspark.sql.types import *
|
||
|
from decimal import *
|
||
|
|
||
|
if len(sys.argv) is not 5:
|
||
|
print(sys.argv[0] + " {cluster} {tmpdir} {maxram} {basedir}")
|
||
|
sys.exit()
|
||
|
|
||
|
cluster=sys.argv[1]
|
||
|
|
||
|
spark = pyspark.sql.SparkSession.builder \
|
||
|
.appName("figure_9a") \
|
||
|
.config("spark.driver.maxResultSize", "128g") \
|
||
|
.config("spark.local.dir", sys.argv[2]) \
|
||
|
.config("spark.driver.memory", sys.argv[3]) \
|
||
|
.getOrCreate()
|
||
|
sc = spark.sparkContext
|
||
|
|
||
|
# READING INSTANCE EVENTS DATA
|
||
|
#dfepath = sys.argv[4] + "/" + cluster + "/" + cluster + "_instance_events*.json.gz"
|
||
|
dfepath = sys.argv[4] + "/" + cluster + "/" + cluster + "_test.json"
|
||
|
df = spark.read.json(dfepath)
|
||
|
|
||
|
try:
|
||
|
df["collection_type"] = df["collection_type"].cast(ByteType())
|
||
|
except:
|
||
|
df = df.withColumn("collection_type", lit(None).cast(ByteType()))
|
||
|
|
||
|
df = df.rdd.filter(lambda x: x.collection_id is not None and x.instance_index is not None and
|
||
|
(x.collection_type == 0)) \
|
||
|
.map(lambda x: (x.collection_id, x.instance_index)) \
|
||
|
.groupBy(lambda x: x[0]) \
|
||
|
.mapValues(lambda x: len(x))
|
||
|
|
||
|
df.write.parquet("/home/claudio/raid0/figure-9a-task-count-" + cluster + ".parquet")
|
||
|
|
||
|
# vim: set ts=4 sw=4 et tw=120:
|