diff --git a/machine_time_waste/statuses.dio b/machine_time_waste/statuses.dio
index 34b78615..63fcc39e 100644
--- a/machine_time_waste/statuses.dio
+++ b/machine_time_waste/statuses.dio
@@ -1 +1 @@
-
\ No newline at end of file
+
\ No newline at end of file
diff --git a/machine_time_waste/statuses_total_time.ipynb b/machine_time_waste/statuses_total_time.ipynb
new file mode 100644
index 00000000..a0c053ad
--- /dev/null
+++ b/machine_time_waste/statuses_total_time.ipynb
@@ -0,0 +1,304 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "german-marathon",
+ "metadata": {},
+ "source": [
+ "# Statuses total time\n",
+ "Sums the times instances spend in one of each states in the diagram saved as\n",
+ "\"statuses.drawio\". Unknown times are summed as \"unknown\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "boolean-microwave",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import json\n",
+ "import sys\n",
+ "import pandas\n",
+ "import seaborn as sns\n",
+ "import matplotlib as mpl\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "activated-messenger",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# QUEUE = set([\"0-2\", \"1-2\", \"assumptions:\", \"1-1\", \"1-0\"])\n",
+ "# RESUB = set([\"4-1\", \"4-0\", \"5-1\", \"6-1\", \"7-1\", \"8-1\", \"assumptions:\", \"5-0\", \"6-0\", \"7-0\", \\\n",
+ "# \"8-0\"])\n",
+ "# READY = set([\"0-3\", \"2-3\", \"0-9\", \"2-9\", \"9-3\", \"2-7\", \"2-8\", \"9-7\", \"9-8\", \\\n",
+ "# \"9-9\", \"0-7\", \"0-8\", \"assumptions:\", \"2-0\", \"2-4\", \"9-4\", \"9-1\"])\n",
+ "# RUN = set([\"3-1\", \"3-10\", \"3-4\", \"3-5\", \"3-6\", \"3-7\", \"3-8\", \"10-5\", \"10-6\", \\\n",
+ "# \"10-7\", \"10-8\", \"10-4\", \"10-10\", \"10-1\", \"assumptions:\", \"3-0\", \"10-0\", \"3-3\"])\n",
+ "\n",
+ "QUEUE = set([\"0-2\", \"1-2\"])\n",
+ "ENDED = set([\"5-1\", \"6-1\", \"7-1\", \"8-1\"])\n",
+ "READY = set([\"0-3\", \"0-9\", \"2-3\", \"2-9\", \"9-3\", \"9-9\"])\n",
+ "RUN = set([\"3-1\", \"3-4\", \"3-5\", \"3-6\", \"3-7\", \"3-8\", \"3-10\", \"10-1\", \"10-4\", \"10-5\", \"10-6\", \"10-7\", \"10-8\", \"10-10\"])\n",
+ "EVICT = set([\"4-1\", \"4-0\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "novel-commercial",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "obj = {}\n",
+ "\n",
+ "filename=\"/home/claudio/google_2019/thesis_queries/machine_time_waste/a_state_changes.json\"\n",
+ "\n",
+ "with open(filename, 'r') as f:\n",
+ " obj = json.loads(f.read())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "casual-oasis",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data = {'Last termination': [], 'time_type': [], 'time_ms': []}\n",
+ "totals = {}\n",
+ "\n",
+ "def to_name(et):\n",
+ " if et == 4: \n",
+ " return 'EVICT'\n",
+ " elif et == 5: \n",
+ " return 'FAIL'\n",
+ " elif et == 6:\n",
+ " return 'FINISH'\n",
+ " elif et == 7:\n",
+ " return 'KILL'\n",
+ " elif et == 8:\n",
+ " return 'LOST'\n",
+ " else:\n",
+ " return 'NO_TERM'\n",
+ "\n",
+ "def add_record(et, tt, time):\n",
+ " data['Last termination'].append(to_name(et))\n",
+ " data['time_type'].append(tt)\n",
+ " data['time_ms'].append(time)\n",
+ " \n",
+ " \n",
+ "for pair in obj[\"data\"]:\n",
+ " s = set()\n",
+ " qt = et = rt = xt = vt = ut = 0\n",
+ " \n",
+ " # print(\"End type \" + str(pair[0])) \n",
+ " \n",
+ " pair[0] = 0 if pair[0] is None else pair[0]\n",
+ " \n",
+ " x = pair[1]\n",
+ " for k in x.keys():\n",
+ " if k in QUEUE:\n",
+ " qt += x[k]\n",
+ " elif k in ENDED:\n",
+ " et += x[k]\n",
+ " elif k in READY:\n",
+ " rt += x[k]\n",
+ " elif k in RUN:\n",
+ " xt += x[k]\n",
+ " elif k in EVICT:\n",
+ " vt += x[k]\n",
+ " else:\n",
+ " s.add(k)\n",
+ " ut += x[k]\n",
+ " \n",
+ " add_record(pair[0], 'queued', qt)\n",
+ " add_record(pair[0], 'ended', et)\n",
+ " add_record(pair[0], 'ready', rt)\n",
+ " add_record(pair[0], 'running', xt)\n",
+ " add_record(pair[0], 'evicted', vt)\n",
+ " add_record(pair[0], 'unknown', ut)\n",
+ " totals[pair[0]] = qt + et + rt + xt + vt + ut\n",
+ " # print(s) \n",
+ " \n",
+ "df = pandas.DataFrame(data, columns=['Last termination', 'time_type', 'time_ms'])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "encouraging-acoustic",
+ "metadata": {},
+ "source": [
+ "## Graph 1: Absolute total time spent per status per \"last termination\" type"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "romance-complex",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " Last termination time_type time_ms\n",
+ "0 NO_TERM queued 1.515995e-02\n",
+ "1 NO_TERM ended 0.000000e+00\n",
+ "2 NO_TERM ready 3.365563e-02\n",
+ "3 NO_TERM running 9.511017e-01\n",
+ "4 NO_TERM evicted 0.000000e+00\n",
+ "5 NO_TERM unknown 8.273546e-05\n",
+ "6 EVICT queued 2.199883e-02\n",
+ "7 EVICT ended 7.361000e-08\n",
+ "8 EVICT ready 6.672357e-03\n",
+ "9 EVICT running 8.789100e-01\n",
+ "10 EVICT evicted 1.503149e-05\n",
+ "11 EVICT unknown 9.240368e-02\n",
+ "12 FAIL queued 8.517812e-02\n",
+ "13 FAIL ended 0.000000e+00\n",
+ "14 FAIL ready 9.300481e-04\n",
+ "15 FAIL running 6.596810e-01\n",
+ "16 FAIL evicted 6.492666e-12\n",
+ "17 FAIL unknown 2.542109e-01\n",
+ "18 FINISH queued 3.237908e-01\n",
+ "19 FINISH ended 1.907057e-07\n",
+ "20 FINISH ready 2.215952e-02\n",
+ "21 FINISH running 3.951182e-01\n",
+ "22 FINISH evicted 3.313964e-11\n",
+ "23 FINISH unknown 2.589313e-01\n",
+ "24 KILL queued 3.455137e-02\n",
+ "25 KILL ended 3.509624e-05\n",
+ "26 KILL ready 4.547064e-03\n",
+ "27 KILL running 3.297613e-01\n",
+ "28 KILL evicted 2.820098e-05\n",
+ "29 KILL unknown 6.310770e-01\n",
+ "30 LOST queued 3.119403e-05\n",
+ "31 LOST ended 1.203386e-01\n",
+ "32 LOST ready 8.201877e-04\n",
+ "33 LOST running 2.690978e-04\n",
+ "34 LOST evicted 1.693104e-13\n",
+ "35 LOST unknown 8.785409e-01\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "Text(0, 0.5, 'Total microseconds')"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAENCAYAAADDmygoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABFf0lEQVR4nO3deVyU1f7A8c/MsKmACAjiVoo3w9zFpdwhxdxAIDF3u+WSiXW7JSmJBqWkZe6m5a5lpomimb/c0u7V8qZZYm5XU5RFQARZnGGY3x9cHxkBGXVgAL/v14uXzHm27xmE7zznnOcclcFgMCCEEEKYkdrSAQghhKh6JLkIIYQwO0kuQgghzE6SixBCCLOT5CKEEMLsrCwdQEWQm5vLH3/8Qe3atdFoNJYORwghKjy9Xs/169dp3rw5dnZ2RbZLcgH++OMPhg0bZukwhBCi0tmwYQPe3t5FyiW5ALVr1wYK3qQ6depYOBohhKj4EhMTGTZsmPL3816SXEBpCqtTpw7169e3cDRCCFF5lNSVIB36QgghzE6SixBCCLOrcs1ikZGRnD59mm7dujF+/HhLhyMqmPz8fOLj48nKyrJ0KFVWjRo1qF+/Pmq1fHZ9nFWp5PL777+j0WjYuHEjoaGhpKSk4OrqaumwRAWSkpKCSqWiadOm8sevDOTn53P16lVSUlJwc3OzdDjCgqrUb9fJkyfp1KkTAO3bt+fUqVMWjkhUNOnp6bi7u0tiKSNqtRp3d3du3rxp6VCEhVXY37Do6Gh8fHxo2rQpZ8+eVcovXrxISEgIfn5+hISEcOnSJWVbRkYG9vb2QMGteUZGRpHzZmRkEB8fb/SVmJhY5vURFYNer8fa2trSYVRp1tbW5OXlWToMYWEVtlnM19eXkSNHFnm4MSIigqFDh+Lv709MTAzTp09n7dq1ADg6OnLr1i0AsrKyaNiwYZHzrlmzhkWLFpV9BUSFpVKpLB1ClSbvr4AKnFyKe+IzNTWVuLg4Vq1aBUD//v2JjIwkLS0NZ2dnWrRowc6dO/Hx8eGXX37hhRdeKHKOUaNGMWjQIKOyOw8DlberMTvITUwCwK6OO/X8B5R7DGWlcN2g6tUP4Nq1a/Tr149jx47JtEGiUjhx+Htupl1XXtd0rk3rLn5lcq0Km1yKk5CQgLu7u/KLrNFocHNzIyEhAWdnZ1q2bMm3337L0KFD6dKlS7Gd+Y6Ojjg6OpZ36MXKTUwi+/JlS4dRJqpq3Xx8fIiKiuK5556jbt26HD9+vFyvHxYWhru7O2+++Wa5XldUDTfTrpOWdLVcrlWpkospIiIiLB2CqOJ0t26Re/3upz+1tTU2Tk6WC0iICqhSJRcPDw+SkpLQ6/VoNBr0ej3Jycl4eHhYOjTxGHj77be5du0ak956C7VazdiRI5m/fDn/OXAAGycnRowYQdu2bTl69ChnzpyhY8eOzJo1i6ioKPbv30+jRo2YP3++MsXQhQsXiIqK4tSpU9SqVYvJkyfTt2/fEq+/adMmduzYgUqlYu3atXTs2BFvb29+++03Fi5cqOwXFRUFQHh4OCNGjKB169b8+9//5r///a8Sk9P/kuGJEyeYPXs258+fp27dukybNo2OHTuW3ZtYCZRn01FVVmFHixXHxcUFLy8vYmNjAYiNjcXLywtnZ2cLRyYeB3PmzKFu3bosiI7mX7t20btHjyL77Nq1i48++ogff/yRy5cvM2TIEIKCgvj555/x9PRk8eLFAGRnZ/Pyyy/Tv39//vWvfzFv3jxmzpzJ+fPnS7x+SEgIAwYM4O9//zvHjx9n2bJlDBw4kEOHDikjI/Py8ti5cycBAQHKcdu2bePDDz/k8OHDWFlZKcknKSmJcePGMWHCBH7++WemTJlCaGgoaWlp5nvTKqE7TUd3vgonGmG6CptcoqKi6NatG4mJiYwZM4Z+/foBMGPGDNavX4+fnx/r169n5syZFo5UiLsCAwNp2LAhDg4OdOvWjQYNGvDcc89hZWVFnz59iIuLA+DAgQPUq1ePoKAgrKysaNasGX5+fuzevfuBrufm5oa3t7dy3KFDh6hVqxbNmzdX9vH39+epp56ievXqTJ48md27d6PX64mJiaFbt250794dtVpN586dad68OQcPHjTfGyIeWxW2WSw8PJzw8PAi5Z6enmzevNkCEQlRusKDSGxtbY1e29nZkZ2dDcDVq1c5efKk0ahIvV7PwIEDH/iagwYN4ssvv2Tw4MFs374df39/o+2Fm43r1q2LTqfjxo0bXLt2jd27d7N//35le15eHu1atlT6lKQ/STysCptchKjKPDw8aN++vTKs3lTFPUPy/PPPM2PGDM6ePcuBAwd4++23AUjPzEWr03Ph4mXSM3NxcrAjISEBa2tratWqhYeHB/7+/koz2R2516+Tr9U+fOUqsMdhiHxFUWGbxYSoiFxdXYm/du2Rz9OjRw8uXbrEtm3b0Ol06HQ6Tp48yYULF+57nIuLC/Hx8UZltra2+Pn58dZbb9GiRQvq1q0LgDYvH4MBvt+9izPnzpGTk8P8+fPx8/NDo9EwcOBA9u/fz6FDh9Dr9dy+fZujR4+SlJz8yPWrqO4Mkb/zVTjRCPOS5CLEAxg7diwr1qyh64AB/HCfvonszJtob+eg094mMz2V7Ezjubbs7e354osv2LVrF127dqVLly7MnTsXbSl3DMHBwZw/fx5vb29ee+01pTwgIICzZ88WaRID6NW7L7MiI+jcuTNarZZp06YBBXdPS5Ys4bPPPuPZZ5+le/fufPHFF+Tn55f6PmRn3iQzPbXYugkB0iwmxAN5/vnn6dKqldJsNDIkBLVVwa/RunXrlP30+jzG/n0MAHm6gn2fe+45/u///k/Zp3HjxixfvvyBrv/kk08SExNTpLxu3brY2dnh51d0yKxHvfq8NmkybrWqF9nWqlUr1q9fb1RmSrOYXp+n1EuI4sidixCVXH5+PqtWraJv377KxK1CWJrcuQhRwfTr149rxfTrzJw5s8hosuzsbDp37kzdunX5/PPPyytEIUolyUWICmbnzp0m71u9evX7zm/2ycIHa3YTwlwkuQghRAWXfnQHeel3R7ZZObnj1LFiD6GW5CKEEBVcXnoS2uuVa5ZxSS7CYiw9QWB6Zi7avLvDbm2s1Dg52JXb9YWoyiS5CIspz7UliqPNy0erK/2ZDiHEg5OhyEIIIcxO7lzEY8/VyQ47G9N/Fexq1y51HwcnF7RaHVk3Ux4lNItZtno12Tk5/HPyZEuHIiopSS7isWdnY8Vb8w+iUqmwsdKUun++Tosh36C8VqlVqK1tjPbR5+mIDu1BltmjFaJykGYxS1LL2y9gz5499OnTB39/fxYvXkzTpk05e/as0YqQ8fHxRq8PHjzIkCFDCAwMJCQkhBMnTgCwdetWQkNDlf1279rOjPB3lNfLly8nODiYQYMGMX78eK7/b2r9zMxMQkND6dOnD39//XWzTM4pHm9y51JOdp7ZS1LW3SYS9xqutK5dm+xLlywXlLC4lJQU3nvvPb788ksaN27MihUrSj3m8uXLLFmyhC+++AJ7e3vOnTvHq6++yoEDB+57XExMDFeuXOHrr79GrVazceNGZs+ezccff8zixYupUaMGu3fvJuHcOYa8/DK9unc3Uy3NL+bgBRJS794XerjUwL+7pwUjEveS5FJOkrJSuHLz3k+DRScSFI+X3377jWbNmtG4cWOgYCnjuXPn3veYQ4cOcfnyZYYNG6aU5eXlkZJy//6dffv28ccffzBo0CCgYHGyO3ORHT16VFmcr5aTEz5dujx0ncpDQmoWlxMzLR2GuA9JLkJUQI6OjhgMd/t1bt++bbS9a9eufPTRR0WO02g0RlPm6wrNbmwwGJgwYQLBwcGlXL3ogmRCPChp9Bf3FXPwAsu2nlS+Yg7efzEr8WBat25NXFwcl/7XPHpnCW8HBwd0Oh1//fUXALGxscoxnTt35tChQ5w7d04pO3nyJABPPPEEZ86cQavVotPp+PHAXmUfHx8fNm7cyM2bBeuvaLVafv7tGClZabRq14qNX39Jem4GGVlZ7Dt8uEzrLaq+KnPncuzYMT766CPUajW9e/fm5ZdftnRIVcLj0PyQq83j48nm71/QanWl7uPi4kJkZCTjx4/Hzs6O3r17K9umTZvGmDFjcHZ2pkePHkr5k08+yZw5c5g2bRq5ubnodDratm1Ly5Ytad26Nc8++yz9+vWjlrMLjRo/RWpqQXNZQEAA6enpDB8+HCi4kxkY5E/9Rg0Y+vIIPnp/Ni/6B+FWy5V2LVua980Qj50qk1waNGjA+vXrsbGxYcSIEbz00ktUq1bN0mGJSiAlPRcAG2t1sQtq3evexbTUNjZFnn3JTE81eTGt3r17GyWV+fPnAwWrThZuwnr99deV77t06UKXEvpF3n//fQCSb2QXmYFg9OjRjB49WnmdkpWGVq/D3t6e9z+KwkZjjaNWTV62DKIWj6bKJBd3d3fle41Gg7och/kWHrkio1aEEMLCfS7R0dH4+Pgo4/rvuHjxIiEhIfj5+RESEqK0R5vip59+omHDhtja2pZBxMW703R0OTHTaHikEA/jzJkz1KhRw9JhCPFILHrn4uvry8iRI42GVAJEREQwdOhQ/P39iYmJYfr06axduxaA8+fPM3PmTKP9u3btytixY0lMTOSzzz5j6dKlJV4zIyODjIwMo7LExEQz1UgIIQRYOLl4e3sXKUtNTSUuLo5Vq1YB0L9/fyIjI0lLS8PZ2ZkmTZqwbt26IsdptVrCwsKYMWPGfT/1rVmzhkWLFpmvEkIIIYqocH0uCQkJuLu7o9EUzPGk0Whwc3MjISEBZ2fnEo/bsWMH58+fJyIiAoC5c+ca9cPcMWrUKOUhsjsSExOL3D2JRyRT2wjxWKtwyeVhBQUFERQUVOp+jo6OODo6lkNEjw+Z2kYIca8K9/HSw8ODpKQk9Ho9UDBFRXJyMh4eHhaOTJTkztQ2d74KJ5rKoI6TDfXd7E0ahgwFU+5Xr1dP+SpuCn4HJxcca5Z8p21O905qaaqjR4/y8rAxZRCREBXwzsXFxQUvLy9iY2Px9/cnNjYWLy+v+zaJCfEorGxsuLhyGmqVCmvr0j9v5Wt1YCj0/IhKjdrG2mgffZ6OBqNnmTtU8aikubbcWDS5REVFsWfPHlJSUhgzZgxOTk7s3LmTGTNmEBYWxpIlS3B0dCQ6OtqSYQpRpn777Tfmzp1LVlbBMPbQ0FCaNGlCUFAQQ4YM4eDBg+Tk5PDBBx8og2A2bNjA6tWrsbe3p/s9sxcfPHiQpUuXkpWdi8bKitcmvUXr1q0AmDdvHrt27cLR0ZEOHTqUb0XLmTTXWpZFk0t4eLgyE2thnp6eyhxLQlRlGRkZREREsHz5ctzc3EhOTiY4OJjPPvuM9PR0WrduzZtvvsn27duZO3cuX331FX/++SdLly5l27ZtuLq6MmPGDOV8hafjz9apOXv2HO/+cxJbtu9m37597Nu3j23btmFnZ8fEiRMtV/FyIDORW1aFaxYT4nFy/Phx4uPjefXVV5UylUpFXl4e1atXp2fPnkDBBJd37uB//vlnevTogaurK1AwTf93330HGE/Hn6fPx2Ao6LdMS03l6NGj9O3bVxmqHxwczIJFC8uzuuIxIslFCAsyGAw0bdqUDRs2GJXHx8djY3N36WS1Wk1eXp5J57wzHX/hucVsTOhLEsKc5H+cEBbUpk0b/vrrL44cOaKUnTx50mgtl3t16NCBgwcPkpqaCsA333yjbCtuOv4/T58CoFOnTnz33XdkZ2ej1+vZsmWLuasjhELuXISwoJo1a7JkyRLmzJnDhx9+iE6no0GDBrz33nslHvP0008zfvx4XnrpJezt7enWrZuyrfB0/LeystHpdDzTvBUtW7agZ8+enDhxAn9/f6VD/2rCvX0SQpjHQyWXK1euoFKpqF+/vrnjEaLc5Wm1NHr5A7OfV6+9XfpOQMuWLYud0ujo0aPK9/Xr1zd6PWzYMKNZJd544w3l+zvT8Rc35f6bb77Jm2++qby+M+W+EOZmUrPYP/7xD3799VcAtmzZQr9+/ejfv7+M6BJVQmK6lvjkWyTfyDZp/9zr18m+elX5yr1+vcg+mempZNxMM3eoQlQaJiWXf//73zRv3hyA1atXs2rVKjZv3syKFSvKNDghhBCVk0nNYjqdDhsbG5KSkkhPT6ddu3YApKRUrmk+hBBClA+TkouXlxefffYZV69eVdbyTkpKwt7evixjE6KCUlk6ACEqPJOSywcffMD8+fOxsrLinXfeAQoe/howYECZBidERZCem0GevuAZEyuNFdWtrMg3sbNeiLLyr8vH+DPlAlAwtU2/pr4WjsiYScmlYcOGfPzxx0Zlffr0oU+fPmUSlBAVSZ4+754RVfJ4mLC8tJybxUxvU3GUmFwKP5h1P8HBwWYLRgghRNVQYnKJiYkxev3rr7/i6uqKh4cHCQkJpKSk0LZtW0kuotKrXcsWW2vrEre71rhnuYcaYFPL6b7ndHByQau7TVa6ZYYjN23alO/3/YSVtZ1Fri9Eicml8ENdkZGR+Pr6Mnr0aKVszZo1XLlypUyDE6I82Fpb8+73c1GrwMZaU2S7Vq9TpmNRqVRY5asw5OuV7SqVCnWhecAA8nQ6Inu/Q9YDxJGXl4eVlUyaIaoGkxqPt2/fzogRI4zKhg8fXuTuRgjxYJo2bcrChQsJCgpi0aJF3Lp1i2nTphEcHMyAAQOIiopSVmVduXIlQUFBBAQEEBISwunTp5Xz7Nmzhz59+uDv78/ixYuV8k0b1zL/k9nK65SUFJ577jlycnLKr5LisWRScnF1dWXfvn1GZfv375fVIYUwA1tbW7Zs2cIbb7zBrFmzaN++Pd988w0xMTGkpaUpE0wGBASwZcsWtm3bxuTJk4mIiAAKEsZ7773HkiVLiImJMZpN+YX+/hw6uI/s7ILZBzZt2kT//v2pVq1a+VdUPFZMugcPDw9n0qRJfPHFF9SpU4eEhATOnz/P/Pnzyzo+Iaq8QYMGKd/v27ePkydPsmrVKgByc3Nxd3cH4I8//uCzzz7j5s2bqFQqLv1vRcXffvuNZs2a0bhxY6BgfZe5c+cC4OhYk+c6d+P772L5++jhbN68mdWrV5df5cRjy6Tk0rlzZ/bu3cvBgwdJTk6mR48edO/enVq1apV1fEJUedWr310d0WAwsGTJEho0aGC0j1arZfLkyaxfv55nnnmGpKQko9mQ7ycgKIRZke/xZAMPPD09efLJJ80Zvqggrh86TEbcn8pruzru1PO33LOIJg/Yr1WrFgEBAYwdO5aAgABJLEKUAR8fH5YvX670s6SlpXHlyhW0Wi15eXl4eHgAsHHjRuWY1q1bExcXp9zJ3DuhbGPPv1GzZk0+/PBDhg4dWj4VEeVOm3qD7MuXla/cxCSLxmPSncuVK1f49NNPOX36tNJ2e8eBAwfKIq6Htnr1ag4cOCC3/sJkt3U6Zvn90+zn1eoe/Cn+qVOnMmfOHPz9/VGpVFhbWzN16lQaNGhAaGgowcHBODk54efnpxzj4uJCZGQk48ePx87Ojt69exc5b/+Bg/hi+WJl2WQhyppJyeWf//wnDRo0YMqUKRW6I1Cn0/Hnn3+WvqMQhVy/cRu4jY21Grda1YtsL7zmiY3GGketmrzsu4OM1TY22NWubXRMZnoqeTptqdc+c+aM0Wt7e3tmzpxZ7L6vvvoqr776qvJ63Lhxyve9e/c2Siqvvfaa0Xouv/7nF4YNG4ZaLbMLiPJhUnI5d+4cX375ZYX/jxkTE0O/fv344osvLB2KEBVCSsp13godh4urCx9EzrB0OOIxYlK2aN++PXFxcWa/eHR0ND4+PjRt2pSzZ88q5RcvXiQkJAQ/Pz9CQkKUtuT7yc/P5/Dhw3Tt2tXscQpRWbm61mbNxq0sWvpFhW51EFWPSXcu9erV45VXXqFXr164uroabZs8efJDX9zX15eRI0caLdcKEBERwdChQ/H39ycmJobp06ezdu1aAM6fP1+k2aBr1640bNgQHx+fUq+ZkZFBRkaGUVliYuJD10EIIURRJiWXnJwcevbsSV5enln/EHt7excpS01NJS4uThnn379/fyIjI0lLS8PZ2ZkmTZoUu9740qVL+fnnn4mJieH06dNs3ryZF198sch+a9asYdGiRWargxBCiKJMSi6zZs0q6zgUCQkJuLu7o9EUzPGk0Whwc3MjISHhvjMCTJgwgQkTJgAwevToYhMLwKhRo4weWoOCO5d7754qihOHv+dmWsEa7TWda9O6i18pRwghhOWZPEvepUuXiI2NJTk5GTc3N/r3719hH8a63zBkR0dHHB0dyy+YR3Qz7TppSVctHYYQQjwQkzr09+3bR2BgIBcvXqRmzZpcvHiRoKAg9u7da/aAPDw8SEpKUh4i0+v1JCcnKw+PCWFu7jVtqO9mX+wwZCiYcr+uozt1Hd1xreGMTS0nqterp3zdOwwZCqbcd3CsGHPv7dj2DZu+XG/pMMRjxqQ7l3nz5rFkyRI6deqklB09elSZit+cXFxc8PLyIjY2Fn9/f2JjY/Hy8pJJMkWZsba14dg701CrVFhbFf28pcvPw2AoeF5EpVJjlQ8G/d0p91GrUd+zHow+T0fr6AdrTi6rKfcHBARjY12xHyMQVY9J/5MTExOLdL63a9fukTv3o6Ki2LNnDykpKYwZMwYnJyd27tzJjBkzCAsLY8mSJTg6OhIdHf1I1xGiomratCmvv/46Bw4coGvXrmg0GrKzs5kyZQoACxcuVF4vXLiQixcvkpmZyZUrV2jYsCHz58+nWrVqxW4LnzkLtcaWNSs/Q3s7h5kR4WzdupXY2FgcHR05d+4c1WpUY8bs93F2dUGn0zHvw4/57div1KpZk6aenqTevMnizz6z8LskKiOTPs48/fTTrFy50qhs1apVeHl5PdLFw8PD+fHHH4mLi+Onn35i586dAHh6erJ582a+//57Nm/erMz2KkRVVHjK/dL88ccffPzxx3z33Xfk5eWxY8eOErft2f1dsef4/fffmTJlCjt37uTJxo3Y+vVWAHZs3U5SYiLbvvyKZXPnElfo2bPKSK2qQndrlbAuJt25zJgxgwkTJrB27VplmeNq1aqxbNmyso5PiCrv3tGL99OlSxdlQErLli25fPlyiduuXS1+pdi2bdsqfZjPtHiGo/8+CsCJY7/i1++FgqY5Gxv6+Phw/NSph6qTJWSeOszt+ILpn6yc3HF1cuav9PgHPo/KwjORxBy8QELq3emFPFxq0L1mbbTJlywX1EMwKbl4enqya9cuTpw4oYwWa9WqFdb3WXdcCGGawlPuazQa8vPzlde3bxtPfmlra2u0b+Ht927TF+4XKuEcanXJ+1U2+ls30F6/m2xxamTScX8cv8rlizcAcHapjoOTC6kJllvCPSE1i8uJmcaF9SwTy6MwKUWfPn2a69ev4+3tTd++ffH29iYlJUUmiRTCzJ544glOnTpFfn4+t27dKtdZx1u1a8Oe774nLy+P21ot3+/fX27XtqTMm7e5npjJ9cRM0lKzSz9AmMSk5PL222+Tl5dnVKbT6Xj77bfLJCghHle9evWiZs2avPDCC0yaNIlnnnmm3K49MMgfV1cXAl4awth//INGTzyBfY0a5XZ9UbWY1Cx27dq1IivjNWzYkKtX5eE+8fAs3bZ9h+62Fu+PPjD7efNul76ey71T7tvY2LB48eJi9500aVKJr4vbdmfK/VEvj1OGIgcGBhIYGKjs129gP3r1K5iq39ramtB/voGHtQPZ6Td4Izyc3mZ+1EA8PkxKLnXq1OHUqVNGn6JOnTqFm5tbmQUmqp6K1rZ9R9JNLaC1yHouFc0bE0LR39ZxOzeXjm3bMvCFFywdkqikTEouo0eP5rXXXuOVV16hYcOGXL58mZUrVzJ+/Piyjk9UIXfatu/wkM8mFc6KtV8YJU91GTzUKR4PJv3PGTx4MA4ODnzzzTckJiZSp04dpkyZQp8+fco6PiGEEJWQyR9LXnjhBV6QW2QhhBAmMKlH1WAw8PXXXzNq1CgGDBgAwC+//MKuXbvKNDghhBCVk0nJZf78+XzzzTcMHjyYhIQEoKCT//PPPy/T4IQQQlROJiWXb7/9lmXLltGvXz9UKhUA9evX58oVy4/0EUIIUfGYlFz0ej01/vcw1Z3kkpWVZTRthRCVlZuTXZms52Jf07VM4p0/f36pTdKnT59m3w97Hur8V69do2dAwEMdK8QdJnXod+/enVmzZjF16lSgoA9m/vz59OzZs0yDE6I82NhYsXz+YdQqsLbSFNmu0+swYABAhQorg+qe9VxUqK1tjI7R5+l4ObRbmcQ7efLkUvc5ffo0+/b+QJfuz5dJDEKUxqTk8u677zJlyhTatWtHXl4ebdq0oXPnzrLOihBm8NtvvzF37lyysgqeLQkNDeX//u//eOqppxg1ahQAZ8+eZcKECfzwww+8++67NG/enOHDh6PVapk3bx6HDh1CrVbToEEDoqKiWLBgAZmZmYwd8xItW7XhH2+HFXud5u1bAvDt11v55svN2NvXoMeznS3zRogqxaTkYm9vz+LFi0lNTeXq1at4eHhQu5imACHEg8nIyCAiIoLly5fj5uZGcnIywcHBfPLJJ3zwwQdKctm6dSuDBg1SmqXvWL58OVeuXGHr1q3Y2NiQlpZGrVq1CA0NZfeeH5j+/kcAZGZmFnudNV+vI/7qVTasWsfy9V9Qx82dBVFzy/19EFWPScklLS0NW1tbXFxccHJyYtu2bWg0GgYOHIi6gswPJURldPz4ceLj43n11VeVMpVKha2tLVlZWZw5cwZPT09iY2PZtGlTkeP3799PWFgYNjYFzXIlLQf+x+8nir1O/JV4Thw/QafOz+LsUnBscEAA3//wf+aspngMmZRcxo0bx8yZM2nWrBnz5s1j//79WFlZERcXp/TDCCEenMFgoGnTpmzYsKHItoCAAL799ls6dOiAp6cn9eo9/KIeBgPFXiclK40Tx0889HmFKIlJtx2XLl1SljTevn07K1asYM2aNfIQpRCPqE2bNvz1118cOXJEKTt58iQGg4GAgABiY2PZvHmz0UzGhfXs2ZM1a9ag1RZMkpmWlgYUNGVn3bql7NeiRasSr9O6XRuO/usIN9IKJhXdun272espHj8m3bmo1Wp0Oh0XL17EwcGBunXrkp+fr3QMVhRfffUV3333Hfn5+axcuVJWyhQm0WrzGDu5i9nPq9PqSt2nZs2aLFmyhDlz5vDhhx+i0+lo0KABy5Yto27dujRp0oSff/6ZTz75pNjjx44dy8cff0xAQADW1tY88cQTLFiwgGeffZbPlq/g1dFDaNW6Lf94O6zY60R9/CGef/Nk6OjhTHrlNexr2NP92efM/VaIx5BJyaVbt25MnjyZ9PR0+vbtC8D58+dxd3cv0+AexLVr1zh79ixr1qyxdCiikklOzwWw2JT7LVu2ZN26dcVuW716dZGy2bNnK9/b2Njw7rvv8u677xrt4+DgwNIVa9Dq7i6ZXNx1UrLSQK9n0OBABg0OVOo3YcQIk2IXoiQmJZcPPviAb7/9FisrK/z9/QG4ceNGkQWKLOmnn34iJyeHkSNH0r59+woVmxBCPG5M6nOxsbEhJCSEQYMGkZaWRn5+Ph07dqRfv36PdPHo6Gh8fHxo2rQpZ8+eVcovXrxISEgIfn5+hISEcOnSpVLPlZqaCsDatWuJj4/n9OnTjxSbEEKIh2fSncutW7eIjIxk586d5OXlYWVlRb9+/QgPD8fBweGhL+7r68vIkSMZNmyYUXlERARDhw7F39+fmJgYpk+fztq1a4GC5riZM2ca7d+1a1ccHBzo0KEDAN7e3ly8eFEZhFBYRkYGGRkZRmWJiYkPXQchhBBFmZRcoqKiyM7OZseOHdSrV4+rV68yb948oqKiHukpfW9v7yJlqampxMXFsWrVKgD69+9PZGQkaWlpODs706RJk2Lbp0+dOkVsbCxQ8DRz//79i73mmjVrWLRo0UPHLIQQonQmJZdDhw7xww8/UK1aNQAaNWrErFmz6NWrl9kDSkhIwN3dHY2mYI4njUaDm5sbCQkJJT4gBvDMM8+wbds2RowYwZNPPkmrVq2K3W/UqFEMGjTIqCwxMbHI3ZMQQoiHZ1JysbW1JS0tzeghrhs3bihPBVcU06ZNK3UfR0dHHB0dyyEaIYR4fJmUXIKDg3n55ZcZPXo0devW5dq1a6xevZrBgwebPSAPDw+SkpLQ6/VoNBr0ej3Jycl4eHiY/VpCALg52WJjU/IzUa417rljrgE2tZzue04HJxd02tvcuplmhgiNxcfHExQUxNGjR81+biHMxaTk8tprr+Hm5kZsbCzJycm4ubnxyiuvEBwcbPaAXFxc8PLyIjY2Fn9/f2JjY/Hy8rpvk5gQj8LGxpqvFn+ISgU21sVPuZ9vKJhyX61SoclXYci/O+W+SqVCbVN0yv3gCeFlG7gQFVipQ5H1ej0jRoxg4MCBrF69ml27drF69WpefPHFIjO0PqioqCi6detGYmIiY8aMUYY2z5gxg/Xr1+Pn58f69euLjA4ToqqIj4+nY8eORV7f+XfevHkEBATg5+fHsWPHihyv1Wp54403mD17NgaDgREjRhAdHc1LL73E4MD+rFi2QNn3r7/+YtSoUQwYMIBBgwbx448/ArB9awyfRhfMABD3xyladOrIqT//BOCDuXOVCTObNm3KsmXLCAoKwn9QMPsOHCyz90VUfqXeuWg0GuLj4zH875ObOYWHhxMeXvTTnaenJ5s3bzb79YSoTNLT02ndujVvvvkm27dvZ+7cuXz11VdG2ydNmkSvXr0YOXKkUp6QkMCGDRu4dPU6IUEDeKFfAI0bP8k///lPBg8ezIsvvsj58+cZNmwY67dspF37dnyzseD37djPx2jVogVHf/2VZ55+mqP/+Q+vTpyonNve3p4tW7Zw6OB+3p0ajk+P7uX3hohKxaSHKCdOnEhERARXr15Fr9eTn5+vfAkhykb16tWV1V5bt27NlStXlG1arZahQ4cydOhQo8QC0KdPH9RqNfb2DjR8ohHXrsWTnZXF6dOnCQoKAqBJkyZ4eXlx6uQf1GtQH+3t21xPSuY/Px9j8vgJ/Hz8OInJyeh0Oho2bKic+870Ty2aP8P1lBRu375d1m+DqKRM6nO5c3cRExOjlBkMBlQqlTwJL8QjsLKyMmoVKPzHuvBoTLVaTV5envLa2tqaVq1asW/fPnr37q0M3YeC0Z13aNQa9IWOK0kb77b8+/C/SUtLo327dnww5yMOHTlC+7Ztjfa7c+4719MXXu5ZiEJMunPZu3cve/fu5YcfflC+7rwWQjw8V1dXdDodf/31F4DyIHBpVCoVH374Ifb29rz55pvodPefgbl6jRp4eXnx7bffAnDhwgX+/PNPnmnZHIC27duxcc0GWrQqWPa4dfPmrPrySzoW86CzEKYwKbnUrl0bNzc36tWrp3y5ubnJUsdCPCIrKyumTZvGmDFjCA4ONroDKY1KpSIiIoJ69eoxceLEUpuo5s6dy/bt2xkwYAD//Oc/+eijj6jlXAuANu3bkpSQiHeHgmTSoW1bEpKS6HDPnYsQpjKpWWzMmDG8/fbbtG7dWik7deoUH3/8cYlThQtRWWi1OoZMNP+Kqjqtaf0RwcHBRsP6X3/9dQCj51jq16+vvC78PcCUKVOU7+/9ffxk4fK753Bz5vMFc5XXKo01t9RqtOhwre3K/l9+xEZjDVro3aMHvXv0MBpifebMGaNzHzl8wKT6iceTScnl7NmzRaZTadmyJX/+b7iiEJVZcvpt4LbF1nMpLwa9HkPePTFZ2Ra/sxCPyKRmMQcHB1JSUozKUlJSlLnGhBBCiMJMSi69e/fmrbfe4uzZs+Tk5HDmzBmmTJnCCy+8UNbxCSGEqIRMSi5vvvkmnp6evPjii7Rt25aQkBAaNWrEP/7xj7KOTwizK4sHgsVd8v4KeIBZkSMiIpg+fTo3btygVq1ajzz1i6g61CqTPqNUCHZ2dqSmpuLi4mLpUKokg8FAamoqdnZ2lg5FWFiJySU+Pp769esDGD0ZDJCVdbczs0GDBmUUmqioMk8d5nZ8wWAOKyd3XJ2c+Ss93sJRmaZ+/frEx8dz/fp1MrO15Onvfsq20qhIrV50GYlb2izy/jdRpZVag12einzt3Y5xlUaD9T19krnZt8gv9IChWqPBrnqyuatzX4XrZ6VRcV2Th6HwIAONBq2VNbf1d8vurV9xdQPj+t1bNzs7O+Vvh3h8lZhcBgwYwPHjxwHo1asXKpWqyO2uPKH/eNLfuoH2+uW7BU6NLBfMA7K2tqZRo4J4l209yeXEW8q2hnUcGB9YdGnslb9u4srNawA0qFkXvyvVSfvlF2V79YYN8Rz3itExB7evJy3pqvLa2b0ebQYON2tdSlO4fg3rODCk3jWyz92N26Z2Q4482Yj/XDuplN1bv+LqBsb1s0TdRMVXYnK5k1gAGXIshBDigVSexnIhhBCVhkkd+teuXWPRokWcPn2a7Oxso23ff/99mQQmhBCi8jIpuUyePJnGjRsTGhoqo0CEEEKUyqTk8t///pdNmzahVksrmhBCiNKZlC169uzJzz//XNaxCCGEqCJMXixsyJAhNGzYsMjDZ7NmzSqTwIQQQlReJiWXd999F41Gg6enp9EqdxVJbm4ukyZNIicnhwYNGkjSE0IICzIpuRw5coRDhw5hb29f1vE8tMOHD9OuXTvGjx/Pe++9x9mzZ3nqqacsHZYQQjyWTOpzadq0Kenp6WUcyqOpX78+OTk5AGRnZ+Pg4GDhiIQQ4vFl0p1Lp06d+Pvf/05gYGCRPpfCK+g9qOjoaL7//nuuXr3Kjh07lDuNixcvEhYWRnp6Ok5OTkRHR/Pkk0/e91xPPPEEx44d44UXXqBZs2Z4eHg8dFxCCCEejUnJ5T//+Q9ubm4cPnzYqFylUj1ScvH19WXkyJEMGzbMqDwiIoKhQ4fi7+9PTEwM06dPZ+3atQCcP3+emTNnGu3ftWtX7O3t6du3L8OGDSMqKopff/2VtsWs/52RkUFGRoZRWWJi4kPXQQghRFEmJZd71+U2F29v7yJlqampxMXFsWrVKgD69+9PZGQkaWlpODs706RJk2Lj2bBhAzVr1gTAycmJzMzMYq+5Zs0aFi1aZMZaCCGEuJdJyaU8JSQk4O7ujkajAUCj0eDm5kZCQgLOzs4lHte/f3/efPNNNm3ahKOjI+PGjSt2v1GjRjFo0CCjssTExCJ3T0IIIR5ehUsuD6tmzZqsXLmy1P0cHR1xdHQsh4iEEOLxVeHmc/Hw8CApKQn9/xYi0uv1JCcnSwe9EEJUIhUuubi4uODl5UVsbCwAsbGxeHl53bdJTAghRMVSYrPYvUsbl+RRljmOiopiz549pKSkMGbMGJycnNi5cyczZswgLCyMJUuW4OjoSHR09ENfQwghRPkrMbmUtLRxYY+6zHF4eDjh4eFFyj09Pdm8efNDn1cIIYRllZhcZGljIYQQD6vC9bkIIYSo/EwaipyXl8fGjRv55ZdfuHHjhlFT2YYNG8osOCGEEJWTSXcus2bNYtOmTXh7e3Pq1Cl69+5NamoqnTp1Kuv4hBBCVEImJZc9e/awYsUKRo0ahUajYdSoUSxevJijR4+WdXxCCCEqIZOSS25urvIQo52dHTk5OXh6ehIXF1emwQkhhKicTOpz8fT05Pfff6dly5Y0b96chQsXYm9vj7u7e1nHJ4QQohIy6c5l6tSpykSSYWFhxMXFsX//fiIjI8s0OCGEEJWTSXcuHh4e1K5dG4Ann3yS1atXA3D9+vUyC0wIIUTlZdKdi5+fX7Hl/fr1M2swQgghqgaTkktxU8DcunULlUpl9oCEEEJUfvdtFuvevTsqlYrbt2/To0cPo23p6ely5yKEEKJY900uc+bMwWAwMHbsWD766COlXKVS4eLiQuPGjcs8QCGEEJXPfZNLhw4dADhy5AjVqlUrl4CEEEJUfib1uVhZWbFgwQJ8fX1p0aIFvr6+LFiwAK1WW9bxCSGEqIRMGoo8Z84cTp48ycyZM6lbty7Xrl1jyZIl3Lp1i6lTp5Z1jEIIISoZk5LL7t27iYmJoVatWgA0btyYZs2a4e/vL8lFCCFEEQ89FPl+5UIIIR5v900usbGxAPTp04cJEyZw6NAhLly4wI8//sjEiRN54YUXyiVIIYQQlct9k8v06dMBePvtt3n22Wd5//33CQwMJDIyko4dO/L222+XS5D3Sk9PJzAwkDZt2hiVR0ZGMnToUJYtW2aRuIQQQhS4b5/LnWYvGxsbJk+ezOTJk8slqNLUqFGDlStX8sYbbyhlv//+OxqNho0bNxIaGkpKSgqurq6WC1IIIR5j900u+fn5HDly5L59K88++6zZgyqNtbU1Tk5ORmUnT55UVsZs3749p06donv37uUemxBCiFKSi1arZdq0aSUmF5VKxd69e026UHR0NN9//z1Xr15lx44dPPXUUwBcvHiRsLAw0tPTcXJyIjo6mieffPLBagFkZGTwt7/9DSi4s8nIyHjgcwghhDCP+yaXatWqmZw8SuPr68vIkSMZNmyYUXlERARDhw7F39+fmJgYpk+fztq1awE4f/48M2fONNq/a9eujB07tsj5HR0duXXrFgBZWVk0bNiw2DgyMjKKJJ7ExMSHrpcQQoiiTHrOxRy8vb2LlKWmphIXF8eqVasA6N+/P5GRkaSlpeHs7EyTJk1Yt26dSedv0aIFO3fuxMfHh19++aXEkWxr1qxh0aJFD18RIYQQpbrvaLGyfo4lISEBd3d3ZZVLjUaDm5sbCQkJpR47evRoTp8+zejRozl79iwtW7ZEq9UydOhQnn766RI780eNGsXevXuNvjZs2GDWegkhxOPuvncux48fL684Htid1TALi4iIKPU4R0dHHB0dyyAiIYQQd5j0hH5Z8fDwICkpCb1eD4Beryc5ORkPDw9LhiWEEOIRWTS5uLi44OXlpcwEEBsbi5eXF87OzpYMSwghxCMqtw79qKgo9uzZQ0pKCmPGjMHJyYmdO3cyY8YMwsLCWLJkCY6OjkRHR5dXSEIIIcpIuSWX8PBwwsPDi5R7enqyefPm8gpDCGEGKrVFGz1EJVBuyUUIUTn9cfwqly/eUF47u1THwcmF1IQrFoxKVHSSXIQQ95V58zbXEzONyjzcLBSMqDTk3lYIIYTZSXIRQghhdpJchBBCmJ0kFyGEEGYnyUUIIYTZSXIRQghhdpJchBBCmJ0kFyGEEGYnyUWIMiDTo4jHnTyhL4QZFJ4iRaZHEUKSixBmce8UKTI9injcyb27EEIIs5PkIoQQwuwkuQghhDA7SS5CCCHMTpKLEEIIs5PkIoQQwuwqZXJJT08nMDCQNm3aKGXHjh1j8ODBDBkyhJUrV1owOiGEEJUyudSoUYOVK1fSqlUrpaxBgwasX7+er776iv3795OTk2PBCIUQ4vFWKR+itLa2xsnJyajM3d1d+V6j0aCW6TeEEMJiyu0vcHR0ND4+PjRt2pSzZ88q5RcvXiQkJAQ/Pz9CQkK4dOnSI13np59+omHDhtja2j5ixEIIIR5Wud25+Pr6MnLkSIYNG2ZUHhERwdChQ/H39ycmJobp06ezdu1aAM6fP8/MmTON9u/atStjx44t9hqJiYl89tlnLF26tMQ4MjIyyMjIKHKcEEII8ym35OLt7V2kLDU1lbi4OFatWgVA//79iYyMJC0tDWdnZ5o0acK6detMOr9WqyUsLIwZM2ZQo0aNEvdbs2YNixYterhKCCGEMIlF+1wSEhJwd3dHo9EABX0lbm5uJCQk4OzsfN9jR48ezenTpxk9ejRTp07l999/5/z580RERAAwd+5co36YO0aNGsWgQYOMyhITE4vcUQkhhHh4lbJDH2D16tVGr5966imCgoJKPc7R0RFHR8cyikoIIQRYeCiyh4cHSUlJ6PV6APR6PcnJyXh4eFgyLCGEEI/IosnFxcUFLy8vYmNjAYiNjcXLy6vUJjEhhBAVW7k1i0VFRbFnzx5SUlIYM2YMTk5O7Ny5kxkzZhAWFsaSJUtwdHQkOjq6vEISQghRRsotuYSHhxMeHl6k3NPTk82bN5dXGEIIIcqBPMYuhBDC7CS5CCGEMDtJLkIIIcxOkosQQgizk+QihBCPCVU5zhZfaZ/QF0IIcX9/HL/K5Ys3AHB2qY6DkwupCVfK5dqSXIQQoorKvHmb64mZymsPt/K7tjSLCSGEMDtJLkIIIcxOkosQQgizk+QihBDC7CS5CCGEMDtJLkIIIcxOhiKDslhZYmLiQx1/80YyWRlZBd/b5hAfH190n+s3uJWRcfe1thqJabmkZxUcV+3mTWyLOS4lLZ30mwVDCfOt04s9d1kqXDcoqN81mzRy0wvKrNU3SauWyq2UkusGBfVLSUkiPeM6ABrbHDTqVNJu3h0mWd71K65upf3sKkvdoOj/y8I/NzDtZ3dv3aBo/SxdN6j6/y9L+9lZom53/l7e+ft5L5XBYDA81JmrkGPHjjFs2DBLhyGEEJXOhg0b8Pb2LlIuyQXIzc3ljz/+oHbt2mg0mnK5ZmJiIsOGDWPDhg3UqVOnXK5ZXqRulVdVrp/Uzbz0ej3Xr1+nefPm2NnZFdkuzWKAnZ1dsZm3PNSpU4f69etb5NplTepWeVXl+kndzOeJJ54ocZt06AshhDA7SS5CCCHMTpKLEEIIs5PkYiGOjo68/vrrODo6WjoUs5O6VV5VuX5St/Ilo8WEEEKYndy5CCGEMDtJLkIIIcxOnnMRJfLx8cHGxgZbW1ulrHbt2vj6+vLSSy8pZQaDgeeff55Zs2YRHx/PgQMHWLBgAQDXr19nzpw5/Oc//8HR0RGNRsPgwYNJTU1l9+7dAFy+fBlnZ2fs7e0BWLZsGR4eHuVY0wL31rdjx45MnTqVN954gyNHjnDo0CGsra2V/Zs2bcqvv/5KjRo1GDFiBC+//DI9e/Ys97jvKC5+BwcHsrOzmTJlCkePHmXkyJG89dZbjB07FoCjR48SHR3N1q1bi9TpyJEjfPzxx2i1WrRaLbVr12b16tWo1epi6xsaGkqPHj0IDAy0SN2XLVvGU089RU5ODq+//jpubm7k5eXRqlUrhg8fztatW43+b95x73tQERSuzx0JCQnMmjWLU6dOoVaradiwIVOmTFH2uXr1KjNnziQhIQEAa2trZs+ezd69ey3yuybJpRg+Pj5Ur16d7du3o1arlbI7P+yvv/6aNWvWkJ+fT35+PoMGDWLs2LHKvvdaunTpfX+477zzDteuXVPKACIiImjbti0jRoxQtuXm5uLv789rr70GQHx8PL6+vvj5+Rn9woSFhfHtt9+yY8cOo/+cD2PBggVG5/juu+9YtWqVUXI5evQoarWa9u3bG81TlJOTw/DhwwkMDGT27Nmo1WoyMzPZuXMnEyZMYMKECQAV4g/zHffWNz09nX/96180atSIffv24efnZ8HoSndv/AsXLjTaXrt2bdasWcOQIUPu2/mbl5dHaGgoa9eu5emnnwYgLi4OlUpVNoGbSUZGBmPHjqVFixZMnTqVd99919IhmYVOp+Pll19m8ODByu/67t27GTNmDLt27aJmzZrMnDmTbt26MXz4cACSkpKwsrKy2O+aJJcSZGdnExMTw6BBg4zKt23bxpo1a1ixYgV169bl5s2bTJw4kfz8fOWP/r1M+eGGh4eX+AO/sy05OZm+ffvSuXNnWrVqBYCTkxNnz57l5s2b1KxZk6ysLI4dO4a7u/ujvgXF8vX1ZcaMGVy4cAFPT08Atm7dSmBgYJE/PLGxsTg5OTFu3DilzMHBgSFDhpRJbGVhx44ddO/enS5durBly5YKn1xK4+bmRps2bVixYgVvvfVWiftlZWWRnZ2Nq6urUtasWbPyCPGhpaam8s477+Dj40NoaKilwzGrnTt34uDgwJgxY5SyPn36sHv3btavX8/EiRNJTEw0+r0vq78BppI+lxK8/vrrLFq0CK1Wa1S+cOFCpkyZQt26dQGUTwyfffZZkX3Nzc3NjUaNGnHt2jWj8r59+xIbGwsUfJp5/vnnsbIyz+eG0NBQ/P398ff3JzAwEBsbGwYMGMCWLVsAuHXrFj/88EORJAxw6tQpWrZsaZY4ykvh+h46dIgtW7YQGBhI7969OXHiBElJSZYO8b7ujb84EyZM4JtvviE5ObnE89SsWZPBgwfTu3dvxo8fz/Lly5XmljuioqKUa/n7+/Ovf/3LrHV5UG+88QY9e/ascokF4MyZM8oHysJat27NmTNnAHjllVd45513GD58OHPmzOHkyZPlHaYRSS4laN68Oc888wxffvmlUmYwGIiPj6d169ZG+3p6emJlZcWlS5ce+nr3/qKmpqYW2efixYukp6fTsWNHo/JBgwYRExMDFNxZFfeH/mEtWLCAmJgYYmJilDbp4OBgtm/fjl6v57vvvqNt27ZVZiLAwvV1cXEhIyODTp06Ua1aNXr37s22bdssHeJ9FY6/a9euxe7j6urK4MGDWbJkyX3PNX36dGJiYvD19eX333+nf//+Rv/Hw8PDlWvFxMTw3HPPmbMqD6x79+7s2rWrwn8AeBimPDEycOBA9u3bx9ChQ8nJyWHUqFHKh05LkORyH2+88QYrVqwgq9AaCSV51Lboe39RXVxclG1RUVH069ePvn37MmzYMJydnY2ObdCgAba2thw8eJDs7GyaNm36SLGU5umnn8bNzY0ff/yRLVu2EBQUVOx+zzzzDL///nuZxlKWtmzZQkZGBr6+vvj4+HDgwIEK1en7KF555RV++OEHLl++fN/9GjRowIsvvsjChQtp06YN+/fvL6cIH9wrr7xCYGAgI0eOrHIJ5umnn+a3334rUn7ixAmjPrZatWrRt29fpk+fzoQJEyS5VFSNGzeme/furFq1CihIIPXr1+fEiRNG+124cAGdTnffGUIfRXh4ODt37mT9+vXMmzdPuQ0uLCAggHfeeYeAgIAyieFeQUFBLFy4kEuXLuHr61vsPv369SMtLY3PP/9c+eR169YtNm3aVC4xPgqtVktsbCxbtmxh37597Nu3j8OHDwMF6/9Udnfa75cuXVrs9qysLA4fPqz83DIyMoiPj6/wswmPGzeOQYMGVbkE07dvX27evKn8LYKCJvCff/5Z6cA/cOAAt2/fBgqmwz9z5oxFf17SoV+KSZMmERgYqKy29vrrr/PRRx/xt7/9DQ8PD27evMmMGTN49dVXjYbsloV27doxdOhQ5s+fX6RJo0+fPqSmpjJgwACzXjM0NNSoXlFRUbRo0YL+/fsTHR3N4MGDsbGxKfbY6tWrs27dOubMmYOvry81atTAysqKoUOHmjXGsvDDDz/QsGHDIh8Y7vQ3FbdEQ1hYmNF7tXz5cmWkVUU0fPhw1q5dW+w2g8HAhg0biIyMxNbWFr1ez4ABA+jVq1c5R/ngxo8fj8FgYOTIkdSrV89o28GDB+nWrZvyOjAwkGeffZazZ88alT/33HPMnj273GIuzpgxY4zWl/ryyy+ZPXs269atQ61W06BBA1auXImTkxNwd0i1lZUVer2e5s2bM3nyZAtFL9O/FOveMebR0dGsXLlSGdr75Zdfsm7dOgwGA3q9Hn9/fyZMmFDiUOTCihstVni48R2hoaH4+voW2T8jI4NevXqxatUqHB0dCQoK4ujRo6XWQQghypMkFyGEEGYnfS5CCCHMTvpczOj06dOEhYUVKR8+fDgvvviiBSISQgjLkGYxIYQQZifNYkIIIcxOkosQQgizk+QiRCV37do12rRpozyLZW79+vUrdri7EPcjyUVUaT4+PmadUHHr1q1Gyw0UZ8SIEWzevNls1yxN3bp1OX78uNEDdw8rLCyMefPmGZXt3LmzyHx2QpRGkosQFUxZ3YEIUZ4kuYjH0s2bNxk3bhydOnWiffv2jBs3jsTERGX71q1b8fX1pU2bNvj4+LB9+3YuXLhAREQEJ06coE2bNsVOATNv3jyOHTvG+++/T5s2bXj//feBgvnnxowZQ4cOHfDz82PXrl3KMWFhYURERPDqq6/SunVrjh49io+PD59//jkDBgygdevWTJ06lZSUFF555RXatGnD6NGjuXnzJlCwaFzTpk3Jy8sDCu6cPv30U4YMGUKbNm14+eWXSUtLU64XGhpK586dadeuHcOGDePcuXMAbNq0iR07dvDFF1/Qpk0bxo8fDxjf/Wm1Wj744AO6dOlCly5d+OCDD5SlJo4ePUq3bt1YuXIlzz77rLIGjnhMGYSownr27Gn46aefipSnpaUZdu/ebcjOzjZkZmYaJk2aZJgwYYLBYDAYsrKyDG3atDFcuHDBYDAYDElJSYazZ88aDAaDYcuWLYYhQ4bc95rDhw83fP3118rrrKwsQ7du3QzffPONQafTGU6dOmXo0KGD4dy5cwaDwWCYMmWKoW3btoZjx44Z9Hq9ITc319CzZ0/Diy++aLh+/bohMTHR0KlTJ0NAQIDh1KlThtzcXMOIESMMCxcuNBgMBsOVK1cMTz31lEGn0ynX9/X1Nfz3v/815OTkGIYPH26YM2eOEs/mzZsNmZmZhtu3bxuioqIMAwcOVLZNmTLF8Mknn5T4Hn766aeGF1980ZCSkmJITU01hISEGObNm2cwGAyGI0eOGLy8vAyffvqpQavVGg4cOGBo2bKlIT09vZSfkqiK5M5FPJZq1aqFn58f1apVw97engkTJvDLL78o29VqNefOnSM3Nxc3Nzf+9re/PfS1Dhw4QL169QgKCsLKyopmzZrh5+enLH0NBSt8tmvXDrVarUx+OXz4cFxdXXF3d8fb25uWLVvSrFkzbG1t6dWrF3FxcSVeMzAwkEaNGmFnZ0efPn04ffq0si04OBh7e3tsbGyYNGkSf/75J5mZmSbVZceOHUycOBEXFxecnZ2ZOHEi27dvV7ZbWVkxceJErK2t6d69O9WrV+fixYsP+paJKkCe0BePpZycHGbNmsWhQ4eU5qWsrCz0ej3Vq1dn3rx5rFy5kmnTptG2bVumTJmiLOv8oK5evcrJkyeNmtH0ej0DBw5UXnt4eBQ5rvASw7a2tkav7ezsyM7OLvGatWvXVr6vVq2asq9er2fevHns3r2btLQ0ZbLVGzdu4ODgUGpdkpOTlVVYoWAwQeEVLZ2cnIxWQS18bfF4keQiHksrV67k4sWLfP3119SuXZvTp08TEBCgrF/StWtXunbtSm5uLp9++invvfceGzdufKhF4Tw8PGjfvr3RWhyWsmPHDvbu3cuqVauoX78+mZmZtG/fXql3afVzc3Pj2rVryp1cQkICbm5uZR63qHykWUxUeTqdjtu3bytfeXl5ZGVlYWtri6OjI+np6SxatEjZPyUlhR9++IHs7GxsbGyoXr268gnfxcWFpKQkpRO7OK6urly5ckV53aNHDy5dusS2bdvQ6XTodDpOnjzJhQsXyq7SJcjKysLGxoZatWqRk5PDJ598YrTdxcWF+Pj4Eo/v168fS5cuJS0tjbS0NBYvXmz2NYRE1SDJRVR5Y8eOpWXLlsrXwoULGTVqFLdv36ZTp06EhIQYrTefn5/P6tWr6dq1Kx06dOCXX35hxowZAHTq1IkmTZrQpUuXEp/9GDlyJN9//z3t27cnKioKe3t7vvjiC3bt2kXXrl3p0qULc+fOvW+CKisBAQHUrVuXrl270q9fP1q3bm20PTg4mPPnz+Pt7c1rr71W5PjXXnuN5s2bM3DgQAYOHMgzzzxT7H5CyMSVQgghzE7uXIQQQpidJBchhBBmJ8lFCCGE2UlyEUIIYXaSXIQQQpidJBchhBBmJ8lFCCGE2UlyEUIIYXaSXIQQQpjd/wNDUG80WbvoUQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "