

Faculty of Informatics

May 15, 2021

Understanding and Comparing Unsuccessful Executions in Large Datacenters

Claudio Maggioni

Abstract

The project aims at comparing two different traces coming from large datacenters, focusing in particular on unsuccessful executions of jobs and tasks submitted by users. The objective of this project is to compare the resource waste caused by unsuccessful executions, their impact on application performance, and their root causes. We will show the strong negative impact on CPU and RAM usage and on task slowdown. We will analyze patterns of unsuccessful jobs and tasks, particularly focusing on their interdependency. Moreover, we will uncover their root causes by inspecting key workload and system attributes such asmachine locality and concurrency level.

Advisor Prof. Walter Binder Assistant Dr. Andrea Rosá

Advisor's approval (Prof. Walter Binder):

Introduction (including Motivation)

State of the Art

- Introduce Ros'a 2015 DSN paper on analysis
- Describe Google Borg clusters
- Describe Traces contents
- Differences between 2011 and 2019 traces

Project requirements and analysis

(describe our objective with this analysis in detail)

Analysis methodology

Technical overview of traces' file format and schema

Overview on challenging aspects of analysis (data size, schema, available computation resources)

Introduction on apache spark

General workflow description of apache spark workflow

The Google 2019 Borg cluster traces analysis were conducted by using Apache Spark and its Python 3 API (pyspark). Spark was used to execute a series of queries to perform various sums and aggregations over the entire dataset provided by Google.

In general, each query follows a general Map-Reduce template, where traces are first read, parsed, filtered by performing selections, projections and computing new derived fields. Then, the trace records are often grouped by one of their fields, clustering related data toghether before a reduce or fold operation is applied to each grouping.

Most input data is in JSONL format and adheres to a schema Google profided in the form of a protobuffer specification¹.

On of the main quirks in the traces is that fields that have a "zero" value (i.e. a value like 0 or the empty string) are often omitted in the JSON object records. When reading the traces in Apache Spark is therefore necessary to check for this possibility and populate those zero fields when omitted.

Most queries use only two or three fields in each trace records, while the original records often are made of a couple of dozen fields. In order to save memory during the query, a projection is often applied to the data by the means of a .map() operation over the entire trace set, performed using Spark's RDD API.

Another operation that is often necessary to perform prior to the Map-Reduce core of each query is a record filtering process, which is often motivated by the presence of incomplete data (i.e. records which contain fields whose values is unknown). This filtering is performed using the .filter() operation of Spark's RDD API.

The core of each query is often a groupBy followed by a map() operation on the aggregated data. The groupby groups the set of all records into several subsets of records each having something in common. Then, each of this small clusters is reduced with a .map() operation to a single record. The motivation behind this computation is often to analyze a time series of several different traces of programs. This is implemented by groupBy()-ing records by program id, and then map()-ing each program trace set by sorting by time the traces and computing the desired property in the form of a record.

Sometimes intermediate results are saved in Spark's parquet format in order to compute and save intermediate results beforehand.

General Query script design

Ad-Hoc presentation of some analysis scripts (w diagrams)

 $^{^1\}mathrm{Google}$ 2019 Borg traces Protobuffer specification on Github

Analysis (w observations)

machine_configs

Refer to figure 1.

Observations:

- machine configurations are definitely more varied than the ones in the 2011 traces
- some clusters have more machine variability

machine_time_waste

Refer to figures 2 and 3.

Observations:

- Across all cluster almost 50% of time is spent in "unknown" transitions, i.e. there are some time slices that are related to a state transition that Google says are not "typical" transitions. This is mostly due to the trace log being intermittent when recording all state transitions.
- 80% of the time spent in KILL and LOST is unknown. This is predictable, since both states indicate that the job execution is not stable (in particular LOST is used when the state logging itself is unstable)
- From the absolute graph we see that the time "wasted" on non-finish terminated jobs is very significant
- Execution is the most significant task phase, followed by queuing time and scheduling time ("ready" state)
- In the absolute graph we see that a significant amount of time is spent to re-schedule evicted jobs ("evicted" state)
- Cluster A has unusually high queuing times

$task_slowdown$

Refer to figure 4

Observations:

- Priority values are different from 0-11 values in the 2011 traces. A conversion table is provided by Google;
- For some priorities (e.g. 101 for cluster D) the relative number of finishing task is very low and the mean slowdown is very high (315). This behaviour differs from the relatively homogeneous values from the 2011 traces.
- Some slowdown values cannot be computed since either some tasks have a Ons execution time or for some priorities no tasks in the traces terminate successfully. More raw data on those exception is in Jupyter.
- The % of finishing jobs is relatively low comparing with the 2011 traces.

spatial_resource_waste

Refer to figures 5 and 6.

Observations:

- Most (mesasured and requested) resources are used by killed job, even more than in the 2011 traces.
- Behaviour is rather homogeneous across data centers, with the exception of cluster G where a lot of LOST-terminated tasks acquired 70% of both CPU and RAM

figure_7

Refer to figures 7, 8, and 9. $\,$

Observations:

- No smooth curves in this figure either, unlike 2011 traces
- The behaviour of curves for 7a (priority) is almost the opposite of 2011, i.e. in-between priorities have higher kill rates while priorities at the extremum have lower kill rates. This could also be due bt the inherent distribution of job terminations;
- Event execution time curves are quite different than 2011, here it seems there is a good correlation between short task execution times and finish event rates, instead of the U shape curve in 2015 DSN

CPU (NCU)	RAM (NMU)	Machine count	% Machines
Unknown	Unknown	8729	1.639218%
1.000000	0.500000	124234	23.329891%
0.591797	0.333496	103013	19.344801%
0.259277	0.166748	78078	14.662260%
0.708984	0.333496	55801	10.478864%
0.386719	0.333496	36237	6.804943%
0.958984	0.500000	31151	5.849843%
0.708984	0.666992	29594	5.557454%
0.386719	0.166748	27011	5.072393%
1.000000	1.000000	12286	2.307187%
0.591797	0.166748	9902	1.859496%
1.000000	0.250000	7550	1.417814%
0.958984	1.000000	3552	0.667030%
0.259277	0.333496	3024	0.567877%
0.591797	0.666992	1000	0.187790%
0.259277	0.083374	634	0.119059%
0.958984	0.250000	600	0.112674%
0.500000	0.062500	54	0.010141%
0.500000	0.250000	34	0.006385%
0.479492	0.250000	12	0.002253%
0.708984	0.250000	6	0.001127%
0.591797	0.250000	4	0.000751%
0.708984	0.500000	2	0.000376%
0.479492	0.500000	2	0.000376%

Unknown 0.591797 Unknown 0.333496 1377 29487 1.623170% 34.758469% Unknown 1.0000000.70898415.842705% 14.728764% 0.500000 13440 0.591797 0.333496 1.000000 12495 $9057 \\ 5265$ 0.386719 0.333496 10 676144% 0.708984 0.386719 0.166748 6.206238% 0.958984 0.708984 0.666992 4608 5.431784%0.7089845.240823% 2.928071% 1.000000 1.000000 4446 1.000000 0.591797 0.166748 0.591797 24840.9589840.9589840.5000001.0000001.347337% 0.770917% 0.386719 0.958984 11436541.000000 $\begin{array}{c} 0.250000 \\ 0.250000 \\ 0.250000 \end{array}$ 366 0.431431% $0.591797 \\ 0.386719$ 0.007073% 0.479492 6 6 0.708984

(b) A cluster

Machine count

498

28394

8402

8020 5806

4380

3924

2548

426

292

4 2

RAM (NMU)

Unknown

0.333496

0.333496

0.1667480.166748

0.666992

0.333496

0.166748

0.333496

0.500000

0.2500000.500000 Machine count

% Machines

% Machines

45.288376%

13.401174%

12.791885% 9.260559%

6.986092%

6.258772%

4.064055%

0.679469%

0.465739%

0.006380% 0.003190%

0.794309%

RAM (NMU)

CPU (NCU)

CPU (NCU)

Unknowr

0.591797

0.386719

0.259277 0.386719

0.708984 0.708984

0.591797

0.259277

1.000000

0.591797 0.708984

(a) All clusters

CPU (NCU) RAM (NMU) % Machines Machine count Unknown 2.274208% Unknowr 1466 0.2592770.166748 1575424.439204% 0.386719 0.333496 11104 17.225652% 0.591797 0.333496 10404 16.139741% $0.958984 \\ 1.000000$ 0.5000000.500000 $6634 \\ 5654$ 10.291334% 8.771059% 0.386719 0.708984 0.166748 3580 5.553660% 0.6669921.0000002900 4.498774% 1.000000 27364.244361% 0.2500001.0000003.307375% 1.188297% 1.000000 21320.958984766 0.7089840.9589840.3334960.250000620 600 0.961807% 0.930781% 0.591797 0.166748 112 0.173746%

(d) Cluster C

(e) Cluster D

(f) Cluster E

CPU (NCU) RAM (NMU) Machine count

134

16184 9790

 $8448 \\ 5502$

3832

2214

2152

816 618

 $500 \\ 412$

(c) Cluster B

RAM (NMU) Machine count

536

38452

11786

8646

7606 5586

 $4470 \\ 1268$

634

324 268

138 54

4

Unknowr

0.333496

0.500000

0.333496

0.500000

0.666992

1.000000

0.166748

 $0.333496 \\ 1.000000$

0.666992

0.166748

Unknown

0.166748

0.333496

0.500000

0.666992 0.500000

 $0.166748 \\ 0.333496$

0.083374

0.333496

0.250000

1.0000000.062500

0.250000

CPU (NCU)

Unknown

0.259277

0.708984

0.958984

0.7089841.000000

0.386719 0.259277

0.259277

0.591797

1.000000

1.0000000.500000

0.500000

% Machines

0.264812%

31.982926%

19.347061%

16.694992%

10.873088%

7.572823%

4.375321%4.252796%

1.612584% 1.221296%

0.988103%

0.814197%

% Machines

0.671915%

48.202377%

14.774608%

10.838389%

9.534674% 7.002457%

5.603470%

1.589530%

0.794765%

0.406158% 0.335957%

0.172993% 0.067693%

0.005014%

				CPU (NCU)	RAM (NMU)	Machine count	% Machines				
				Unknown	Unknown	1566	2.261568%				
CPU (NCU)	RAM (NMU)	Machine count	% Machines	0.259277	0.166748	15852	22.892958%	CPU (NCU)	RAM (NMU)	Machine count	% Machines
Unknown	Unknown	1432	2 299958%	1.000000	0.500000	11808	17.052741%	Unknown	Unknown	1720	2 933251%
1.000000	0.500000	41340	66 396839%	0.708984	0.333496	7968	11.507134%	1 000000	0.500000	36394	61.946178%
0.708984	0.333496	6878	11.046866%	0.591797	0.333496	7830	11.307839%	0.591797	0.333496	4826	8 230158%
0.591797	0.333496	5564	8 936430%	0.386719	0.166748	4690	6.773150%	0.708984	0.333496	3682	6 279205%
0.958984	0.500000	2172	3.488484%	0.708984	0.666992	4258	6.149269%	0.958984	0.500000	2858	4.873973%
0.386719	0.166748	1544	2.479843%	0.958984	0.500000	4196	6.059731%	0.386719	0.333496	2596	4.427163%
0.708984	0.666992	1244	1.998008%	0.386719	0.333496	3864	5.580267%	1.000000	1.000000	2030	3.461919%
1.000000	0.250000	792	1 272044%	0.591797	0.166748	2606	3.763503%	1.000000	0.250000	1892	3 226577%
0.958984	1.000000	536	0.860878%	1.000000	0.250000	2100	3.032754%	0.386719	0.166748	1244	2 121491%
0.386719	0.333496	398	0.639234%	0.259277	0.333496	1330	1.920744%	0.708984	0.666992	766	1.306320%
1.000000	1.000000	344	0.552504%	0.958984	1.000000	778	1.123563%	0.591797	0.666992	500	0.852689%
0.500000	0.250000	18	0.028910%	1.000000	1.000000	378	0.545896%	0.958984	1.000000	200	0.341076%
	000000			0.500000	0.250000	12	0.017330%				0101201070
				0.479492	0.250000	6	0.008665%				
				0.479492	0.500000	2	0.002888%				

(g) Cluster F

(h) Cluster G

(i) Cluster H

Figure 1. Overwiew of machine configurations in terms of CPU and RAM resources for each cluster

Color	Execution phase
Blue	Queued
Orange	Ended
Green	Ready
Red	Running
Violet	Evicted
Brown	Unknown

⁽a) Execution state legend for the graphs

Cluster all: Absolute total time spent per status per "last termination" type

(b) All clusters

Figure 2. Total task time (in milliseconds) spent in each execution phase w.r.t. task termination.

Color	Execution phase
Blue	Queued
Orange	Ended
Green	Ready
Red	Running
Violet	Evicted
Brown	Unknown

⁽a) Execution state legend for the graphs

Cluster all: Relative total time spent per status per "last termination" type

Figure 3. Relative task time (in milliseconds) spent in each execution phase w.r.t. task termination.

Priority	% finished tasks	Mean slowdown	Priority % finished tasks Mean slowdown		Priority	% finished tasks	finished tasks Mean slowdown		% finished tasks	Mean slowdown	
Unknown	10.620113%	1.097556	0	45 193049%	1 176397	0	50.887820%	1 105787	0	26 522800%	1 116002
24	0.000000%		25	0.018094%	133 481864	3	0.000000%	1.100101	5	0.000000%	-
25	0.333054%	82.973285	80	0.000000%		10	0.00000078	_	25	16 293068%	65 676400
100	0.000000%	20 702020	100	0.0000007	_	25	22 468276%	8 191258	100	0.000000%	
101	81.917703%	30.798089	101	66 479321%	433 414195	100	0.000000%	-	101	45 314870%	315 954065
102	14.000678%	1 120570	103	0.106377%	1 645114	101	52 628263%	421 490544	101	0.004540%	1.065721
105	57 678914%	1.130373	105	0.463292%	2.408090	101	0.005336%	2.794339	105	0.051712%	2.897040
107	53 026543%	1.016187	107	0.000000% -		105	0.023521%	1.372291	107	0.000350%	1.551354
114	0.000000%	1.010101	114	0.676897%	1.003422	107	0.000245%	14.708268	114	0.000000%	
115	4.108501%	1.004324	115	4.117647%	5.916852	114	0.022221%	1.011266	115	5.189033%	2.186562
116	13.045304%	1.032749	116	8.316438%	1.109652	115	0.281832%	1.980743	116	0.126154%	1.278510
117	0.000000%	_	117	0.000000%	_	116	0.013836%	1.022119	117	85.714286%	1.000000
118	11.907081%	1.003494	118	0.311290%	1.000000	117	93.165468%	1.000000	118	0.054055%	2.048749
119	21.264583%	1.504923	119	0.195997%	2.555160	118	0.004137%	1.100009	119	0.441844%	3.020486
170	0.00000%	-	170	0.000000%	_	119	2.215917%	2.044049	197	0.00000%	_
200	27.211754%	4.116760	199	0.000000%	-	170	0.000000%	_	199	0.000000%	-
205	0.00000%	-	200	30.916717%	9.707524	200	3.606796%	4.139724	200	6.528759%	5.514350
210	0.00000%	-	205	0.000000%	_	205	0.000000%	_	205	0.00000%	_
214	0.00000%	_	210	0.000000%	_	210	0.000000%	-	210	0.000000%	-
215	0.00000%	_	214	0.000000%	-	214	0.000000%	-	214	0.000000%	-
360	0.616372%	2.924018	215	0.000000%	_	215	0.000000%	_	215	0.000000%	_
400	0.00000%	_	360	3 502999%	1 612147	360	4 367418%	2.061085	360	1 594977%	2 476706
450	2.203423%	1.142450	450	0.612913%	1.057515	450	1.512578%	1.066014	450	0.611145%	1 330248
500	0.00000%	-		0.012010/0	1.001010		1.012010/0	1.000011	100	0.01111070	1.000210
(a) Cluster A				(3) 014000			(0) 014500			(a) eraster	
Priority	% finished tasks	Mean slowdown									
0	42.805214%	1.439544							D :	(7 C 1 1 1 1	N 1 1
25	5.344531%	2.676136	Priority	% finished tasks	Mean slowdown	Priority	% finished tasks	Mean slowdown	Priority	% finished tasks	Mean slowdown
100	0.000000%	1 100505	0	45.208221%	1.088162	0	33.612201%	1.138988	0	27.744380%	1.122458
101	0.015918%	1.122507	25	0.647505%	2.230960	25	0.233338%	8.692558	19	0.000000%	-
103	0.021660%	3.163046	100	0.00000%	-	50	0.00000%	-	25	1.042767%	3.064188
105	0.404803%	14.750313	101	40.296631%	323.858714	100	0.00000%	-	101	100.00000%	76.438090
107	0.000000%	-	103	0.058418%	1.167347	101	96.470338%	19.378523	103	0.481256%	1.262067
114	0.000000%	1 000000	105	0.222372%	1.550453	103	0.032539%	1.271282	105	1.427256%	4.205547
115	0.027326%	1.000000	107	0.060860%	1.012727	105	0.196286%	1.000738	107	0.000000%	-
116	0.000000%	-	114	0.006958%	1.000000	107	0.000000%	_	115	5.122494%	1.000000
117	0.000000%	-	115	3.647104%	5.094215	114	0.000000%	-	116	1.035309%	73.447995
118	0.000000%		116	0.000000%	_	115	7.633588%	1.802068	117	0.000050%	1.000000
119	0.458256%	10.310893	117	0.000086%	1.000000	117	0.000000%		118	1.003331%	1.947121
170	0.000000%	-	118	0.002082%	1.000000	118	48.969072%	3.877102	119	0 145214%	7 301093
200	1.959258%	8.535722	119	31.354662%	7.608799	119	0.085944%	3.166077	200	2 702770%	5 708142
201	0.00000%	-	200	3.653528%	5.943247	170	0.000000%		200	0.000000%	0.150142
205	0.00000%	-	200	0.000002076	-	200	26 747126%	14 573912	201	0.000000//	_
210	0.00000%	-	201	7 494700%	9 171594	260	1.618878%	9 110594	220	4.49574007	0.010441
215	0.00000%	-	450	0.00969907	1.091059	450	9 7279100/	1.026027	360	4.423/40%	2.018441
220	0.00000%	-	400	0.99202370	1.021033	400	2.13121970	1.030927	450	0.535389%	1.054678
360	0 0 - 01										
	37.157031%	2.873243		(f) (1)			(\cdot) (1)	a		(1) (1)	**

(e) Cluster E

E ta ter Fisher Fisher Call Fisher Call

0.6

(b) Cluster B

(c) Cluster C

 10
 Monthstate
 Monthstate

(d) Cluster D

Task termination	% CPU	% RAM	Task termination	% CPU	% RAM	Task termination	% CPU	% RAM	Task termination	% CPU	% RAM
No termination	0.6972%	1.0447%	No termination	0.2582%	0.4637%	No termination	0.3376%	0.3812%	No termination	0.4995%	0.4822%
Evict	13.4392%	11.8184%	Evict	4.8340%	7.3120%	Evict	8.2099%	8.0454%	Evict	7.6002%	9.0656%
Fail	2.2792%	2.8387%	Fail	6.2950%	8.3841%	Fail	1.2294%	2.0809%	Fail	3.0288%	3.9214%
Finish	1.3963%	1.1066%	Finish	2.5877%	1.2231%	Finish	2.9399%	3.3249%	Finish	0.8666%	0.8914%
Kill	82.1791%	83.1826%	Kill	86.0215%	82.6144%	Kill	87.2740%	86.1588%	Kill	88.0011%	85.6364%
Lost	0.0091%	0.0091%	Lost	0.0036%	0.0027%	Lost	0.0093%	0.0088%	Lost	0.0039%	0.0030%

(e) Cluster A (exact values) (f) Cluster B (exact values) (g) Cluster C (exact values) (h) Cluster D (exact values)

(m) Cluster E (exact values)

(n) Cluster F (exact values)

(o) Cluster G (exact values)

(p) Cluster H (exact values)

Figure 6. Relative request of CPU and RAM resources prior to tasks' execution w.r.t. final task termination.

Figure 7. Task event rates vs. task priority and final task termination

Figure 8. Task event rates vs. event execution time and final task termination

Figure 9. Task event rates vs. machine concurrency and final task termination

Figure 10. Job event rates vs. job size and final job termination

Figure 11. Job event rates vs. event execution time and final job termination

- In figure 8 cluster behaviour seems quite uniform
- Machine concurrency seems to play little role in the event termination distribution, as for all concurrency factors the kill rate is at 90%.

figure_8

figure_9

Refer to figures 10, 11, and 12.

Observations:

- Behaviour between cluster varies a lot
- There are no "smooth" gradients in the various curves unlike in the 2011 traces
- Killed jobs have higher event rates in general, and overall dominate all event rates measures
- There still seems to be a correlation between short execution job times and successful final termination, and likewise for kills and higher job terminations
- Across all clusters, a machine locality factor of 1 seems to lead to the highest success event rate

Figure 12. Job event rates vs. machine locality and final job termination

table_iii, table_iv, figure_v

Potential causes of unsuccesful executions

Implementation issues – Analysis limitations

Discussion on unknown fields

Limitation on computation resources required for the analysis

Other limitations ...

Conclusions and future work or possible developments

		Job termination	# Tasks mean # Task	s 95% p.tile # EVIC	T Evts. mean # FAIL	Evts. mean # FINIS	H Evts. mean # KILI	L Evts. mean	# LOST Evts. mean			Job termination	# Tasks mean # Tas	ks 95% p.tile # EVIC	T Evts. mean # FAI	L Evts. mean # FIN	ISH Evts. mean # KILL I
		No termination	92.359436	174.3	23.263951	3.454474	23.047597	34.565608	0.707709			No termination	112.422759	169.8	34.681161	0.711242	13.379533
		EVICT	-1.000000	-1.0	NaN	NaN	NaN	NaN	NaN			EVICT	1.000000	1.0	1.000000	0.000000	0.000000
		FAIL FINISH	90.792728 1.187092	499.0	0.694942 0.004696	0.683556 0.001341	0.085957 1.072623	1.849587 0.024396	0.009730			FAIL FINISH	74.367804 6.304299	374.0	2.003355 0.022380	1.993765 0.008476	0.266584 2.349304
		KILL	16.533171	10.0	1.045419	0.073867	0.461387	1.188720	0.044610			KILL	69.853370	234.0	1.696449	0.157833	0.613748
		LOST	223.206593	1689.6	0.000000	0.000000	0.000000	1.034082	0.974598			LOST	320.020202	459.8	0.000000	0.000000	0.000000
					(a) Clus	ter A									(b) Clu	ster B	
Job termination	# Tasks mean	# Tasks 95% p.tile	# EVICT Evts. mean	# FAIL Evts. mean	# FINISH Evts. mean	# KILL Evts, mean	# LOST Evts. mean	-		Job termination	# Tasks mean	# Tasks 95% p.tile	# EVICT Evts. mean	# FAIL Evts. mean	# FINISH Evts. me	n # KILL Evts. me	n # LOST Evts. mean
No termination	96.399561	100.0	55.276973	7.552906	23.848867	41.578669	0.664107	-		No termination	103.889987	120.00	41.421533	7.604808	18,1794	6 47.6035	0.661826
EVICT	1.000000	1.0	1.000829	0.000000	0.000000	0.000415	0.000000			EVICT	1.000000	1.00	1.000000	0.000000	0.0000	0.0000	0.000000
FAIL	41.982301	200.0	3.483606	0.997592	0.376438	3.998369	0.046439			FAIL	43.355682	250.00	6.111993	0.948602	0.5313	0 6.4977	4 0.041077 7 0.005052
KILL	110.680808	652.0	0.627334	0.059076	0.656426	2.266794	0.006258			KILL	89.647948	283.00	1.013114	0.054374	0.2833	3 3.2556	5 0.006664
LOST	38.870091	48.6	0.000031	0.000311	0.000000	2.620721	1.833872	-		LOST	271.441748	2620.75	0.00000	0.000000	0.0000	0 5.9380	9 1.647084
			(c) (Cluster C									(d)	Cluster I)		
Job termination	# Tasks mean	# Tasks 95% p.tile	# EVICT Evts. mean	# FAIL Evts. mean	# FINISH Evts. mean	# KILL Evts. mean	# LOST Evts. mean	-		Job termination	# Tasks mean	# Tasks 95% p.tile	# EVICT Evts. mean	# FAIL Evts. mean	# FINISH Evts. me	n # KILL Evts. mes	n # LOST Evts. mean
No termination	350.929407	596.0	7.204391	2.074423	0.126290	46.646065	0.378274	-		No termination	217.718640	379.4	4.304676	1.315021	4.9711	2 48.1184	5 0.464429
EVICT	1.000000	1.0	1.000000	0.000000	0.000000	0.000000	0.000000			EVICT	1.000000	1.0	1.000000	0.000000	0.0000	0.0000	0.000000
FINISH	23.081125	25.0	0.246529	0.055546	1.934488	0.020929	0.064920			FINISH	2.940843	2.0	0.62132	0.051014	0.4262	o 7.5592 0 0.1620	14 0.034773 12 0.002623
KILL	88.790215	309.0	0.706293	0.028618	0.461084	7.572301	0.029122			KILL	103.888843	361.0	0.182630	0.063914	0.4166	4 5.8243	1 0.014161
LOST	5.374150	5.0	0.000000	0.000000	0.000000	3.234494	1.813924	-		LOST	3736.500000	18823.4	0.001491	0.000038	0.0000	0 6.2981	1.429604
(e) Cluster E													(f)	Cluster F	1		
Job termination	# Tasks mean	# Tasks 95% p.tile	# EVICT Evts. mean	# FAIL Evts. mean	# FINISH Evts. mean	# KILL Evts. mean	# LOST Evts. mean	-		Job termination	# Tasks mean	# Tasks 95% p.tile	# EVICT Evts. mear	# FAIL Evts. mean	# FINISH Evts. me	n # KILL Evts. mes	n # LOST Evts. mean
No termination	342.090034	599.10	14.184405	0.626186	23.836017	46.002917	0.735801	-		No termination	321.133053	546.9	3.470078	0.907801	3.3169	2 44.5358	4 0.315120
EVICT	1.000000	1.00	1.000000	0.000000	0.000000	0.000000	0.000000			EVICT	1.000000	1.0	1.000000	0.000000	0.0000	0.0000	0.000000
FAIL	51.834803 8.519166	250.00 36.00	0.555532 0.001733	3.334848 0.629809	0.607560 1.759677	20.351992 0.005452	0.176242 0.004575			FAIL	20.504293 4.278193	1.0	0.114090	2.300036	0.9806	b 12.8334 8 0.0135	0.046833 7 0.012963
KILL	37.054914	100.00	5.687172	0.064640	0.080370	19.166260	0.059132			KILL	11.022705	3.0	0.235500	0.102899	0.2877	1 11.3369	6 0.031148
LOST	190.500000	358.35	0.000000	0.000000	0.000000	1.994751	1.994751	-		LOST	3.400000	10.6	0.00000	0.000000	0.0000	0 0.2352	4 1.705882
			(g) (Cluster G									(h)	Cluster H	I		

####