figure_8: added abcd only script

This commit is contained in:
Claudio Maggioni (maggicl) 2021-04-14 17:32:48 +02:00
parent d7b8311935
commit a7515bfee6

170
figure_8/figure8-abcd-only.py Executable file
View file

@ -0,0 +1,170 @@
#!/usr/bin/env python3
# coding: utf-8
import os
import json
import pandas as pd
import findspark
findspark.init()
import pyspark
import pyspark.sql
import sys
import gzip
from pyspark import AccumulatorParam
from pyspark.sql.functions import lit
from pyspark.sql import Window
from pyspark.sql.types import *
from decimal import *
if len(sys.argv) is not 4:
print(sys.argv[0] + " {cluster} {tmpdir} {maxram}")
sys.exit()
cluster=sys.argv[1]
spark = pyspark.sql.SparkSession.builder \
.appName("task_slowdown") \
.config("spark.driver.maxResultSize", sys.argv[3]) \
.config("spark.local.dir", sys.argv[2]) \
.config("spark.driver.memory", sys.argv[3]) \
.getOrCreate()
sc = spark.sparkContext
# READING INSTANCE EVENTS DATA
dfpath = "/home/claudio/google_2019/instance_events/" + cluster + "/" + cluster + "_instance_events*.json.gz"
df = spark.read.json(dfpath)
### TESTING ONLY!
df = df.limit(50000)
try:
df["collection_type"] = df["collection_type"].cast(ByteType())
except:
df = df.withColumn("collection_type", lit(None).cast(ByteType()))
df = df.rdd \
.filter(lambda x: x.time is not None and x.type is not None and x.machine_id is not None and
x.instance_index is not None and x.collection_id is not None and x.resource_request is not None and
x.resource_request.cpus is not None and x.resource_request.memory is not None) \
.map(lambda x: [tabid(x), int(x.time), int(x.type),
Decimal(x.resource_request.cpus), Decimal(x.resource_request.memory), x.machine_id]) \
.toDF(["id", "time", "type", "rcpu", "rram", "mid"])
# READING MACHINE EVENTS DATA, sort them and save them as broadcast variable
print("Starting to read machine events...")
dfm = pd.read_csv("~/google_2019/machine_events/" + cluster + "_machine_events.csv", converters={
'time': lambda x: -1 if x == '' else int(x),
'machine_id': lambda x: str(x),
'capacity.cpus': lambda x: -1 if x == '' else Decimal(x),
'capacity.memory': lambda x: -1 if x == '' else Decimal(x)})
print("Dropping remove events...")
dfm = dfm[(dfm.type!=2)&(dfm.time!=-1)&(dfm["capacity.cpus"]!=-1)&(dfm["capacity.memory"]!=-1)]
print("Dropping missing data events...")
dfm = dfm[dfm.missing_data_reason.isnull()]
print("Projecting on useful columns...")
dfm = dfm[["time", "machine_id", "capacity.cpus", "capacity.memory"]]
print("Sorting by time...")
dfm = dfm.sort_values(by=["machine_id", "time"])
print("Converting to broadcast variable...")
dfm = sc.broadcast([tuple(r) for r in dfm.to_numpy()])
print("Done with machine events.")
def get_machine_time_resources(machine_id, time):
def aux(i, j):
if i == j:
return dfm.value[i] if dfm.value[i][1] == machine_id else None
elif i + 1 == j:
if dfm.value[i][1] == machine_id:
return dfm.value[i]
elif dfm.value[j][1] == machine_id:
return dfm.value[j]
else:
return None
mid = (i + j) // 2
if dfm.value[mid][1] > machine_id:
return aux(i, mid - 1)
elif dfm.value[mid][1] < machine_id:
return aux(mid + 1, j)
elif dfm.value[mid][0] > time:
return aux(i, mid)
elif dfv.value[mid][0] < time:
return aux(mid, j)
else:
return dfm.value[mid]
return aux(0, len(dfm.value)-1)
def increment_reserv_bucket(bucket, ceils, reserv, last_term_by_id):
idx = 0
while idx < len(ceils) and ceils[idx] < reserv:
idx += 1
bucket[idx] += 1
def for_each_joined(x):
task_id = x[0]
ts = x[1]
term = -1
ts = sorted(ts, key=lambda x: x.time)
request_ceils = [0.025, 0.05, 0.075]
cpu_request = [0] * 4 # [a, b, c, d] where <0.025, [0.025, 0.05), [0.05,0.075), >=0.075
ram_request = [0] * 4 # [a, b, c, d] where <0.025, [0.025, 0.05), [0.05,0.075), >=0.075
reserv_ceils = [0, 0.2, 0.4, 0.6, 0.8, 1]
cpu_reservs = [0] * 7 # [n, a, b, c, d, e, f] where:
ram_reservs = [0] * 7
for i, t in enumerate(ts):
machine_log = get_machine_time_resources(mid, t.time)
if machine_log is not None:
reserv_cpu = tot_req[0] / machine_logs[0][2]
reserv_ram = tot_req[1] / machine_logs[0][3]
else:
reserv_cpu = -1
reserv_ram = -1
# 8a-b
increment_reserv_bucket(cpu_request, request_ceils, t.id, t.rcpu)
increment_reserv_bucket(ram_request, request_ceils, t.id, t.rram)
# 8c-d
increment_reserv_bucket(cpu_reservs, reserv_ceils, t.id, reserv_cpu)
increment_reserv_bucket(ram_reservs, reserv_ceils, t.id, reserv_ram)
if t.type >= 4 and t.type <= 8:
term = t.type
res = {-1: None, 4: None, 5: None, 6: None, 7: None, 8: None}
res[term] = {'rcpu': cpu_request, 'rram': ram_request, 'rscpu': cpu_reservs, 'rsram': ram_reservs}
return res
def fold_resobjs(ro1, ro2):
if ro1 is None:
return ro2
elif ro2 is None:
return ro1
else:
for k in ro1.keys():
for kk in ro1[k].keys():
if ro1[k][kk] is None:
ro1[k][kk] = ro2[k][kk]
elif ro2[k][kk] is None:
continue
else:
ro1[k][kk] = [sum(x) for x in zip(ro1[k][kk], ro2[k][kk])]
return ro1
result = df.rdd \
.groupBy(lambda x: x.id) \
.map(for_each_joined) \
.fold(None, fold_resobjs)
d = os.path.dirname(os.path.realpath(__file__))
with open(d + "/" + cluster + "_figure8abcd.json", "w") as f:
json.dump(result, f)
# vim: set ts=4 sw=4 et tw=120: