122 lines
3 KiB
Python
122 lines
3 KiB
Python
|
#!/usr/bin/env python3
|
||
|
# coding: utf-8
|
||
|
|
||
|
import json
|
||
|
import pandas
|
||
|
import findspark
|
||
|
findspark.init()
|
||
|
import pyspark
|
||
|
import pyspark.sql
|
||
|
import sys
|
||
|
import gzip
|
||
|
|
||
|
from pyspark import AccumulatorParam
|
||
|
from pyspark.sql.functions import lit
|
||
|
from pyspark.sql import Window
|
||
|
from pyspark.sql.types import ByteType
|
||
|
|
||
|
if len(sys.argv) is not 4:
|
||
|
print(sys.argv[0] + " {cluster} {tmpdir} {maxram}")
|
||
|
sys.exit()
|
||
|
|
||
|
cluster=sys.argv[1]
|
||
|
|
||
|
spark = pyspark.sql.SparkSession.builder \
|
||
|
.appName("figure_9b") \
|
||
|
.config("spark.driver.maxResultSize", "128g") \
|
||
|
.config("spark.local.dir", sys.argv[2]) \
|
||
|
.config("spark.driver.memory", sys.argv[3]) \
|
||
|
.getOrCreate()
|
||
|
sc = spark.sparkContext
|
||
|
|
||
|
dfepath="/home/claudio/google_2019/collection_events/" + cluster + "/" + cluster + "_collection_events*.json.gz"
|
||
|
#dfepath="/home/claudio/google_2019/collection_events/" + cluster + "/" + cluster + "_test.json"
|
||
|
|
||
|
df = spark.read.json(dfepath)
|
||
|
|
||
|
try:
|
||
|
df["collection_type"] = df["collection_type"].cast(ByteType())
|
||
|
except:
|
||
|
df = df.withColumn("collection_type", lit(None).cast(ByteType()))
|
||
|
|
||
|
MICROS = 1000000
|
||
|
|
||
|
def sumrow(l, p, t, c):
|
||
|
t = t // (MICROS * 60)
|
||
|
if t < 1:
|
||
|
t = "<1"
|
||
|
elif t < 2:
|
||
|
t = "1-2"
|
||
|
elif t < 4:
|
||
|
t = "2-4"
|
||
|
elif t < 10:
|
||
|
t = "4-10"
|
||
|
elif t < 60:
|
||
|
t = "10-60"
|
||
|
elif t < 60 * 24:
|
||
|
t = "60-1d"
|
||
|
else:
|
||
|
t = ">=1d"
|
||
|
return (l, p, t, c)
|
||
|
|
||
|
|
||
|
def sumid(sr):
|
||
|
return (sr[0], sr[1], sr[2])
|
||
|
|
||
|
|
||
|
def for_each_task(ts):
|
||
|
global non
|
||
|
|
||
|
ts = sorted(ts, key=lambda x: x["time"])
|
||
|
|
||
|
in_exec = False
|
||
|
exec_start = None
|
||
|
exec_tot = 0
|
||
|
priority = -1
|
||
|
l = len(ts)
|
||
|
last_term = -1
|
||
|
|
||
|
for i,t in enumerate(ts):
|
||
|
if t["priority"] is not -1 and priority is -1:
|
||
|
priority = t["priority"]
|
||
|
if t["type"] >= 4 and t["type"] <= 8:
|
||
|
last_term = t["type"]
|
||
|
if in_exec and (t["type"] == 1 or (t["type"] >= 4 and t["type"] <= 8)):
|
||
|
exec_tot += t["time"] - exec_start
|
||
|
in_exec = False
|
||
|
if (not in_exec) and (t["type"] == 3):
|
||
|
exec_start = t["time"]
|
||
|
in_exec = True
|
||
|
|
||
|
return sumrow(last_term, priority, exec_tot, l)
|
||
|
|
||
|
|
||
|
def cleanup(x):
|
||
|
return {
|
||
|
"time": int(x.time),
|
||
|
"type": 0 if x.type is None else int(x.type),
|
||
|
"id": x.collection_id + "-" + x.instance_index,
|
||
|
"priority": -1 if x.priority is None else int(x.priority)
|
||
|
}
|
||
|
|
||
|
def sum_rows(xs):
|
||
|
csum = 0
|
||
|
for x in xs:
|
||
|
csum += x[3]
|
||
|
return csum
|
||
|
|
||
|
df2 = df.rdd \
|
||
|
.filter(lambda x: x.collection_type is None or x.collection_type == 0) \
|
||
|
.filter(lambda x: x.time is not None and x.instance_index is not None and x.collection_id is not None) \
|
||
|
.map(cleanup) \
|
||
|
.groupBy(lambda x: x["id"]) \
|
||
|
.mapValues(for_each_task) \
|
||
|
.map(lambda x: x[1]) \
|
||
|
.groupBy(lambda x: sumid(x)) \
|
||
|
.mapValues(sum_rows) \
|
||
|
.map(lambda x: str(x[0][0]) + "," + str(x[0][1]) + "," + str(x[0][2]) + "," + str(x[1])) \
|
||
|
.coalesce(1) \
|
||
|
.saveAsTextFile(cluster + "_priority_exectime")
|
||
|
|
||
|
# vim: set ts=4 sw=4 et tw=80:
|