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1 Introduction

In today’s world there is an ever growing demand for efficient, large scale computations. The rising trend of “big
data” put the need for efficient management of large scaled parallelized computing at an all time high. This fact also
increases the demand for research in the field of distributed systems, in particular in how to schedule computations
effectively, avoid wasting resources and avoid failures.

In 2011 Google released a month long data trace of its own Borg cluster management system, containing a lot of data
regarding scheduling, priority management, and failures of a real production workload. This data was the foundation
of the 2015 Rosa et al. paper Understanding the Dark Side of Big Data Clusters: An Analysis beyond Failures, which
in its many conclusions highlighted the need for better cluster management highlighting the high amount of failures
found in the traces.

In 2019 Google released an updated version of the Borg cluster traces, not only containing data from a far bigger
workload due to the sheer power of Moore’s law, but also providing data from 8 different Borg cells from datacenters
all over the world. These new traces are therefore about 100 times larger than the old traces, weighing in terms
of storage spaces approximately 8TiB (when compressed and stored in JSONL format), requiring considerable com-
putational power to analyze them and the implementation of special data engineering tecniques for analysis of the
data.

This project aims to repeat the analysis performed in 2015 to highlight similarities and differences in workload this
decade brought, and expanding the old analysis to understand even better the causes of failures and how to prevent
them. Additionally, this report will provide an overview on the data engineering tecniques used to perform the queries
and analyses on the 2019 traces.

2 State of the Art

2.1 Introduction

TBD

2.2 Rosa et al. 2015 DSN paper

In 2015, Dr. Andrea Rosa, Lydia Y. Chen, Prof. Walter Binder published a research paper titled “Understanding the
Dark Side of Big Data Clusters: An Analysis beyond Failures” performing several analysis on Google’s 2011 Borg clus-
ter traces. The salient conclusion of that research is that lots of computation performed by Google would eventually
fail, leading to large amounts of computational power being wasted.

Our aim with this thesis is to repeat the analysis performed in 2015 on the new 2019 dataset to find similarities
and differences with the previous analysis, and ulimately find if computational power is indeed wasted in this new
workload as well.

2.3 Google Borg

Borg is Google’s own cluster management software. Among the various cluster management services it provides, the
main ones are: job queuing, scheduling, allocation, and deallocation due to higher priority computations.

The data this thesis is based on is from 8 Borg “cells” (i.e. clusters) spanning 8 different datacenters, all focused on
“compute” (i.e. computational oriented) workloads. The data collection timespan matches the entire month of May
2019.

In Google’s lingo a “job” is a large unit of computational workload made up of several “tasks”, i.e. a number of
executions of single executables running on a single machine. A job may run tasks sequentially or in parallel, and
the condition for a job’s succesful termination is nontrivial.

Both tasks and jobs lifecyles are represented by several events, which are encoded and stored in the trace as rows of
various tables. Among the information events provide, the field “type” provides information on the execution status
of the job or task. This field can have the following values:



Type code Description

QUEUE The job or task was marked not eligible for scheduling by Borg’s scheduler, and
thus Borg will move the job/task in a long wait queue

SUBMIT The job or task was submitted to Borg for execution

ENABLE The job or task became eligible for scheduling

SCHEDULE The job or task’s execution started

EVICT The job or task was terminated in order to free computational resources for an
higher priority job

FAIL The job or task terminated its execution unsuccesfully due to a failure

FINISH The job or task terminated succesfully

KILL The job or task terminated its execution because of a manual request to stop it

LOST It is assumed a job or task is has been terminated, but due to missing data there is
insufficent information to identify when or how

UPDATE_PENDING The metadata (scheduling class, resource requirements, ...) of the job/task was
updated while the job was waiting to be scheduled

UPDATE_RUNNING The metadata (scheduling class, resource requirements, ...) of the job/task was

updated while the job was in execution

Figure [1| shows the expected transitions between event types.
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Figure 1. Typical transitions between task/job event types according to Google

2.4 Traces contents

The traces provided by Google contain mainly a collection of job and task events spanning a month of execution of
the 8 different clusters. In addition to this data, some additional data on the machines’ configuration in terms of
resources (i.e. amount of CPU and RAM) and additional machine-related metadata.

Due to Google’s policy, most identification related data (like job/task IDs, raw resource amounts and other text
values) were obfuscated prior to the release of the traces. One obfuscation that is noteworthy in the scope of this
thesis is related to CPU and RAM amounts, which are expressed respetively in NCUs (Normalized Compute Units) and
NMUs (Normalized Memory Units).

NCUs and NMUs are defined based on the raw machine resource distributions of the machines within the 8 clusters.
A machine having 1 NCU CPU power and 1 NMU memory size has the maximum amount of raw CPU power and raw
RAM size found in the clusters. While RAM size is measured in bytes for normalization purposes, CPU power was
measured in GCU (Google Compute Units), a proprietary CPU power measurement unit used by Google that combines
several parameters like number of processors and cores, clock frequency, and architecture (i.e. ISA).



2.5 Overview of traces’ format

The traces have a collective size of approximately 8TiB and are stored in a Gzip-compressed JSONL (JSON lines)
format, which means that each table is represented by a single logical “file” (stored in several file segments) where
each carriage return separated line represents a single record for that table.

There are namely 5 different table “files”:

machine_configs, which is a table containing each physical machine’s configuration and its evolution over time;
instance_events, which is a table of task events;

collection_events, which is a table of job events;

machine_attributes, which is a table containing (obfuscated) metadata about each physical machine and its evo-
lution over time;

instance_usage, which contains resource (CPU/RAM) measures of jobs and tasks running on the single machines.

The scope of this thesis focuses on the tables machine_configs, instance_events and collection_events.

2.6 Remark on traces size

While the 2011 Google Borg traces were relatively small, with a total size in the order of the tens of gigabytes, the
2019 traces are quite challenging to analyze due to their sheer size. As stated before, the traces have a total size of 8
TiB when stored in the format provided by Google. Even when broken down to table “files”, unitary sizes still reach
the single tebibyte mark (namely for machine_configs, the largest table in the trace).

Due to this constraints, a careful data engineering based approach was used when reproducing the 2015 DSN paper
analysis. Bleeding edge data science technologies like Apache Spark were used to achieve efficient and parallelized
computations. This approach is discussed with further detail in the following section.

3 Project requirements and analysis

TBD (describe our objective with this analysis in detail)

4 Analysis methodology

Due to the inherent complexity in analyzing traces of this size, novel bleeding-edge data engineering tecniques were
adopted to performed the required computations. We used the framework Apache Spark to perform efficient and
parallel Map-Reduce computations. In this section, we discuss the technical details behind our approach.

4.1 Introduction on Apache Spark

Apache Spark is a unified analytics engine for large-scale data processing. In layman’s terms, Spark is really useful
to parallelize computations in a fast and streamlined way.

In the scope of this thesis, Spark was used essentially as a Map-Reduce framework for computing aggregated results
on the various tables. Due to the sharded nature of table “files”, Spark is able to spawn a thread per file and run
computations using all processors on the server machines used to run the analysis.

Spark is also quite powerful since it provides automated thread pooling services, and it is able to efficiently store and
cache intermediate computation on secondary storage without any additional effort required from the data engineer.
This feature was especially useful due to the sheer size of the analyzed data, since the computations required to store
up to 1TiB of intermediate data on disk.

The chosen programming language for writing analysis scripts was Python. Spark has very powerful native Python
bindings in the form of the PySpark API, which were used to implement the various queries.

4.2 Query architecture
4.2.1 Overview

In general, each query written to execute the analysis follows a general Map-Reduce template.



Traces are first read, then parsed, and then filtered by performing selections, projections and computing new derived
fields. After this preparation phase, the trace records are often passed through a groupby() operation, which by
choosing one or many record fields sorts all the records into several “bins” containing records with matching values
for the selected fields. Then, a map operation is applied to each bin in order to derive some aggregated property
value for each grouping. Finally, a reduce operation is applied to either further aggregate those computed properties
or to generate an aggregated data structure for storage purposes.

4.2.2 Parsing table files

As stated before, table “files” are composed of several Gzip-compressed shards of JSONL record data. The specification
for the types and constraints of each record is outlined by Google in the form of a protobuffer specification file found
in the trace release packageﬂ This file was used as the oracle specification and was a critical reference for writing
the query code that checks, parses and carefully sanitizes the various JSONL records prior to actual computations.

The JSONL encoding of traces records is often performed with non-trivial rules that required careful attention. One
of these involved fields that have a logically-wise “zero” value (i.e. values like “0” or the empty string). For these
values the key-value pair in the JSON object is outright omitted. When reading the traces in Apache Spark is therefore
necessary to check for this possibility and insert back the omitted record attributes.

4.2.3 The queries

Most queries use only two or three fields in each trace records, while the original table records often are made of
a couple of dozen fields. In order to save memory during the query, a projection is often applied to the data by the
means of a .map () operation over the entire trace set, performed using Spark’s RDD API.

Another operation that is often necessary to perform prior to the Map-Reduce core of each query is a record filtering
process, which is often motivated by the presence of incomplete data (i.e. records which contain fields whose values
is unknown). This filtering is performed using the . filter() operation of Spark’s RDD API.

The core of each query is often a groupby () followed by a map () operation on the aggregated data. The groupby ()
groups the set of all records into several subsets of records each having something in common. Then, each of this
small clusters is reduced with a map() operation to a single record. The motivation behind this way of computing
data is that for the analysis in this thesis it is often necessary to analyze the behaviour w.r.t. time of either task or
jobs by looking at their events. These queries are therefore implemented by groupby ()-ing records by task or job,
and then map ()-ing each set of event records sorting them by time and performing the desired computation on the
obtained chronological event log.

Sometimes intermediate results are saved in Spark’s parquet format in order to compute and save intermediate results
beforehand.

4.3 Query script design

In this section we aim to show the general complexity behind the implementations of query scripts by explaining in
detail some sampled scripts to better appreciate their behaviour.

4.3.1 The “task slowdown” query script

One example of analysis script with average complexity and a pretty straightforward structure is the pair of scripts
task_slowdown.py and task_slowdown_table.py used to compute the “task slowdown” tables (namely the tables
in figure[6).

“Slowdown” is a task-wise measure of wasted execution time for tasks with a FINISH termination type. It is computed

as the total execution time of the task divided by the execution time actually needed to complete the task (i.e. the
total time of the last execution attempt, successful by definition).

The analysis requires to compute the mean task slowdown for each task priority value, and additionally compute the
percentage of tasks with successful terminations per priority. The query therefore needs to compute the execution
time of each execution attempt for each task, determine if each task has successful termination or not, and finally
combine this data to compute slowdown, mean slowdown and ultimately the final table found in figure [6]

Figure [2| shows a schematic representation of the query structure.

LGoogle 2019 Borg traces Protobuffer specification on Github


https://github.com/google/cluster-data/blob/master/clusterdata_trace_format_v3.proto

task_slowdown.py
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Figure 2. Diagram of the script used for the “task slowdown” query.

The query first starts reading the instance_events table, which contains (among other data) all task event logs
containing properties, event types and timestamps. As already explained in the previous section, the logical table file
is actually stored as several Gzip-compressed JSONL shards. This is very useful for processing purposes, since Spark
is able to parse and load in memory each shard in parallel, i.e. using all processing cores on the server used to run
the queries.

After loading the data, a selection and a projection operation are performed in the preparation phase so as to “clean
up” the records and fields that are not needed, leaving only useful information to feed in the “group by” phase. In
this query, the selection phase removes all records that do not represent task events or that contain an unknown task
ID or a null event timestamp. In the 2019 traces it is quite common to find incomplete records, since the log process
is unable to capture the sheer amount of events generated by all jobs in a exact and deterministic fashion.

Then, after the preparation stage is complete, the task event records are grouped in several bins, one per task ID.
Performing this operation the collection of unsorted task event types is rearranged to form groups of task events all
relating to a single task.

These obtained collections of task events are then sorted by timestamp and processed to compute intermediate data
relating to execution attempt times and task termination counts. After the task events are sorted, the script iterates
over the events in chronological order, storing each execution attempt time and registering all execution termination
types by checking the event type field. The task termination is then equal to the last execution termination type,
following the definition originally given in the 2015 Ros4 et al. DSN paper.

If the task termination is determined to be unsuccessful, the tally counter of task terminations for the matching task
property is increased. Otherwise, all the task termination attempt time deltas are returned. Tallies and time deltas
are saved in an intermediate time file for fine-grained processing.

Finally, the task_slowdown_table.py processes this intermediate results to compute the percentage of successful
tasks per execution and computing slowdown values given the previously computed execution attempt time deltas.
Finally, the mean of the computed slowdown values is computed resulting in the clear and coincise tables found in

figure[6]

4.4 Ad-Hoc presentation of some analysis scripts

TBD (with diagrams)



5 Analysis and observations

5.1 Overview of machine configurations in each cluster

Refer to figure
Observations:
* machine configurations are definitely more varied than the ones in the 2011 traces

* some clusters have more machine variability

5.2 Analysis of execution time per each execution phase

Refer to figures[4and
Observations:

* Across all cluster almost 50% of time is spent in “unknown” transitions, i.e. there are some time slices that are
related to a state transition that Google says are not “typical” transitions. This is mostly due to the trace log
being intermittent when recording all state transitions.

* 80% of the time spent in KILL and LOST is unknown. This is predictable, since both states indicate that the job
execution is not stable (in particular LOST is used when the state logging itself is unstable)

* From the absolute graph we see that the time “wasted” on non-finish terminated jobs is very significant
* Execution is the most significant task phase, followed by queuing time and scheduling time (“ready” state)

* In the absolute graph we see that a significant amount of time is spent to re-schedule evicted jobs (“evicted”
state)

* Cluster A has unusually high queuing times

5.3 Task slowdown

Refer to figure[f]
Observations:
* Priority values are different from 0-11 values in the 2011 traces. A conversion table is provided by Google;

* For some priorities (e.g. 101 for cluster D) the relative number of finishing task is very low and the mean
slowdown is very high (315). This behaviour differs from the relatively homogeneous values from the 2011
traces.

* Some slowdown values cannot be computed since either some tasks have a Ons execution time or for some
priorities no tasks in the traces terminate successfully. More raw data on those exception is in Jupyter.

* The % of finishing jobs is relatively low comparing with the 2011 traces.

5.4 Reserved and actual resource usage of tasks
Refer to figures[7]and
Observations:
* Most (mesasured and requested) resources are used by killed job, even more than in the 2011 traces.

* Behaviour is rather homogeneous across datacenters, with the exception of cluster G where a lot of LOST-
terminated tasks acquired 70% of both CPU and RAM

5.5 Correlation between task events’ metadata and task termination

Refer to figures[9} [10] and

Observations:

* No smooth curves in this figure either, unlike 2011 traces
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0.708984  0.666992 29594 5.557454% 1.000000  0.500000 13440 15.842705%  0.591797  0.333496 16184 31.982926%
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0.479492  0.250000 12 0.002253%
0.708984  0.250000 6 0.001127%
0.591797  0.250000 4 0.000751%
0.708984  0.500000 2 0.000376%
0.479492  0.500000 2 0.000376%
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(g) Cluster F

(h) Cluster G

(i) Cluster H

Figure 3. Overview of machine configurations in terms of CPU and RAM resources for each cluster
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Figure 4. Total task time (in milliseconds) spent in each execution phase w.r.t. task termination.
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Figure 5. Relative task time (in milliseconds) spent in each execution phase w.r.t. task termination.
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Figure 6. Mean task slowdown for each cluster and each task priority
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Figure 7. Relative usage of CPU and RAM resources w.r.t. final task termination.
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Figure 8. Relative request of CPU and RAM resources prior to tasks’ execution w.r.t. final task termination.
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Figure 9. Task event rates vs. task priority and final task termination
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Figure 10. Task event rates vs. event execution time and final task termination
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Figure 11. Task event rates vs. machine concurrency and final task termination
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Figure 12. Job event rates vs. job size and final job termination
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Figure 13. Job event rates vs. event execution time and final job termination

* The behaviour of curves for 7a (priority) is almost the opposite of 2011, i.e. in-between priorities have higher
kill rates while priorities at the extremum have lower kill rates. This could also be due bt the inherent distri-
bution of job terminations;

* Event execution time curves are quite different than 2011, here it seems there is a good correlation between
short task execution times and finish event rates, instead of the U shape curve in 2015 DSN

* In figure[10| cluster behaviour seems quite uniform

* Machine concurrency seems to play little role in the event termination distribution, as for all concurrency
factors the kill rate is at 90%.
5.6 Correlation between task events’ resource metadata and task termination
5.7 Correlation between job events’ metadata and job termination

Refer to figures and
Observations:

¢ Behaviour between cluster varies a lot
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Figure 14. Job event rates vs. machine locality and final job termination

* There are no “smooth” gradients in the various curves unlike in the 2011 traces

Killed jobs have higher event rates in general, and overall dominate all event rates measures

* There still seems to be a correlation between short execution job times and successfull final termination, and
likewise for kills and higher job terminations

* Across all clusters, a machine locality factor of 1 seems to lead to the highest success event rate

5.8 Mean number of tasks and event distribution per task type

Refer to figure

Observations:
* The mean number of events per task is an order of magnitude higher than in the 2011 traces
* Generally speaking, the event type with higher mean is the termination event for the task

* The # evts mean is higher than the sum of all other event type means, since it appears there are a lot more
non-termination events in the 2019 traces.

5.9 Mean number of tasks and event distribution per job type

Refer to figure
Observations:

* Again the mean number of tasks is significantly higher than the 2011 traces, indicating a higher complexity of
workloads

* Cluster A has no evicted jobs

¢ The number of events is however lower than the event means in the 2011 traces

5.10 Probability of task successful termination given its unsuccesful events
Refer to figure
Observations:

* Behaviour is very different from cluster to cluster

* There is no easy conclusion, unlike in 2011, on the correlation between succesful probability and # of events
of a specific type.
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Figure 15. Mean number of tasks and event distribution per task type
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(h) Cluster H

Figure 16. Mean number of tasks and event distribution per job type
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Figure 17. Conditional probability of task success given a number of specific unsuccesful events observed, i.e. eviction, fail, kill

or lost.
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(h) Cluster H




* Clusters B, C and D in particular have very unsmooth lines that vary a lot for small # evts differences. This
may be due to an uneven distribution of # evts in the traces.

5.11 Potential causes of unsuccesful executions

TBD

6 Implementation issues — Analysis limitations

6.1 Discussion on unknown fields

TBD

6.2 Limitation on computation resources required for the analysis

TBD

6.3 Other limitations ...
TBD

7 Conclusions and future work or possible developments

TBD
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