Universita Faculty
della of Informatics
Svizzera

italiana Bachelor Thesis

Understanding and Comparing Unsuccessful Executions in
Large Datacenters

Claudio Maggioni

Abstract

The project aims at comparing two different traces coming from large datacenters, focusing in particular on un-
successful executions of jobs and tasks submitted by users. The objective of this project is to compare the resource
waste caused by unsuccessful executions, their impact on application performance, and their root causes. We will
show the strong negative impact on CPU and RAM usage and on task slowdown. We will analyze patterns of unsuc-
cessful jobs and tasks, particularly focusing on their interdependency. Moreover, we will uncover their root causes
by inspecting key workload and system attributes such asmachine locality and concurrency level.

Advisor
Prof. Walter Binder

Assistant
Dr. Andrea Rosa

Advisor’s approval (Prof. Walter Binder): Date:

Contents

|11 Introduction (including Motivation)| 2
[2_State of the Art 2
2.1 TIntroduction] e 2
[2.2 Rosaetal. 2015 DSN paper] o oottt e e e e e 2
[2.3 Google Borg| e e e e e 2
[2.4 Traces cOntents| e e e 2
2.5 Overview of traces’ formatl. i e e e e e e e 3
2.6 Remark on traces SIZel it e e e e 3

|3 Project requirements and analysis| 4
|4 Analysis methodology| 4
[4.1 Introduction on Apache Spark| L e 4
[4.2 Query architeCture| i e e e e e e e e 4
0 O X T 4

[4.2.2 Parsing table files|. L 4

[4.2.3 The QUETIES| o o i e e e e e e e e e e e e e e e e e 4

[4.3 Query script design| e e e e e e e e e e e 5
[4.3.1 The “task slowdown” query script] 5

[4.4 Ad-Hoc presentation of some analysis scripts| i e 6

|5 Analysis and observations| 6
[5.1 Overview of machine configurationsineach cluster] 6
[5.2 Analysis of execution time per each execution phase| 6

6 orrelation between ta ’] adata a 2 ation| ... 12

[5.7 Correlation between job events’ metadata and job termination| 12
[5.8 Mean number of tasks and event distribution per tasktype| 12
[5.9 Mean number of tasks and event distribution perjobtype| L. 15
[5.10 Probability of task successful termination given its unsuccesful events|. 15
[5.11 Potential causes of unsuccesful executions|. 15

|6 Implementation issues — Analysis limitations| 15
[6.1 Discussion on unknown fields| e 15
[6.2 Limitation on computation resources required for the analysis| 19
[6.3 Other imitations ...| oo e e e 19

|7 Conclusions and future work or possible developments| 19

1 Introduction

In today’s world there is an ever growing demand for efficient, large scale computations. The rising trend of “big
data” put the need for efficient management of large scaled parallelized computing at an all time high. This fact also
increases the demand for research in the field of distributed systems, in particular in how to schedule computations
effectively, avoid wasting resources and avoid failures.

In 2011 Google released a month long data trace of its own Borg cluster management system, containing a lot of data
regarding scheduling, priority management, and failures of a real production workload. This data was the foundation
of the 2015 Rosa et al. paper Understanding the Dark Side of Big Data Clusters: An Analysis beyond Failures, which
in its many conclusions highlighted the need for better cluster management highlighting the high amount of failures
found in the traces.

In 2019 Google released an updated version of the Borg cluster traces, not only containing data from a far bigger
workload due to the sheer power of Moore’s law, but also providing data from 8 different Borg cells from datacenters
all over the world. These new traces are therefore about 100 times larger than the old traces, weighing in terms
of storage spaces approximately 8TiB (when compressed and stored in JSONL format), requiring considerable com-
putational power to analyze them and the implementation of special data engineering tecniques for analysis of the
data.

This project aims to repeat the analysis performed in 2015 to highlight similarities and differences in workload this
decade brought, and expanding the old analysis to understand even better the causes of failures and how to prevent
them. Additionally, this report will provide an overview on the data engineering tecniques used to perform the queries
and analyses on the 2019 traces.

2 State of the Art

2.1 Introduction

TBD

2.2 Rosa et al. 2015 DSN paper

In 2015, Dr. Andrea Rosa, Lydia Y. Chen, Prof. Walter Binder published a research paper titled “Understanding the
Dark Side of Big Data Clusters: An Analysis beyond Failures” performing several analysis on Google’s 2011 Borg clus-
ter traces. The salient conclusion of that research is that lots of computation performed by Google would eventually
fail, leading to large amounts of computational power being wasted.

Our aim with this thesis is to repeat the analysis performed in 2015 on the new 2019 dataset to find similarities
and differences with the previous analysis, and ulimately find if computational power is indeed wasted in this new
workload as well.

2.3 Google Borg

Borg is Google’s own cluster management software. Among the various cluster management services it provides, the
main ones are: job queuing, scheduling, allocation, and deallocation due to higher priority computations.

The data this thesis is based on is from 8 Borg “cells” (i.e. clusters) spanning 8 different datacenters, all focused on
“compute” (i.e. computational oriented) workloads. The data collection timespan matches the entire month of May
2019.

In Google’s lingo a “job” is a large unit of computational workload made up of several “tasks”, i.e. a number of
executions of single executables running on a single machine. A job may run tasks sequentially or in parallel, and
the condition for a job’s succesful termination is nontrivial.

Both tasks and jobs lifecyles are represented by several events, which are encoded and stored in the trace as rows of
various tables. Among the information events provide, the field “type” provides information on the execution status
of the job or task. This field can have the following values:

Type code Description

QUEUE The job or task was marked not eligible for scheduling by Borg’s scheduler, and
thus Borg will move the job/task in a long wait queue

SUBMIT The job or task was submitted to Borg for execution

ENABLE The job or task became eligible for scheduling

SCHEDULE The job or task’s execution started

EVICT The job or task was terminated in order to free computational resources for an
higher priority job

FAIL The job or task terminated its execution unsuccesfully due to a failure

FINISH The job or task terminated succesfully

KILL The job or task terminated its execution because of a manual request to stop it

LOST It is assumed a job or task is has been terminated, but due to missing data there is
insufficent information to identify when or how

UPDATE_PENDING The metadata (scheduling class, resource requirements, ...) of the job/task was
updated while the job was waiting to be scheduled

UPDATE_RUNNING The metadata (scheduling class, resource requirements, ...) of the job/task was

updated while the job was in execution

Figure [1| shows the expected transitions between event types.

SUBMIT

FAIL, FINISH,
KILL, LOST

ENABLE SCHEDULE

RUNNING

SUBMIT

UPDATE_PENDING UPDATE_RUNNING

KILL, LOST

EVICTED
EVICT

KILL

Figure 1. Typical transitions between task/job event types according to Google

2.4 Traces contents

The traces provided by Google contain mainly a collection of job and task events spanning a month of execution of
the 8 different clusters. In addition to this data, some additional data on the machines’ configuration in terms of
resources (i.e. amount of CPU and RAM) and additional machine-related metadata.

Due to Google’s policy, most identification related data (like job/task IDs, raw resource amounts and other text
values) were obfuscated prior to the release of the traces. One obfuscation that is noteworthy in the scope of this
thesis is related to CPU and RAM amounts, which are expressed respetively in NCUs (Normalized Compute Units) and
NMUs (Normalized Memory Units).

NCUs and NMUs are defined based on the raw machine resource distributions of the machines within the 8 clusters.
A machine having 1 NCU CPU power and 1 NMU memory size has the maximum amount of raw CPU power and raw
RAM size found in the clusters. While RAM size is measured in bytes for normalization purposes, CPU power was
measured in GCU (Google Compute Units), a proprietary CPU power measurement unit used by Google that combines
several parameters like number of processors and cores, clock frequency, and architecture (i.e. ISA).

2.5 Overview of traces’ format

The traces have a collective size of approximately 8TiB and are stored in a Gzip-compressed JSONL (JSON lines)
format, which means that each table is represented by a single logical “file” (stored in several file segments) where
each carriage return separated line represents a single record for that table.

There are namely 5 different table “files”:

machine_configs, which is a table containing each physical machine’s configuration and its evolution over time;
instance_events, which is a table of task events;

collection_events, which is a table of job events;

machine_attributes, which is a table containing (obfuscated) metadata about each physical machine and its evo-
lution over time;

instance_usage, which contains resource (CPU/RAM) measures of jobs and tasks running on the single machines.

The scope of this thesis focuses on the tables machine_configs, instance_events and collection_events.

2.6 Remark on traces size

While the 2011 Google Borg traces were relatively small, with a total size in the order of the tens of gigabytes, the
2019 traces are quite challenging to analyze due to their sheer size. As stated before, the traces have a total size of 8
TiB when stored in the format provided by Google. Even when broken down to table “files”, unitary sizes still reach
the single tebibyte mark (namely for machine_configs, the largest table in the trace).

Due to this constraints, a careful data engineering based approach was used when reproducing the 2015 DSN paper
analysis. Bleeding edge data science technologies like Apache Spark were used to achieve efficient and parallelized
computations. This approach is discussed with further detail in the following section.

3 Project requirements and analysis

TBD (describe our objective with this analysis in detail)

4 Analysis methodology

Due to the inherent complexity in analyzing traces of this size, novel bleeding-edge data engineering tecniques were
adopted to performed the required computations. We used the framework Apache Spark to perform efficient and
parallel Map-Reduce computations. In this section, we discuss the technical details behind our approach.

4.1 Introduction on Apache Spark

Apache Spark is a unified analytics engine for large-scale data processing. In layman’s terms, Spark is really useful
to parallelize computations in a fast and streamlined way.

In the scope of this thesis, Spark was used essentially as a Map-Reduce framework for computing aggregated results
on the various tables. Due to the sharded nature of table “files”, Spark is able to spawn a thread per file and run
computations using all processors on the server machines used to run the analysis.

Spark is also quite powerful since it provides automated thread pooling services, and it is able to efficiently store and
cache intermediate computation on secondary storage without any additional effort required from the data engineer.
This feature was especially useful due to the sheer size of the analyzed data, since the computations required to store
up to 1TiB of intermediate data on disk.

The chosen programming language for writing analysis scripts was Python. Spark has very powerful native Python
bindings in the form of the PySpark API, which were used to implement the various queries.

4.2 Query architecture
4.2.1 Overview

In general, each query written to execute the analysis follows a general Map-Reduce template.

Traces are first read, then parsed, and then filtered by performing selections, projections and computing new derived
fields. After this preparation phase, the trace records are often passed through a groupby() operation, which by
choosing one or many record fields sorts all the records into several “bins” containing records with matching values
for the selected fields. Then, a map operation is applied to each bin in order to derive some aggregated property
value for each grouping. Finally, a reduce operation is applied to either further aggregate those computed properties
or to generate an aggregated data structure for storage purposes.

4.2.2 Parsing table files

As stated before, table “files” are composed of several Gzip-compressed shards of JSONL record data. The specification
for the types and constraints of each record is outlined by Google in the form of a protobuffer specification file found
in the trace release packageﬂ This file was used as the oracle specification and was a critical reference for writing
the query code that checks, parses and carefully sanitizes the various JSONL records prior to actual computations.

The JSONL encoding of traces records is often performed with non-trivial rules that required careful attention. One
of these involved fields that have a logically-wise “zero” value (i.e. values like “0” or the empty string). For these
values the key-value pair in the JSON object is outright omitted. When reading the traces in Apache Spark is therefore
necessary to check for this possibility and insert back the omitted record attributes.

4.2.3 The queries

Most queries use only two or three fields in each trace records, while the original table records often are made of
a couple of dozen fields. In order to save memory during the query, a projection is often applied to the data by the
means of a .map () operation over the entire trace set, performed using Spark’s RDD API.

Another operation that is often necessary to perform prior to the Map-Reduce core of each query is a record filtering
process, which is often motivated by the presence of incomplete data (i.e. records which contain fields whose values
is unknown). This filtering is performed using the . filter() operation of Spark’s RDD API.

The core of each query is often a groupby () followed by a map () operation on the aggregated data. The groupby ()
groups the set of all records into several subsets of records each having something in common. Then, each of this
small clusters is reduced with a map() operation to a single record. The motivation behind this way of computing
data is that for the analysis in this thesis it is often necessary to analyze the behaviour w.r.t. time of either task or
jobs by looking at their events. These queries are therefore implemented by groupby ()-ing records by task or job,
and then map ()-ing each set of event records sorting them by time and performing the desired computation on the
obtained chronological event log.

Sometimes intermediate results are saved in Spark’s parquet format in order to compute and save intermediate results
beforehand.

4.3 Query script design

In this section we aim to show the general complexity behind the implementations of query scripts by explaining in
detail some sampled scripts to better appreciate their behaviour.

4.3.1 The “task slowdown” query script

One example of analysis script with average complexity and a pretty straightforward structure is the pair of scripts
task_slowdown.py and task_slowdown_table.py used to compute the “task slowdown” tables (namely the tables
in figure[6).

“Slowdown” is a task-wise measure of wasted execution time for tasks with a FINISH termination type. It is computed

as the total execution time of the task divided by the execution time actually needed to complete the task (i.e. the
total time of the last execution attempt, successful by definition).

The analysis requires to compute the mean task slowdown for each task priority value, and additionally compute the
percentage of tasks with successful terminations per priority. The query therefore needs to compute the execution
time of each execution attempt for each task, determine if each task has successful termination or not, and finally
combine this data to compute slowdown, mean slowdown and ultimately the final table found in figure [6]

Figure [2| shows a schematic representation of the query structure.

LGoogle 2019 Borg traces Protobuffer specification on Github

https://github.com/google/cluster-data/blob/master/clusterdata_trace_format_v3.proto

task_slowdown.py

Table:
instance_events

| Preparation and filtering Grouping
..00.json. gz
..01.3son. gz
..02.3s0n. gz
-.03.json. gz 1 P > Projection ! Group by
-.04.json. gz 4 Is a task 4 Keep task id "
.05.3s0n. gz Has non-null task id Keep event type taskID
-06.3s0n. gz Has non-null time Keep task priorit
..07.3son. gz e ——— L_fech sk priony)

..08.json.gz |
..09.son. gz

Computation on each groupin,
Task ID | Priority |Listofabsec. P! grouping
#1 100 [60s, ...] T o
[Events for tas
§§ ;gg [[213?;”]] C t sort | Events for task #2
#4 400 | [5h,..] ompute 0 . " Events for task #3
#5 11 [3h,..] Store first priority in list Keep task id 5 [/ Events for ask 74
#6 100 | [20s,..] Measure all execution time Keep event type | Evens for ask #5
#1 102 (14, .. slices and store them Keep task priorit | Events for task #6
S — R | Events for task #7
YES
Priority | # of unsuccessful tasks S
1 = IF Compute
101 10 NO B p
102 20 3
103 30 Task termination is FINISH Final termination event
104 1 ie.task termination type
105 5

task_slowdown_table.py

Final grouping

Compute

% of finished tasks

Task slowdown
table

Compute

Slowdown

Figure 2. Diagram of the script used for the “task slowdown” query.

The query first starts reading the instance_events table, which contains (among other data) all task event logs
containing properties, event types and timestamps. As already explained in the previous section, the logical table file
is actually stored as several Gzip-compressed JSONL shards. This is very useful for processing purposes, since Spark
is able to parse and load in memory each shard in parallel, i.e. using all processing cores on the server used to run
the queries.

After loading the data, a selection and a projection operation are performed in the preparation phase so as to “clean
up” the records and fields that are not needed, leaving only useful information to feed in the “group by” phase. In
this query, the selection phase removes all records that do not represent task events or that contain an unknown task
ID or a null event timestamp. In the 2019 traces it is quite common to find incomplete records, since the log process
is unable to capture the sheer amount of events generated by all jobs in a exact and deterministic fashion.

Then, after the preparation stage is complete, the task event records are grouped in several bins, one per task ID.
Performing this operation the collection of unsorted task event types is rearranged to form groups of task events all
relating to a single task.

These obtained collections of task events are then sorted by timestamp and processed to compute intermediate data
relating to execution attempt times and task termination counts. After the task events are sorted, the script iterates
over the events in chronological order, storing each execution attempt time and registering all execution termination
types by checking the event type field. The task termination is then equal to the last execution termination type,
following the definition originally given in the 2015 Ros4 et al. DSN paper.

If the task termination is determined to be unsuccessful, the tally counter of task terminations for the matching task
property is increased. Otherwise, all the task termination attempt time deltas are returned. Tallies and time deltas
are saved in an intermediate time file for fine-grained processing.

Finally, the task_slowdown_table.py processes this intermediate results to compute the percentage of successful
tasks per execution and computing slowdown values given the previously computed execution attempt time deltas.
Finally, the mean of the computed slowdown values is computed resulting in the clear and coincise tables found in

figure[6]

4.4 Ad-Hoc presentation of some analysis scripts

TBD (with diagrams)

5 Analysis and observations

5.1 Overview of machine configurations in each cluster

Refer to figure
Observations:
* machine configurations are definitely more varied than the ones in the 2011 traces

* some clusters have more machine variability

5.2 Analysis of execution time per each execution phase

Refer to figures[4and
Observations:

* Across all cluster almost 50% of time is spent in “unknown” transitions, i.e. there are some time slices that are
related to a state transition that Google says are not “typical” transitions. This is mostly due to the trace log
being intermittent when recording all state transitions.

* 80% of the time spent in KILL and LOST is unknown. This is predictable, since both states indicate that the job
execution is not stable (in particular LOST is used when the state logging itself is unstable)

* From the absolute graph we see that the time “wasted” on non-finish terminated jobs is very significant
* Execution is the most significant task phase, followed by queuing time and scheduling time (“ready” state)

* In the absolute graph we see that a significant amount of time is spent to re-schedule evicted jobs (“evicted”
state)

* Cluster A has unusually high queuing times

5.3 Task slowdown

Refer to figure[f]
Observations:
* Priority values are different from 0-11 values in the 2011 traces. A conversion table is provided by Google;

* For some priorities (e.g. 101 for cluster D) the relative number of finishing task is very low and the mean
slowdown is very high (315). This behaviour differs from the relatively homogeneous values from the 2011
traces.

* Some slowdown values cannot be computed since either some tasks have a Ons execution time or for some
priorities no tasks in the traces terminate successfully. More raw data on those exception is in Jupyter.

* The % of finishing jobs is relatively low comparing with the 2011 traces.

5.4 Reserved and actual resource usage of tasks
Refer to figures[7]and
Observations:
* Most (mesasured and requested) resources are used by killed job, even more than in the 2011 traces.

* Behaviour is rather homogeneous across datacenters, with the exception of cluster G where a lot of LOST-
terminated tasks acquired 70% of both CPU and RAM

5.5 Correlation between task events’ metadata and task termination

Refer to figures[9} [10] and

Observations:

* No smooth curves in this figure either, unlike 2011 traces

CPU (NCU) RAM (NMU) Machine count % Machi
Unknown Unknown 8729 1.639218%
1.000000 0.500000 124234 23.329891%
0591797 0.333496 103013 19.344801%
0.259277 0.166748 78078 14.662260% — —
0.708984 0.333496 55801 10.478864% CPU (NCU) RAM (NMU) count % - -
0386719 0.333496 36237 6.804943% Unknown Unknown 1377 1.623170% CPU (NCU) RAM (NMU) Machine count % Machines
0.958984 0.500000 31151 5.849843% 0591797 0.333496 29487 34.758469% Unknown Unknown 134 0.264812%
0.708984 0.666992 29594 5.557454% 1.000000 0.500000 13440 15.842705% 0.591797 0.333496 16184 31.982926%
0.386719 0.166748 27011 5.072393% 0.708984 0.333496 12495 14.728764% 1.000000 0.500000 9790 19.347061%
1.000000 1.000000 12286 2.307187% 0.386719 0.333496 9057 10.676144% 0.708984 0.333496 8448 16.694992%
0.591797 0.166748 9902 1.859496% 0.386719 0.166748 5265 6.206238% 0.958984 0.500000 5502 10.873088%
1.000000 0.250000 7550 1.417814% 0.708984 0.666992 4608 5.431784% 0.708984 0.666992 3832 7.572823%
0.958984 1.000000 3552 0.667030% 1.000000 1.000000 4446 5.240823% 1.000000 1.000000 2214 4.375321%
0.259277 0.333496 3024 0.567877% 0.591797 0.166748 2484 2.928071% 0.591797 0.166748 2152 4.252796%
0.591797 0.666992 1000 0.187790% 0.958984 0.500000 1143 1.347337% 0.386719 0.333496 816 1.612584%
0.259277 0.083374 634 0.119059% 0.958984 1.000000 654 0.770917% 0.958984 1.000000 618 1.221296%
0.958984 0.250000 600 0.112674% 1.000000 0.250000 366 0.431431% 0.591797 0.666992 500 0.988103%
0.500000 0.062500 54 0.010141% 0.479492 0.250000 6 0.007073% 0.386719 0.166748 412 0.814197%
0.500000 0.250000 34 0.006385% 0.708984 0.250000 6 0.007073%
0.479492 0.250000 12 0.002253%
0.708984 0.250000 6 0.001127%
0.591797 0.250000 4 0.000751%
0.708984 0.500000 2 0.000376%
0.479492 0.500000 2 0.000376%
(a) All clusters (b) A cluster (c) Cluster B
CPU (NCU) RAM (NMU) Machine count % Machi CPU (NCU) RAM (NMU) Machine count % Machines
Unknown Unknown 1466 2.274208% CPU (NCU) RAM (NMU) Machine count 9% Machi Unknown Unknown 536 0.671915%
0.259277 0.166748 15754 24.439204% Unknown Unknown 498 0.794309% 0.259277 0.166748 38452 48.202377%
0.386719 0.333496 11104 17.225652% 0.591797 0.333496 28394 45.288376% 0.708984 0.333496 11786 14.774608%
0.591797 0.333496 10404 16.139741% 0.386719 0.333496 8402 13.401174% 0.958984 0.500000 8646 10.838389%
0.958984 0.500000 6634 10.291334% 0.259277 0.166748 8020 12.791885% 0.708984 0.666992 7606 9.534674%
1.000000 0.500000 5654 8.771059% 0.386719 0.166748 5806 9.260559% 1.000000 0.500000 5586 7.002457%
0.386719 0.166748 3580 5.553660% 0.708984 0.666992 4380 6.986092% 0.386719 0.166748 4470 5.603470%
0.708984 0.666992 2900 4.498774% 0.708984 0.333496 3924 6.258772% 0.259277 0.333496 1268 1.589530%
1.000000 1.000000 2736 4.244361% 0.591797 0.166748 2548 4.064055% 0.259277 0.083374 634 0.794765%
1.000000 0.250000 2132 3.307375% 0.259277 0.333496 426 0.679469% 0.591797 0.333496 324 0.406158%
0.958984 1.000000 766 1.188297% 1.000000 0.500000 202 0.465739% 1.000000 0.250000 268 0.335957%
0.708984 0.333496 620 0.961807% 0.591797 0.250000 4 0.006380% 1.000000 1.000000 138 0.172993%
0.958984 0.250000 600 0.930781% 0.708984 0.500000 2 0.003190% 0.500000 0.062500 54 0.067693%
0591797 0.166748 112 0.173746% 0.500000 0.250000 4 0.005014%
(d) Cluster C (e) Cluster D (f) Cluster E

CPU (NCU) RAM (NMU) hine count % Machi

Unknown Unknown 1566 2.261568%
CPU (NCU) RAM (NMU) hine count % Machi 0.259277 0.166748 15852 22.892958% CPU (NCU) RAM (NMU) Machine count % Machines
Unknown Unknown 1432 2.299958% égggggg gzggigg ;;228 ﬁgzgigiz//: Unknown Unknown 1720 2.933251%
1.000000 0.500000 41340 66.396839% o0 a0 7830 119078305 1-000000 0.500000 36324 61.946178%
0.708984 0.333496 6878 11.046866% "ot e 1690 6.773150% 0.591797 0.333496 4826 8.230158%
0591797 0.333496 5564 8.936430% 0708984 0.666992 458 61492609 0.708984 0.333496 3682 6.279205%
0.958984 0.500000 2172 3.488484% 0958984 0500000 4196 60597319 0.958984 0.500000 2858 4.873973%
0.386719 0.166748 1544 2.479843% 0386719 0333496 3864 o 5802679 0.386719 0.333496 2596 4.427163%
0.708984 0.666992 1244 1.998008% 0591797 0166748 2606 3 763503% 1.000000 1.000000 2030 3.461919%
1.000000 0.250000 792 1.272044% 1000000 0250000 2100 303275450 1.000000 0.250000 1892 3.226577%
0.958984 1.000000 536 0.860878% 0250277 0333496 1330 1 920744% 0.386719 0.166748 1244 2.121491%
0.386719 0.333496 398 0.639234% 0958984 1000000 778 1 123563% 0.708984 0.666992 766 1.306320%
1.000000 1.000000 344 0.552504% 1000000 1000000 378 0.545596% 0.591797 0.666992 500 0.852689%
0.500000 0.250000 18 0.028910% 0500000 0250000 12 0.017330% 0.958984 1.000000 200 0.341076%

0.479492 0.250000 6 0.008665%

0.479492 0.500000 2 0.002888%

(g) Cluster F

(h) Cluster G

(i) Cluster H

Figure 3. Overview of machine configurations in terms of CPU and RAM resources for each cluster

e —

e

Cluster all: Absolute total time spent per status per "last termination” type

1007
10
Color Execution phase
Blue Queued 3 ’
Orange Ended E
Green Ready Ew
&

Red Running
Violet Evicted 10
Brown Unknown

(a) Execution state legend for the graphs

NO_TERM EVICT FAIL FINISH KILL LOST
Last termination

(b) All clusters

Cluster a: Absolute totaltime spent per status per st termination” type Cluster b per status per *ast termination” type Clusterc: Absolute total time spent per status per “last termination” type. Cluster d: Absolute total time spent per status per last termination” type

frop—
s s s 8 s
2o
B 5 B 5 E
J—
H g] g 2 2
—

ot e W e o T R — o . R T N —
(c) Cluster A (d) Cluster B (e) Cluster C (f) Cluster D
Custer e Absot ot time spntperttus pr "ot teiaton” ype ustrt Aol per st trminaton type Clustor g Absot ota tme pen perstauspar st temination” e Csto : Absoute ttaltmespent per status pr st termination” type

i i H

L f H

i i Fie
w ,.y
m .

(g) Cluster E (h) Cluster F (i) Cluster G () Cluster H

Figure 4. Total task time (in milliseconds) spent in each execution phase w.r.t. task termination.

Cluster all- Relative total time spent per status per "last termination” type

10
08
Color Execution phase
Blue Queued
06

Orange Ended "
Green Ready 8
Red Running 04
Violet Evicted
Brown Unknown

0z
(a) Execution state legend for the graphs
00
NO_TERM EVICT FALL FINISH KILL LosT
Last termination
(b) All clusters
custera » - e p Clusto Rl oa e spent per ttus er st temination” ype Cluste . e ot e spen er st per o upe
H H H
0 o feR vicr L Fns [LosT 0 o e Evcr L Fnis il LosT 20 o tem, Bt AL s KL L5t 0 o feR vicr L Fns [o5t
o oo i i

(c) Cluster A (d) Cluster B (e) Cluster C (f) Cluster D

Cluster e: Reltive total time spent per status per "last termination” type. Cluster

per p Cluster g Relative total time spent per tatus per “last termination” type Cluster b Relativetota time spert per status per “lst termination” type
10 10 10 10

o8 o8 o8 o8

02 02 02 02

o B ED i Ea = o evier e e Wl wosr o ever e e o oot o et En s Wl oo

(g) Cluster E (h) Cluster F (i) Cluster G () Cluster H

Figure 5. Relative task time (in milliseconds) spent in each execution phase w.r.t. task termination.

10

Priority % finished tasks Mean

. Priority % finished tasks Mean slowdown Priority % finished tasks Mean slowdown Priority % finished tasks Mean slowdown
U"kmv; lg:gégéégnﬁ 1‘097555’ 0 45.193049% 1.176397 0 50.887820% 1.105787 0 26.522899% 1.116002
25 0.333054% 82.973285 25 0.018094% 133.481864 3 0.000000% - 5 0.000000% -
100 0.000000% N 80 0.000000% - 10 0.000000% - 25 16.293068% 65.676400
101 81.917703% 30.798089 100 0.000000% - 25 22.468276% 8.191258 100 0.000000% -
102 0.000000% _ 101 66.479321% 433.414195 100 0.000000% - 101 45.314870% 315.954065
103 14.990678% 1.130579 103 0.106377% 1.645114 101 52.628263% 421.490544 103 0.004540% 1.065721
105 57.678214% 1.078733 105 0.463292% 2.408090 103 0.005336% 2.794339 105 0.051712% 2.897040
107 53.926543% 1.016187 107 0.000000% - 105 0.023521% 1.372291 107 0.000350% 1.551354
114 0.000000% - 114 0.676897% 1.003422 107 0.000245% 14.708268 114 0.000000% -
115 4.108501% 1.004324 115 4.117647% 5.916852 114 0.022221% 1.011266 115 5.189033% 2.186562
116 13.045304% 1.032749 116 8.316438% 1.109652 115 0.281832% 1.980743 116 0.126154% 1.278510
117 0.000000% - 117 0.000000% - 116 0.013836% 1.022119 117 85.714286% 1.000000
118 11.907081% 1.003494 118 0.311290% 1.000000 117 93.165468% 1.000000 118 0.054055% 2.048749
119 21.264583% 1.504923 119 0.195997% 2.555160 118 0.004137% 1.100009 119 0.441844% 3.020486
170 0.000000% - 170 0.000000% - 119 2.215917% 2.044049 197 0.000000% -
200 27.211754% 4.116760 199 0.000000% - 170 0.000000% - 199 0.000000% -
205 0.000000% - 200 30.916717% 9.707524 200 3.606796% 4.139724 200 6.528759% 5.514350
210 0.000000% - 205 0.000000% - 205 0.000000% - 205 0.000000% -
214 0.000000% - 210 0.000000% - 210 0.000000% - 210 0.000000% -
215 0.000000% - 214 0.000000% - 214 0.000000% - 214 0.000000% -
360 0.616372% 2.924018 215 0.000000% - 215 0.000000% - 215 0.000000% -
400 0.000000% - 360 3.502999% 1.612147 360 4.367418% 2.061085 360 1.594977% 2.476706
:(S,g z-zggggg:f; 1142450 450 0.612913% 1.057515 450 1.512578% 1.066014 450 0.611145% 1.330248
(a) Cluster A (b) Cluster B (c) Cluster C (d) Cluster D
Priority % finished tasks Mean slowdown
0 42.805214% 1.439544
25 5.344531% 2.676136 Priority % finished tasks Mean slowdown Priority % finished tasks Mean slowdown Priority % finished tasks Mean slowdown
100 0.000000% - 0 45.208221% 1.088162 0 33.612201% 1.138988 0 27.744380% 1.122458
101 0.015918% 1.122507 25 0.647505% 2.230960 25 0.233338% 8.692558 19 0.000000% -
103 0.021660% 3.163046 ’ > ’ ? ’
105 0.404803% 14750313 100 0.000000% - 50 0.000000% - 25 1.042767% 3.064188
107 0.000000% ° 101 40.296631% 323.858714 100 0.000000% - 101 100.000000% 76.438090
114 0.000000% B 103 0.058418% 1.167347 101 96.470338% 19.378523 103 0.481256% 1.262067
1is 0.027326% 1.000000 105 0.222372% 1.550453 103 0.032539% 1.271282 105 1.427256% 4.205547
116 0.000000% " 107 0.060860% 1.012727 105 0.196286% 1.000738 107 0.000000% -
117 0.000000% B 114 0.006958% 1.000000 107 0.000000% - 115 5.122494% 1.000000
118 0.000000% B 115 3.647104% 5.094215 114 0.000000% - 116 1.035309% 73.447995
119 0.4582560% 10.310893 116 0.000000% - 115 7.633588% 1.802068 117 0.000050% 1.000000
170 0.000000% ° 117 0.000086% 1.000000 117 0.000000% - 118 1.003331% 1.947121
200 1059258% 8.535722 118 0.002082% 1.000000 118 48.969072% 3.877102 119 0.145214% 7.301093
201 0.000000% a 119 31.354662% 7.608799 119 0.085944% 3.166077 200 2.702770% 5.798142
205 0.000000% B 200 3.653528% 5.943247 170 0.000000% - 201 0.000000% -
210 0.000000% B 201 0.000000% - 200 26.747126% 14.573912 220 0.000000% -
215 0.000000% _ 360 7.424790% 2.171524 360 1.618878% 2.119524 360 4.425746% 2.018441
290 0.000000% B 450 0.992623% 1.021053 450 2.737219% 1.036927 450 0.535389% 1.054678
360 37.157031% 2.873243
450 0.548458% 1.113283 (f) Cluster F (g) Cluster G (h) Cluster H

(e) Cluster E

Figure 6. Mean task slowdown for each cluster and each task priority

Actual spatial resource waste (cluster a) Actual spatial resource waste (cluster b) Actual spatial resource waste (cluster) Actual spatial resource waste (cluster d)

= No termination =Ko termination
EvicT - EvicT

= o termination
et

= No termination
- EVIC EvicT

- AL
INISH
i
= L0sT

am Pu om am

(a) Cluster A (b) Cluster B (c) Cluster C (d) Cluster D
Task termination % CPU % RAM Task termination % CPU % RAM Task termination % CPU % RAM Task termination % CPU % RAM
No termination 0.6972% 1.0447% No termination 0.2582% 0.4637% No termination 0.3376% 0.3812% No termination 0.4995% 0.4822%
Evict 13.4392% 11.8184% Evict 4.8340% 7.3120% Evict 8.2099% 8.0454% Evict 7.6002% 9.0656%
Fail 2.2792% 2.8387% Fail 6.2950% 8.3841% Fail 1.2294% 2.0809% Fail 3.0288% 3.9214%
Finish 1.3963% 1.1066% Finish 2.5877% 1.2231% Finish 2.9399% 3.3249% Finish 0.8666% 0.8914%
Kill 82.1791% 83.1826% Kill 86.0215% 82.6144% Kill 87.2740% 86.1588% Kill 88.0011% 85.6364%
Lost 0.0091% 0.0091% Lost 0.0036% 0.0027% Lost 0.0093% 0.0088% Lost 0.0039% 0.0030%
(e) Cluster A (exact values) (f) Cluster B (exact values) (g) Cluster C (exact values) (h) Cluster D (exact values)

Figure 7. Relative usage of CPU and RAM resources w.r.t. final task termination.

11

Requested spatial resource waste (cluster a)

== No termination
- EViCT

Requested spatial resource waste (cluster b)

=Ko termination
- EvicT

Requested spatial resource waste (cluster c)

= No termination
- EviCT

Requested spatial resource waste (cluster d)

== No termination
EvicT

L AL AL =

FNSH P FNSH WSt

i oy KL i

Lost Lost Lost - LosT

m am am m
(a) Cluster A (b) Cluster B (¢) Cluster C (d) Cluster D

Task termination % CPU % RAM Task termination % CPU % RAM Task termination % CPU % RAM Task termination % CPU % RAM
No termination 0.033962% 0.193674% No termination 0.000094% 0.000191% No termination 0.000105% 0.000221% No termination 0.000948% 0.000128%
Evict 2.838362% 3.399075% Evict 0.003365% 0.004696% Evict 0.008618% 0.006991% Evict 0.046057% 0.006352%
Fail 0.058335% 0.069755% Fail 0.003061% 0.004965% Fail 0.001261% 0.001459% Fail 0.023703% 0.002770%
Finish 0.000102% 0.000151% Finish 0.012696% 0.017647% Finish 0.015047% 0.017003% Finish 0.095353% 0.012975%
Kill 96.661332% 95.799104% Kill 91.094839% 85.573746% Kill 82.483146% 79.698011% Kill 95.468127% 97.927565%
Lost 0.407908% 0.538242% Lost 8.885947% 14.398756% Lost 17.491823% 20.276314% Lost 4.365813% 2.050210%

(e) Cluster A (exact values)

Requested spatial resource waste (cluster &)

(f) Cluster B (exact values)

Requested spatial resource waste (cluster f)

(g) Cluster C (exact values)

Requested spatial resource waste (cluster g)

(h) Cluster D (exact values)

Requested spatial resource waste (cluster h)

o termination o termination No termination —o terminaton
evicr evier evier - EvicT
AL AL AL =
- s - st - st - s
L oy KL Py
- LosT - 05T - LosT - LosT
m m am m
(i) Cluster E (j) Cluster F (k) Cluster G (1) Cluster H
Task termination % CPU % RAM Task termination % CPU % RAM Task termination % CPU % RAM Task termination % CPU % RAM
No termination 0.015102% 0.016472% No termination 0.000114% 0.000306% No termination 0.001283% 0.000748% No termination 0.000148% 0.000022%
Evict 0.362088% 0.321274% Evict 0.007986% 0.013466% Evict 0.034040% 0.025278% Evict 0.006021% 0.000751%
Fail 0.051373% 0.047377% Fail 0.000913% 0.002064% Fail 0.004384% 0.003918% Fail 0.000858% 0.000144%
Finish 1.672195% 1.310360% Finish 0.013296% 0.021751% Finish 0.176091% 0.166656% Finish 0.015642% 0.001873%
Kill 97.899179% 98.304482% Kill 94.396548% 90.227868% Kill 27.376816% 30.954255% Kill 78.910066% 97.713322%
Lost 0.000063% 0.000034% Lost 5.581144% 9.734546% Lost 72.407386% 68.849146% Lost 21.067264% 2.283888%

(m) Cluster E (exact values)

(n) Cluster F (exact values)

(o) Cluster G (exact values)

(p) Cluster H (exact values)

Figure 8. Relative request of CPU and RAM resources prior to tasks’ execution w.r.t. final task termination.

Figure 72 riortos wrt a

Fgure 7a: rirtes we . ovent rate (cluster b)

Figue 7a:prioities wirt. ovent rate (custor

Figure 72 riortos wit

(a) Cluster A

Figure 73 rirtes wit

(b) Cluster B

Figure 73 rirtes wrt

(¢) Cluster C

Figure Ta:prioities wrt. event rate (cluster o)

(d) Cluster D

Figure 72 Prirtes wrt W

(e) Cluster E

(f) Cluster F

(g) Cluster G

Figure 9. Task event rates vs. task priority and final task termination

12

(h) Cluster H

- 7’\/ \/_ \/\ /{f
(a) Cluster A (b) Cluster B (¢) Cluster C (d) Cluster D
) i . ~— i i B —
(e) Cluster E (f) Cluster F (g) Cluster G (h) Cluster H
Figure 10. Task event rates vs. event execution time and final task termination
(a) Cluster A (b) Cluster B (c) Cluster C (d) Cluster D

(e) Cluster E

(f) Cluster F

(g) Cluster G

(h) Cluster H

Figure 11. Task event rates vs. machine concurrency and final task termination

13

(e) Cluster E (f) Cluster F (g) Cluster G (h) Cluster H

Figure 12. Job event rates vs. job size and final job termination

(a) Cluster A (b) Cluster B (c) Cluster C (d) Cluster D

s cxcatontime i s et bt cster s cxcatontime s et bt st

o\ . / - S -
AN / >/

| <

TN / - o \\

(e) Cluster E (f) Cluster F (g) Cluster G (h) Cluster H

Figure 13. Job event rates vs. event execution time and final job termination

* The behaviour of curves for 7a (priority) is almost the opposite of 2011, i.e. in-between priorities have higher
kill rates while priorities at the extremum have lower kill rates. This could also be due bt the inherent distri-
bution of job terminations;

* Event execution time curves are quite different than 2011, here it seems there is a good correlation between
short task execution times and finish event rates, instead of the U shape curve in 2015 DSN

* In figure[10| cluster behaviour seems quite uniform

* Machine concurrency seems to play little role in the event termination distribution, as for all concurrency
factors the kill rate is at 90%.
5.6 Correlation between task events’ resource metadata and task termination
5.7 Correlation between job events’ metadata and job termination

Refer to figures and
Observations:

¢ Behaviour between cluster varies a lot

14

Machine localty wr job ate (cluster <)

A\

| B
YV \/

/"' /\ /
/ \\/ \ \

\ /
\ /
V

e ZE] e pT) s o 055 ooan [T

(c) Cluster C (d) Cluster D

(g) Cluster G (h) Cluster H
(e) Cluster E (f) Cluster F

Figure 14. Job event rates vs. machine locality and final job termination

* There are no “smooth” gradients in the various curves unlike in the 2011 traces

Killed jobs have higher event rates in general, and overall dominate all event rates measures

* There still seems to be a correlation between short execution job times and successfull final termination, and
likewise for kills and higher job terminations

* Across all clusters, a machine locality factor of 1 seems to lead to the highest success event rate

5.8 Mean number of tasks and event distribution per task type

Refer to figure

Observations:
* The mean number of events per task is an order of magnitude higher than in the 2011 traces
* Generally speaking, the event type with higher mean is the termination event for the task

* The # evts mean is higher than the sum of all other event type means, since it appears there are a lot more
non-termination events in the 2019 traces.

5.9 Mean number of tasks and event distribution per job type

Refer to figure
Observations:

* Again the mean number of tasks is significantly higher than the 2011 traces, indicating a higher complexity of
workloads

* Cluster A has no evicted jobs

¢ The number of events is however lower than the event means in the 2011 traces

5.10 Probability of task successful termination given its unsuccesful events
Refer to figure
Observations:

* Behaviour is very different from cluster to cluster

* There is no easy conclusion, unlike in 2011, on the correlation between succesful probability and # of events
of a specific type.

15

Task termination

Evts. 95% p.tile

Evts. mean

EVICT Evts. mean

FAIL Evts. mean

FINISH Evts. mean

KILL Evts. mean

LOST Evts. mean

KILL

FINISH

FAIL

LOST

EVICT

No termination

58.0

27.395925
12.405370
50.039556
8.847145
428.550689
14.818523

2.349579
0.019321
0.287778
0.083348
73.693595
0.000000

0.213859
0.003779
11.061864
0.001821
0.768553
0.000000

0.003412
2.153432
0.002098
0.384190
0.000179
0.000000

3.395996
0.008150
0.467656
1.329910
28.766164
0.000000

0.089576
0.008989
0.053144
1.007933
0.845501
0.000000

(a) Cluster A

Task termination

Evts. 95% p.tile

Evts. mean

EVICT Evts. mean

FAIL Evts. mean

FINISH Evts. mean

KILL Evts. mean

LOST Evts. mean

KILL

FINISH

FAIL

LOST

EVICT

No termination

60.0
20.0
260.0
14.0
1578.0
32.0

40.901041
17.277596
86.772419
25.690455
345.705559
13.018130

3.351496
0.020444
0.518061
0.257231
64.816518
0.000000

0.276305
0.020628
19.656798
0.007420
0.240214
0.000000

0.003656
2.942579
0.000560
1.928351
0.000000
0.000000

5.541079
0.011640
0.675392
3.515436
17.961539
0.000000

0.033457
0.016278
0.088523
2.015153
1.028401
0.000000

(b) Cluster B

Task termination

Evts. 95% p.tile

Evts. mean

EVICT Evts. mean

FAIL Evts. mean

FINISH Evts. mean

KILL Evts. mean

LOST Evts. mean

KILL

FINISH

FAIL

LOST

EVICT

No termination

32.0
18.0
156.0
28.0
1748.0
96.0

24.230887
15.242628
187.030894
22.385446
404.108669
21.315166

1.533237
0.017929
0.772823
0.411365
73.715527
0.000000

0.116082
0.012701
48.445773
0.007569
1.812816
0.000000

0.003994
2.470654
2.035378
1.412201
0.000166
0.000000

3.799111
0.006020
0.756015
2.751353
22.908022
0.000000

0.013670
0.006414
0.133687
1.998665
0.546198
0.000000

(c) Cluster C

Task termination

Evts. 95% p.tile

Evts. mean

EVICT Evts. mean

FAIL Evts. mean

FINISH Evts. mean

KILL Evts. mean

LOST Evts. mean

KILL

FINISH

FAIL

LOST

EVICT

No termination

32.0
18.0
269.0
20.0
1478.0
103.0

29.953873
23.105615
228.004975
17.065721
323.366130
27.867403

1.960134
0.058651
0.496316
0.014760
62.000510
0.000000

0.150521
0.019051
58.968210
0.003577
0.700268
0.000000

0.002385
3.789050
0.809520
0.079289
0.000373
0.000000

4.682411
0.009785
2.040396
4.636283
14.057514
0.000000

0.016156
0.018699
0.324754
1.999794
0.627592
0.000000

(d) Cluster D

Task termination

Evts. 95% p.tile

Evts. mean

EVICT Evts. mean

FAIL Evts. mean

FINISH Evts. mean

KILL Evts. mean

LOST Evts. mean

KILL

FINISH

FAIL

LOST

EVICT

No termination

258.0
14.0
138.0
14.0
310.0
34.0

55.877475
11.976806
450.526937
11.899908
84.645189
7.349165

1.287917
0.013879
0.457703
0.000000
11.780754
0.000000

0.056909
0.008435
111.471047
0.000000
0.106119
0.000000

0.000185
1.998677
0.000000
0.033976
0.000090
0.000000

12.159880
0.008241
0.455705
3.131007
5.790960
0.000000

0.054997
0.026641
0.187991
1.792164
0.654955
0.000000

(e) Cluster E

Task termination

Evts. 95% p.tile

Evts. mean

EVICT Evts. mean

FAIL Evts. mean

FINISH Evts. mean

KILL Evts. mean

LOST Evts. mean

KILL

FINISH

FAIL

LOST

EVICT

No termination

162.0
20.0
220.0
36.0
510.0
24.0

45.039557
19.899709
164.043073
25.002219
302.262347
7.784905

0.384065
0.019381
0.279352
0.011815
23.973621
0.000000

0.098430
0.003510
39.257407
0.000909
0.192394
0.000000

0.001178
3.007839
0.000023
0.149586
0.000094
0.000000

9.804287
0.097934
1.549795
7.283534
45.979997
0.000000

0.037783
0.023707
0.203997
2.000428
0.374789
0.000000

() Cluster F

Task termination

Evts. 95% p.tile

Evts. mean

EVICT Evts. mean

FAIL Evts. mean

FINISH Evts. mean

KILL Evts. mean

LOST Evts. mean

KILL

FINISH

FAIL

LOST

EVICT

No termination

641.00
18.00
40.00

4602.25
2015.00
30.00

130.054143
105.240418
40.121553
576.384120
555.574743
9.503553

6.909204
0.015228
0.016111
1.931330
77.429054
0.000000

0.135073
0.001655
8.592728
0.360515
0.303127
0.000000

0.000033
14.153775
0.000000
48.094421
0.000000
0.000000

25.275769
0.004879
0.338883

35.596567

58.299330
0.000000

0.131106
0.158300
0.011310
3.534335
0.653819
0.000000

(g) Cluster G

Task termination

Evts. 95% p.tile

Evts. mean

EVICT Evts. mean

FAIL Evts. mean

FINISH Evts. mean

KILL Evts. mean

LOST Evts. mean

KILL

FINISH

FAIL

LOST

EVICT

No termination

388.0
22.0
487.0
386.4
206.0
18.0

74.425542
23.978294
170.153701
94.666667
75.658064
8.123506

0.633338
0.023700
0.600483
1.493333
6.732544
0.000000

0.169666
0.014129
37.599942
2.400000
0.837154
0.000000

0.000231
3.632529
0.000000
0.573333
0.000000
0.000000

17.172624
0.011111
2.866647

14.040000
7.164722
0.000000

0.062799
0.028482
0.343806
3.480000
0.421745
0.000000

(h) Cluster H

Figure 15. Mean number of tasks and event distribution per task type

16

Job termination

Tasks mean

Tasks 95% p.tile

EVICT Evts. mean

FAIL Evts. mean

FINISH Evts. mean

KILL Evts. mean

LOST Evts. mean

No termination
EVICT

FAIL

FINISH

KILL

LOST

92.359436
-1.000000
90.792728
1.187092
16.533171
223.206593

174.3

23.263951
NaN
0.694942
0.004696
1.045419
0.000000

3.454474

NaN
0.683556
0.001341
0.073867
0.000000

23.047597
NaN
0.085957
1.072623
0.461387
0.000000

34.565608
NaN
1.849587
0.024396
1.188720
1.034082

0.707709

NaN
0.009730
0.000952
0.044610
0.974598

(a) Cluster A

Job termination

Tasks mean

Tasks 95% p.tile

EVICT Evts. mean

FAIL Evts. mean

FINISH Evts. mean

KILL Evts. mean

LOST Evts. mean

No termination
EVICT

FAIL

FINISH

KILL

LOST

112.422759
1.000000
74.367804
6.304299
69.853370
320.020202

169.8
1.0
374.0
10.0
234.0
459.8

34.681161
1.000000
2.003355
0.022380
1.696449
0.000000

0.711242
0.000000
1.993765
0.008476
0.157833
0.000000

13.379533
0.000000
0.266584
2.349304
0.613748
0.000000

38.794188
0.000000
4.944145
0.012729
3.008678
2.959946

0.780483
0.000000
0.034526
0.006484
0.012092
1.996875

(b) Cluster B

Job termination

Tasks mean

Tasks 95% p.tile

EVICT Evts. mean

FAIL Evts. mean

FINISH Evts. mean

KILL Evts. mean

LOST Evts. mean

No termination
EVICT

FAIL

FINISH

KILL

LOST

96.399561
1.000000
41.982301
1.991485
110.680808
38.870091

100.0

55.276973
1.000829
3.483606
0.021806
0.627334
0.000031

7.552906
0.000000
0.997592
0.016914
0.059076
0.000311

23.848867
0.000000
0.376438
1.565034
0.656426
0.000000

41.578669
0.000415
3.998369
0.017401
2.266794
2.620721

0.664107
0.000000
0.046439
0.001803
0.006258
1.833872

(c) Cluster C

Job termination

Tasks mean

Tasks 95% p.tile

EVICT Evts. mean

FAIL Evts. mean

FINISH Evts. mean

KILL Evts. mean

LOST Evts. mean

No termination
EVICT

FAIL

FINISH

KILL

LOST

103.889987
1.000000
43.355682
2.109260
89.647948
271.441748

120.00
1.00
250.00
2.00
283.00
2620.75

41.421532
1.000000
6.111993
0.268375
1.013114
0.000000

7.604808
0.000000
0.948602
0.012614
0.054374
0.000000

18.179476
0.000000
0.531390
1.723392
0.283313
0.000000

47.603502
0.000000
6.497784
0.018567
3.255675
5.938069

0.661826
0.000000
0.041077
0.005052
0.006664
1.647084

(d) Cluster D

Job termination

Tasks mean

Tasks 95% p.tile

EVICT Evts. mean

FAIL Evts. mean

FINISH Evts. mean

KILL Evts. mean

LOST Evts. mean

No termination
EVICT

FAIL

FINISH

KILL

LOST

350.929407
1.000000
23.081125
7.776085
88.790215
5.374150

596.0
1.0
25.0
2.0
309.0
5.0

7.204391
1.000000
0.246529
0.018677
0.706293
0.000000

2.074423
0.000000
0.665546
0.029073
0.028618
0.000000

0.126290
0.000000
0.716720
1.934488
0.461084
0.000000

46.646065
0.000000
1.588119
0.020929
7.572301
3.234494

0.378274
0.000000
0.066467
0.064920
0.029122
1.813924

(e) Cluster E

Job termination

Tasks mean

Tasks 95% p.tile

EVICT Evts. mean

FAIL Evts. mean

FINISH Evts. mean

KILL Evts. mean

LOST Evts. mean

No termination
EVICT

FAIL

FINISH

KILL

LOST

217.718640
1.000000
17.161251
2.940843
103.888843
3736.500000

18823.4

4.304676
1.000000
0.621327
0.014704
0.182630
0.001491

1.315021
0.000000
0.546356
0.051014
0.063914
0.000038

4.971122
0.000000
0.426265
1.669860
0.416684
0.000000

48.118465
0.000000
7.559244
0.162042
5.824311
6.298140

0.464429
0.000000
0.034773
0.002623
0.014161
1.429604

(f) Cluster F

Job termination

Tasks mean

Tasks 95% p.tile

EVICT Evts. mean

FAIL Evts. mean

FINISH Evts. mean

KILL Evts. mean

LOST Evts. mean

No termination
EVICT

FAIL

FINISH

KILL

LOST

342.090034
1.000000
51.834803
8.519166
37.054914
190.500000

599.10
1.00
250.00
36.00
100.00
358.35

14.184405
1.000000
0.555532
0.001733
5.687172
0.000000

0.626186
0.000000
3.334848
0.629809
0.064640
0.000000

23.836017
0.000000
0.607560
1.759677
0.080370
0.000000

46.002917
0.000000
20.351992
0.005452
19.166260
1.994751

0.735801
0.000000
0.176242
0.004575
0.059132
1.994751

(g) Cluster G

Job termination

Tasks mean

Tasks 95% p.tile

EVICT Evts. mean

FAIL Evts. mean

FINISH Evts. mean

KILL Evts. mean

LOST Evts. mean

No termination
EVICT

FAIL

FINISH

KILL

LOST

321.133053
1.000000
20.504293
4.278193
11.022705
3.400000

546.9
1.0
1.0

14.0
3.0
10.6

3.470078
1.000000
0.114090
0.005406
0.235500
0.000000

0.907801
0.000000
2.300036
0.152814
0.102899
0.000000

3.316902
0.000000
0.980635
1.778038
0.287701
0.000000

44.535824
0.000000
12.833466
0.013567
11.336956
0.235294

0.315120
0.000000
0.046833
0.012663
0.031148
1.705882

(h) Cluster H

Figure 16. Mean number of tasks and event distribution per job type

17

06

04

08

00

02

06

04

Cluster A Cluster B
— e 1o e
Y Y
—ry —ry
— lost
os
0
0
0
a0
) 7 ® 3 » £3 £l £3 % r ERY) 7 ® 3 » £ £3 £3 r ko
(a) Cluster A (b) Cluster B
Cluster C Cluster D
10 — e
-
—ry
—
os
0
0
02
00
7 7 b3 = » % » ES @ = E S 7 7 b3 = » % » ES = E S
(c) Cluster C (d) Cluster D
Cluster E Cluster F
— e 10 — e
— —y
- -
— —
o
o
0s
0
. /Z\
B 7 b3 = » % % ES % = E S 7 7 b3 = » % » ES = E S
(e) Cluster E (f) Cluster F
Cluster G Cluster H
— EVICT 10 — EVICT
Y Y
—ry —
— —
0s
0
|
‘ ’ 0s
‘ v /\ A “
;‘AAA A o
) 7 ® 3 » % £l £3 % 3 E=Y) 7 ® p3 » % £l £3 3 E=Y

(g) Cluster G

Figure 17. Conditional probability of task success given a number of specific unsuccesful events observed, i.e. eviction, fail, kill

or lost.

18

(h) Cluster H

* Clusters B, C and D in particular have very unsmooth lines that vary a lot for small # evts differences. This
may be due to an uneven distribution of # evts in the traces.

5.11 Potential causes of unsuccesful executions

TBD

6 Implementation issues — Analysis limitations

6.1 Discussion on unknown fields

TBD

6.2 Limitation on computation resources required for the analysis

TBD

6.3 Other limitations ...
TBD

7 Conclusions and future work or possible developments

TBD

19

	Introduction (including Motivation)
	State of the Art
	Introduction
	Rosà et al. 2015 DSN paper
	Google Borg
	Traces contents
	Overview of traces' format
	Remark on traces size

	Project requirements and analysis
	Analysis methodology
	Introduction on Apache Spark
	Query architecture
	Overview
	Parsing table files
	The queries

	Query script design
	The ``task slowdown'' query script

	Ad-Hoc presentation of some analysis scripts

	Analysis and observations
	Overview of machine configurations in each cluster
	Analysis of execution time per each execution phase
	Task slowdown
	Reserved and actual resource usage of tasks
	Correlation between task events' metadata and task termination
	Correlation between task events' resource metadata and task termination
	Correlation between job events' metadata and job termination
	Mean number of tasks and event distribution per task type
	Mean number of tasks and event distribution per job type
	Probability of task successful termination given its unsuccesful events
	Potential causes of unsuccesful executions

	Implementation issues – Analysis limitations
	Discussion on unknown fields
	Limitation on computation resources required for the analysis
	Other limitations …

	Conclusions and future work or possible developments

