
Bachelor Thesis
May 20, 2021

Understanding and Comparing Unsuccessful Executions in
Large Datacenters

Claudio Maggioni

Abstract

The project aims at comparing two different traces coming from large datacenters, focusing in particular on un-
successful executions of jobs and tasks submitted by users. The objective of this project is to compare the resource
waste caused by unsuccessful executions, their impact on application performance, and their root causes. We will
show the strong negative impact on CPU and RAM usage and on task slowdown. We will analyze patterns of unsuc-
cessful jobs and tasks, particularly focusing on their interdependency. Moreover, we will uncover their root causes
by inspecting key workload and system attributes such asmachine locality and concurrency level.

Advisor
Prof. Walter Binder
Assistant
Dr. Andrea Rosá

Advisor’s approval (Prof. Walter Binder): Date:

Contents

1 Introduction 2

2 Background information 2
2.1 Traces . 2
2.2 Traces contents . 2
2.3 Overview of traces’ format . 3
2.4 Remark on traces size . 4

3 Project requirements and analysis 4

4 Analysis methodology 4
4.1 Introduction on Apache Spark . 4
4.2 Query architecture . 4

4.2.1 Overview . 4
4.2.2 Parsing table files . 4
4.2.3 The queries . 5

4.3 Query script design . 5
4.3.1 The “task slowdown” query script . 5

4.4 Ad-Hoc presentation of some analysis scripts . 6

5 Analysis and observations 6
5.1 Overview of machine configurations in each cluster . 6
5.2 Analysis of execution time per each execution phase . 8
5.3 Task slowdown . 8
5.4 Reserved and actual resource usage of tasks . 8
5.5 Correlation between task events’ metadata and task termination . 12
5.6 Correlation between task events’ resource metadata and task termination 12
5.7 Correlation between job events’ metadata and job termination . 12
5.8 Mean number of tasks and event distribution per task type . 18
5.9 Mean number of tasks and event distribution per job type . 18
5.10 Probability of task successful termination given its unsuccesful events . 18
5.11 Potential causes of unsuccesful executions . 18

6 Implementation issues – Analysis limitations 18
6.1 Discussion on unknown fields . 18
6.2 Limitation on computation resources required for the analysis . 18
6.3 Other limitations . 18

7 Conclusions and future work or possible developments 18

1

1 Introduction

In today’s world there is an ever growing demand for efficient, large scale computations. The rising trend of “big
data” put the need for efficient management of large scaled parallelized computing at an all time high. This fact also
increases the demand for research in the field of distributed systems, in particular in how to schedule computations
effectively, avoid wasting resources and avoid failures.

In 2011 Google released a month long data trace of their own cluster management systemgoogle-marso-11 Borg,
containing a lot of data regarding scheduling, priority management, and failures of a real production workload. This
data was 2009 This data was the foundation of the 2015 Rosá et al. paper Understanding the Dark Side of Big Data
Clusters: An Analysis beyond Failuresvino-paper, which in its many conclusions highlighted the need for better cluster
management highlighting the high amount of failures found in the traces.

In 2019 Google released an updated version of the Borg cluster tracesgoogle-marso-19, not only containing data
from a far bigger workload due to improvements in computational technology, but also providing data from 8 dif-
ferent Borg cells from datacenters located all over the world. These new traces are therefore about 100 times larger
than the old traces, weighing in terms of storage spaces approximately 8TiB (when compressed and stored in JSONL
format)google-drive-marso, requiring a considerable amount of computational power to analyze them and the im-
plementation of special data engineering techniques for analysis of the data.

This project aims to repeat the analysis performed in 2015 to highlight similarities and differences in workload this
decade brought, and expanding the old analysis to understand even better the causes of failures and how to prevent
them. Additionally, this report will provide an overview on the data engineering techniques used to perform the
queries and analyses on the 2019 traces.

2 Background information

Borg is Google’s own cluster management software able to run thousands of different jobs. Among the various cluster
management services it provides, the main ones are: job queuing, scheduling, allocation, and deallocation due to
higher priority computations.

The core structure of Borg is a cell, a set of machines usually all within the same cluster, whose work is allocated by
the same cluster-management system and hence a cell is handled as a unit. Each cell may run large computational
workload that is submitted to Borg. Such workload is called “job”, which outlines the computations that a user wants
to run and is made up of several “tasks”. A task is an executable program, consisting of multiple processes, which
has to be run on a single machine. Those tasks may be ran sequentially or in parallel, and the condition for a job’s
successful termination is nontrivial.

2.1 Traces

The data relative to the events happening while Borg cell processes the workload is then encoded and stored as
rows of several tables that make up a single usage trace. Such data comes from the information obtained by the cell’s
management system and single machines that make up the cell. Each table is identified by a key, usually a timestamp.

In general events can be of two kinds, there are events that are relative to the status of the schedule, and there are
other events that are relative to the status of a task itself.

In 2015, Dr. Andrea Rosà, Lydia Y. Chen and Prof. Walter Binder published a research paper titled Understanding the
Dark Side of Big Data Clusters: An Analysis beyond Failuresvino-paper in which they performed several analysis on
unsuccessful executions in the Google’s 2011 Borg cluster traces with the aim of identifying their resource waste,
their impacts on the performance of the application, and any causes that may lie behind such failures. The salient
conclusion of that research is that actually lots of computations performed by Google would eventually end in failure,
then leading to large amounts of computational power being wasted.

Figure 2 shows the expected transitions between event types.

2.2 Traces contents

The traces provided by Google contain mainly a collection of job and task events spanning a month of execution of
the 8 different clusters. In addition to this data, some additional data on the machines’ configuration in terms of
resources (i.e. amount of CPU and RAM) and additional machine-related metadata.

2

Type code Description

EVICT The job or task was terminated in order to free computational resources for an
higher priority job

FAIL The job or task terminated its execution unsuccesfully due to a failure
FINISH The job or task terminated succesfully
KILL The job or task terminated its execution because of a manual request to stop it

Figure 1. Overview of job and task event types.

Figure 2. Typical transitions between task/job event types according to Google

Due to Google’s policy, most identification related data (like job/task IDs, raw resource amounts and other text
values) were obfuscated prior to the release of the traces. One obfuscation that is noteworthy in the scope of this
thesis is related to CPU and RAM amounts, which are expressed respetively in NCUs (Normalized Compute Units) and
NMUs (Normalized Memory Units).

NCUs and NMUs are defined based on the raw machine resource distributions of the machines within the 8 clusters.
A machine having 1 NCU CPU power and 1 NMU memory size has the maximum amount of raw CPU power and raw
RAM size found in the clusters. While RAM size is measured in bytes for normalization purposes, CPU power was
measured in GCU (Google Compute Units), a proprietary CPU power measurement unit used by Google that combines
several parameters like number of processors and cores, clock frequency, and architecture (i.e. ISA).

2.3 Overview of traces’ format

The traces have a collective size of approximately 8TiB and are stored in a Gzip-compressed JSONL (JSON lines)
format, which means that each table is represented by a single logical “file” (stored in several file segments) where
each carriage return separated line represents a single record for that table.

There are namely 5 different table “files”:

machine_configs, which is a table containing each physical machine’s configuration and its evolution over time;

instance_events, which is a table of task events;

collection_events, which is a table of job events;

machine_attributes, which is a table containing (obfuscated) metadata about each physical machine and its evo-
lution over time;

instance_usage, which contains resource (CPU/RAM) measures of jobs and tasks running on the single machines.

The scope of this thesis focuses on the tables machine_configs, instance_events and collection_events.

3

2.4 Remark on traces size

While the 2011 Google Borg traces were relatively small, with a total size in the order of the tens of gigabytes, the
2019 traces are quite challenging to analyze due to their sheer size. As stated before, the traces have a total size of 8
TiB when stored in the format provided by Google. Even when broken down to table “files”, unitary sizes still reach
the single tebibyte mark (namely for machine_configs, the largest table in the trace).

Due to this constraints, a careful data engineering based approach was used when reproducing the 2015 DSN paper
analysis. Bleeding edge data science technologies like Apache Spark were used to achieve efficient and parallelized
computations. This approach is discussed with further detail in the following section.

3 Project requirements and analysis

TBD (describe our objective with this analysis in detail) The aim of this thesis is to repeat the analysis performed
in 2015 on the dataset Google has released in 2019 in order to find similarities and differences with the previous
analysis, and ultimately find whether computational power is indeed wasted in this new workload as well. The 2019
data comes from 8 Borg cells spanning 8 different datacenters located in different geographical positions, all focused
on computational oriented workloads. The data collection time span matches the entire month of May 2019.

4 Analysis methodology

Due to the inherent complexity in analyzing traces of this size, novel bleeding-edge data engineering tecniques were
adopted to performed the required computations. We used the framework Apache Spark to perform efficient and
parallel Map-Reduce computations. In this section, we discuss the technical details behind our approach.

4.1 Introduction on Apache Spark

Apache Spark is a unified analytics engine for large-scale data processing. In layman’s terms, Spark is really useful
to parallelize computations in a fast and streamlined way.

In the scope of this thesis, Spark was used essentially as a Map-Reduce framework for computing aggregated results
on the various tables. Due to the sharded nature of table “files”, Spark is able to spawn a thread per file and run
computations using all processors on the server machines used to run the analysis.

Spark is also quite powerful since it provides automated thread pooling services, and it is able to efficiently store and
cache intermediate computation on secondary storage without any additional effort required from the data engineer.
This feature was especially useful due to the sheer size of the analyzed data, since the computations required to store
up to 1TiB of intermediate data on disk.

The chosen programming language for writing analysis scripts was Python. Spark has very powerful native Python
bindings in the form of the PySpark API, which were used to implement the various queries.

4.2 Query architecture

4.2.1 Overview

In general, each query written to execute the analysis follows a general Map-Reduce template.

Traces are first read, then parsed, and then filtered by performing selections, projections and computing new derived
fields. After this preparation phase, the trace records are often passed through a groupby() operation, which by
choosing one or many record fields sorts all the records into several “bins” containing records with matching values
for the selected fields. Then, a map operation is applied to each bin in order to derive some aggregated property
value for each grouping. Finally, a reduce operation is applied to either further aggregate those computed properties
or to generate an aggregated data structure for storage purposes.

4.2.2 Parsing table files

As stated before, table “files” are composed of several Gzip-compressed shards of JSONL record data. The specification
for the types and constraints of each record is outlined by Google in the form of a protobuffer specification file found
in the trace release packagegoogle-proto-marso. This file was used as the oracle specification and was a critical

4

reference for writing the query code that checks, parses and carefully sanitizes the various JSONL records prior to
actual computations.

The JSONL encoding of traces records is often performed with non-trivial rules that required careful attention. One
of these involved fields that have a logically-wise “zero” value (i.e. values like “0” or the empty string). For these
values the key-value pair in the JSON object is outright omitted. When reading the traces in Apache Spark is therefore
necessary to check for this possibility and insert back the omitted record attributes.

4.2.3 The queries

Most queries use only two or three fields in each trace records, while the original table records often are made of
a couple of dozen fields. In order to save memory during the query, a projection is often applied to the data by the
means of a .map() operation over the entire trace set, performed using Spark’s RDD API.

Another operation that is often necessary to perform prior to the Map-Reduce core of each query is a record filtering
process, which is often motivated by the presence of incomplete data (i.e. records which contain fields whose values
is unknown). This filtering is performed using the .filter() operation of Spark’s RDD API.

The core of each query is often a groupby() followed by a map() operation on the aggregated data. The groupby()

groups the set of all records into several subsets of records each having something in common. Then, each of this
small clusters is reduced with a map() operation to a single record. The motivation behind this way of computing
data is that for the analysis in this thesis it is often necessary to analyze the behaviour w.r.t. time of either task or
jobs by looking at their events. These queries are therefore implemented by groupby()-ing records by task or job,
and then map()-ing each set of event records sorting them by time and performing the desired computation on the
obtained chronological event log.

Sometimes intermediate results are saved in Spark’s parquet format in order to compute and save intermediate results
beforehand.

4.3 Query script design

In this section we aim to show the general complexity behind the implementations of query scripts by explaining in
detail some sampled scripts to better appreciate their behaviour.

4.3.1 The “task slowdown” query script

One example of analysis script with average complexity and a pretty straightforward structure is the pair of scripts
task_slowdown.py and task_slowdown_table.py used to compute the “task slowdown” tables (namely the tables
in figure 7).

“Slowdown” is a task-wise measure of wasted execution time for tasks with a FINISH termination type. It is computed
as the total execution time of the task divided by the execution time actually needed to complete the task (i.e. the
total time of the last execution attempt, successful by definition).

The analysis requires to compute the mean task slowdown for each task priority value, and additionally compute the
percentage of tasks with successful terminations per priority. The query therefore needs to compute the execution
time of each execution attempt for each task, determine if each task has successful termination or not, and finally
combine this data to compute slowdown, mean slowdown and ultimately the final table found in figure 7.

Figure 3 shows a schematic representation of the query structure.

The query first starts reading the instance_events table, which contains (among other data) all task event logs
containing properties, event types and timestamps. As already explained in the previous section, the logical table file
is actually stored as several Gzip-compressed JSONL shards. This is very useful for processing purposes, since Spark
is able to parse and load in memory each shard in parallel, i.e. using all processing cores on the server used to run
the queries.

After loading the data, a selection and a projection operation are performed in the preparation phase so as to “clean
up” the records and fields that are not needed, leaving only useful information to feed in the “group by” phase. In
this query, the selection phase removes all records that do not represent task events or that contain an unknown task
ID or a null event timestamp. In the 2019 traces it is quite common to find incomplete records, since the log process
is unable to capture the sheer amount of events generated by all jobs in a exact and deterministic fashion.

Then, after the preparation stage is complete, the task event records are grouped in several bins, one per task ID.
Performing this operation the collection of unsorted task event types is rearranged to form groups of task events all

5

Figure 3. Diagram of the script used for the “task slowdown” query.

relating to a single task.

These obtained collections of task events are then sorted by timestamp and processed to compute intermediate data
relating to execution attempt times and task termination counts. After the task events are sorted, the script iterates
over the events in chronological order, storing each execution attempt time and registering all execution termination
types by checking the event type field. The task termination is then equal to the last execution termination type,
following the definition originally given in the 2015 Rosá et al. DSN paper.

If the task termination is determined to be unsuccessful, the tally counter of task terminations for the matching task
property is increased. Otherwise, all the task termination attempt time deltas are returned. Tallies and time deltas
are saved in an intermediate time file for fine-grained processing.

Finally, the task_slowdown_table.py processes this intermediate results to compute the percentage of successful
tasks per execution and computing slowdown values given the previously computed execution attempt time deltas.
Finally, the mean of the computed slowdown values is computed resulting in the clear and coincise tables found in
figure 7.

4.4 Ad-Hoc presentation of some analysis scripts

TBD (with diagrams)

5 Analysis and observations

5.1 Overview of machine configurations in each cluster

Refer to figure 4.

Observations:

• machine configurations are definitely more varied than the ones in the 2011 traces

• some clusters have more machine variability

6

CPU (NCU) RAM (NMU) Machine count % Machines

Unknown Unknown 8729 1.639218%
1.000000 0.500000 124234 23.329891%
0.591797 0.333496 103013 19.344801%
0.259277 0.166748 78078 14.662260%
0.708984 0.333496 55801 10.478864%
0.386719 0.333496 36237 6.804943%
0.958984 0.500000 31151 5.849843%
0.708984 0.666992 29594 5.557454%
0.386719 0.166748 27011 5.072393%
1.000000 1.000000 12286 2.307187%
0.591797 0.166748 9902 1.859496%
1.000000 0.250000 7550 1.417814%
0.958984 1.000000 3552 0.667030%
0.259277 0.333496 3024 0.567877%
0.591797 0.666992 1000 0.187790%
0.259277 0.083374 634 0.119059%
0.958984 0.250000 600 0.112674%
0.500000 0.062500 54 0.010141%
0.500000 0.250000 34 0.006385%
0.479492 0.250000 12 0.002253%
0.708984 0.250000 6 0.001127%
0.591797 0.250000 4 0.000751%
0.708984 0.500000 2 0.000376%
0.479492 0.500000 2 0.000376%

(a) All clusters

CPU (NCU) RAM (NMU) Machine count % Machines

Unknown Unknown 1377 1.623170%
0.591797 0.333496 29487 34.758469%
1.000000 0.500000 13440 15.842705%
0.708984 0.333496 12495 14.728764%
0.386719 0.333496 9057 10.676144%
0.386719 0.166748 5265 6.206238%
0.708984 0.666992 4608 5.431784%
1.000000 1.000000 4446 5.240823%
0.591797 0.166748 2484 2.928071%
0.958984 0.500000 1143 1.347337%
0.958984 1.000000 654 0.770917%
1.000000 0.250000 366 0.431431%
0.479492 0.250000 6 0.007073%
0.708984 0.250000 6 0.007073%

(b) A cluster

CPU (NCU) RAM (NMU) Machine count % Machines

Unknown Unknown 134 0.264812%
0.591797 0.333496 16184 31.982926%
1.000000 0.500000 9790 19.347061%
0.708984 0.333496 8448 16.694992%
0.958984 0.500000 5502 10.873088%
0.708984 0.666992 3832 7.572823%
1.000000 1.000000 2214 4.375321%
0.591797 0.166748 2152 4.252796%
0.386719 0.333496 816 1.612584%
0.958984 1.000000 618 1.221296%
0.591797 0.666992 500 0.988103%
0.386719 0.166748 412 0.814197%

(c) Cluster B

CPU (NCU) RAM (NMU) Machine count % Machines

Unknown Unknown 1466 2.274208%
0.259277 0.166748 15754 24.439204%
0.386719 0.333496 11104 17.225652%
0.591797 0.333496 10404 16.139741%
0.958984 0.500000 6634 10.291334%
1.000000 0.500000 5654 8.771059%
0.386719 0.166748 3580 5.553660%
0.708984 0.666992 2900 4.498774%
1.000000 1.000000 2736 4.244361%
1.000000 0.250000 2132 3.307375%
0.958984 1.000000 766 1.188297%
0.708984 0.333496 620 0.961807%
0.958984 0.250000 600 0.930781%
0.591797 0.166748 112 0.173746%

(d) Cluster C

CPU (NCU) RAM (NMU) Machine count % Machines

Unknown Unknown 498 0.794309%
0.591797 0.333496 28394 45.288376%
0.386719 0.333496 8402 13.401174%
0.259277 0.166748 8020 12.791885%
0.386719 0.166748 5806 9.260559%
0.708984 0.666992 4380 6.986092%
0.708984 0.333496 3924 6.258772%
0.591797 0.166748 2548 4.064055%
0.259277 0.333496 426 0.679469%
1.000000 0.500000 292 0.465739%
0.591797 0.250000 4 0.006380%
0.708984 0.500000 2 0.003190%

(e) Cluster D

CPU (NCU) RAM (NMU) Machine count % Machines

Unknown Unknown 536 0.671915%
0.259277 0.166748 38452 48.202377%
0.708984 0.333496 11786 14.774608%
0.958984 0.500000 8646 10.838389%
0.708984 0.666992 7606 9.534674%
1.000000 0.500000 5586 7.002457%
0.386719 0.166748 4470 5.603470%
0.259277 0.333496 1268 1.589530%
0.259277 0.083374 634 0.794765%
0.591797 0.333496 324 0.406158%
1.000000 0.250000 268 0.335957%
1.000000 1.000000 138 0.172993%
0.500000 0.062500 54 0.067693%
0.500000 0.250000 4 0.005014%

(f) Cluster E

CPU (NCU) RAM (NMU) Machine count % Machines

Unknown Unknown 1432 2.299958%
1.000000 0.500000 41340 66.396839%
0.708984 0.333496 6878 11.046866%
0.591797 0.333496 5564 8.936430%
0.958984 0.500000 2172 3.488484%
0.386719 0.166748 1544 2.479843%
0.708984 0.666992 1244 1.998008%
1.000000 0.250000 792 1.272044%
0.958984 1.000000 536 0.860878%
0.386719 0.333496 398 0.639234%
1.000000 1.000000 344 0.552504%
0.500000 0.250000 18 0.028910%

(g) Cluster F

CPU (NCU) RAM (NMU) Machine count % Machines

Unknown Unknown 1566 2.261568%
0.259277 0.166748 15852 22.892958%
1.000000 0.500000 11808 17.052741%
0.708984 0.333496 7968 11.507134%
0.591797 0.333496 7830 11.307839%
0.386719 0.166748 4690 6.773150%
0.708984 0.666992 4258 6.149269%
0.958984 0.500000 4196 6.059731%
0.386719 0.333496 3864 5.580267%
0.591797 0.166748 2606 3.763503%
1.000000 0.250000 2100 3.032754%
0.259277 0.333496 1330 1.920744%
0.958984 1.000000 778 1.123563%
1.000000 1.000000 378 0.545896%
0.500000 0.250000 12 0.017330%
0.479492 0.250000 6 0.008665%
0.479492 0.500000 2 0.002888%

(h) Cluster G

CPU (NCU) RAM (NMU) Machine count % Machines

Unknown Unknown 1720 2.933251%
1.000000 0.500000 36324 61.946178%
0.591797 0.333496 4826 8.230158%
0.708984 0.333496 3682 6.279205%
0.958984 0.500000 2858 4.873973%
0.386719 0.333496 2596 4.427163%
1.000000 1.000000 2030 3.461919%
1.000000 0.250000 1892 3.226577%
0.386719 0.166748 1244 2.121491%
0.708984 0.666992 766 1.306320%
0.591797 0.666992 500 0.852689%
0.958984 1.000000 200 0.341076%

(i) Cluster H

Figure 4. Overview of machine configurations in terms of CPU and RAM resources for each cluster

7

EVICT FAIL FINISH KILL
Last termination

0.0

0.1

0.2

0.3

0.4

C
ou

nt

2011 data

Execution phase
Queue
Resubmission
Running
Unknown

EVICT FAIL FINISH KILL
Last termination

0.0

0.2

0.4

0.6

0.8

C
ou

nt

All clusters

Execution phase
Queue
Resubmission
Running
Unknown

Figure 5. Relative task time (in milliseconds) spent in each execution phase w.r.t. task termination in 2011 and 2019 traces. X
axis shows task termination type, Y axis shows total time % spent. Colors break down the time in execution phases. “Unknown”
execution times are 2019 specific and correspond to event time transitions that are not consider “typical” by Google.

5.2 Analysis of execution time per each execution phase

Refer to figures ?? and 5.

Observations:

• Across all cluster almost 50% of time is spent in “unknown” transitions, i.e. there are some time slices that are
related to a state transition that Google says are not “typical” transitions. This is mostly due to the trace log
being intermittent when recording all state transitions.

• 80% of the time spent in KILL and LOST is unknown. This is predictable, since both states indicate that the job
execution is not stable (in particular LOST is used when the state logging itself is unstable)

• From the absolute graph we see that the time “wasted” on non-finish terminated jobs is very significant

• Execution is the most significant task phase, followed by queuing time and scheduling time (“ready” state)

• In the absolute graph we see that a significant amount of time is spent to re-schedule evicted jobs (“evicted”
state)

• Cluster A has unusually high queuing times

5.3 Task slowdown

Refer to figure 7

Observations:

• Priority values are different from 0-11 values in the 2011 traces. A conversion table is provided by Google;

• For some priorities (e.g. 101 for cluster D) the relative number of finishing task is very low and the mean
slowdown is very high (315). This behaviour differs from the relatively homogeneous values from the 2011
traces.

• Some slowdown values cannot be computed since either some tasks have a 0ns execution time or for some
priorities no tasks in the traces terminate successfully. More raw data on those exception is in Jupyter.

• The % of finishing jobs is relatively low comparing with the 2011 traces.

5.4 Reserved and actual resource usage of tasks

Refer to figures ?? and 11.

Observations:

• Most (mesasured and requested) resources are used by killed job, even more than in the 2011 traces.

8

EVICT FAIL FINISH KILL
Last termination

0.0

0.2

0.4

0.6

0.8

C
ou

nt

Cluster A

Execution phase
Queue
Resubmission
Running
Unknown

EVICT FAIL FINISH KILL
Last termination

0.0

0.2

0.4

0.6

0.8

C
ou

nt

Cluster B

Execution phase
Queue
Resubmission
Running
Unknown

EVICT FAIL FINISH KILL
Last termination

0.0

0.2

0.4

0.6

0.8

C
ou

nt

Cluster C

Execution phase
Queue
Resubmission
Running
Unknown

EVICT FAIL FINISH KILL
Last termination

0.0

0.2

0.4

0.6

0.8

C
ou

nt

Cluster D

Execution phase
Queue
Resubmission
Running
Unknown

EVICT FAIL FINISH KILL
Last termination

0.0

0.2

0.4

0.6

0.8

1.0

C
ou

nt
Cluster E

Execution phase
Queue
Resubmission
Running
Unknown

EVICT FAIL FINISH KILL
Last termination

0.0

0.2

0.4

0.6

0.8

C
ou

nt

Cluster F

Execution phase
Queue
Resubmission
Running
Unknown

EVICT FAIL FINISH KILL
Last termination

0.0

0.2

0.4

0.6

0.8

1.0

C
ou

nt

Cluster G

Execution phase
Queue
Resubmission
Running
Unknown

EVICT FAIL FINISH KILL
Last termination

0.0

0.2

0.4

0.6

0.8

1.0

C
ou

nt

Cluster H

Execution phase
Queue
Resubmission
Running
Unknown

Figure 6. Relative task time (in milliseconds) spent in each execution phase w.r.t. clusters in the 2019 trace. Refer to figure 5
for axes description.

Priority Equivalent
2019 priority

% finished Mean resp. (last exec.) Mean resp. (all execs.) Mean slowdown

0 ≤ 99 53.80% 2845 1767 3.37
1 ≤ 99 67.44% 3598 2939 2.58
2 ∈ [110, 115] 90.78% 1835 1782 1.15
3 ∈ [110,115] 95.62% 9683 8294 3.39
4 ∈ [110,115] 78.05% 2006 1890 1.69
5 ∈ [110,115] 100% 58 58 1
6 ∈ [110,115] 77.99% 567 567 1.02
8 ∈ [110,115] 45.48% 1159 1151 1.01
9 ∈ [120,359] 23.35% 504 496 1.07

(a) 2011 data

Priority % finished Mean resp. (last exec.) Mean resp. (all execs.) Mean slowdown

0 42.86% 1373.0 0.0 1.136770
25 1.31% 86732.0 22.0 11.772172

101 5.2% 65233.0 673.0 36.358841
103 1.05% 8210.0 28.0 1.257530
105 22.9% 3651.0 616.0 1.733089
107 18.51% 1025.0 308.0 1.017332
114 0.07% 29364.0 2.0 1.003503
115 1.74% 10059.0 22.0 3.461721
116 3.03% 18226.0 71.0 1.102756
117 0.0% 2430.0 1.0 1.000000
118 1.28% 15072.0 163.0 3.340741
119 4.49% 19449.0 280.0 5.326446
200 13.54% 54789.0 24.0 6.684155
360 3.36% 788069.0 42.0 2.241646
450 1.15% 1182248.0 197.0 1.068893

(b) 2019 data

Figure 7. Mean task slowdown for each cluster and each task priority for 2011 and 2019 data. % finished is the percentage of
tasks with FINISH termination w.r.t. priority, Mean resp. (last exec.) is the mean response time (queue+execution time) for
the last task execution w.r.t. priority, Mean resp. (all execs.) is the response time of all executions, Mean slowdown is the
mean slowdown measure w.r.t. priority. Note that task priorities in 2011 were expressed in a 0–11 range, so equivalent 2019
priorities are provided in the 2011 table.

9

Priority % finished Mean resp. (last exec.) Mean resp. (all execs.) Mean slowdown

25 0.33% 5769.0 1203.0 82.97
101 81.92% 63305.0 6346.0 30.80
103 14.99% 3074.0 3033.0 1.13
105 57.68% 1666.0 1750.0 1.08
107 53.93% 1022.0 1031.0 1.02
115 4.11% 2041.0 2042.0 1.00
116 13.05% 4443.0 4443.0 1.03
118 11.91% 1817.0 1814.0 1.00
119 21.26% 2250.0 2877.0 1.50
200 27.21% 4546.0 16845.0 4.12
360 0.62% 514181.0 400580.0 2.92
450 2.2% 686817.0 653878.0 1.14

(a) Cluster A

Priority % finished Mean resp. (last exec.) Mean resp. (all execs.) Mean slowdown

0 45.19% 1351.0 1467.0 1.18
25 0.02% 10696.0 4121.0 133.48

101 66.48% 6069.0 5402.0 433.41
103 0.11% 19430.0 14897.0 1.65
105 0.46% 934421.0 392431.0 2.41
114 0.68% 32949.0 30470.0 1.00
115 4.12% 25585.0 107089.0 5.92
116 8.32% 29290.0 29017.0 1.11
118 0.31% 2776.0 2776.0 1.00
119 0.2% 193081.0 304469.0 2.56
200 30.92% 182604.0 466329.0 9.71
360 3.5% 1048245.0 495124.0 1.61
450 0.61% 1579367.0 1529555.0 1.06

(b) Cluster B

Priority % finished Mean resp. (last exec.) Mean resp. (all execs.) Mean slowdown

0 50.89% 933.0 1002.0 1.11
25 22.47% 171281.0 4551.0 8.19

101 52.63% 6271.0 2498.0 421.49
103 0.01% 3344.0 7444.0 2.79
105 0.02% 1202141.0 863764.0 1.37
107 0.0% 7033.0 93102.0 14.71
114 0.02% 3148.0 3142.0 1.01
115 0.28% 14729.0 27168.0 1.98
116 0.01% 2846.0 2851.0 1.02
117 93.17% 2144.0 2144.0 1.00
118 0.0% 1114.0 1112.0 1.10
119 2.22% 573740.0 242446.0 2.04
200 3.61% 352603.0 357993.0 4.14
360 4.37% 769284.0 442062.0 2.06
450 1.51% 1390175.0 1319771.0 1.07

(c) Cluster C

Priority % finished Mean resp. (last exec.) Mean resp. (all execs.) Mean slowdown

0 26.52% 1398.0 1469.0 1.12
25 16.29% 21432.0 4037.0 65.68

101 45.31% 8391.0 3317.0 315.95
103 0.0% 6791.0 6647.0 1.07
105 0.05% 825749.0 924081.0 2.90
107 0.0% 300532.0 174837.0 1.55
115 5.19% 12598.0 26142.0 2.19
116 0.13% 9268.0 10955.0 1.28
117 85.71% 10969.0 10969.0 1.00
118 0.05% 24041.0 30599.0 2.05
119 0.44% 184484.0 172746.0 3.02
200 6.53% 279565.0 349364.0 5.51
360 1.59% 650116.0 390151.0 2.48
450 0.61% 938727.0 523665.0 1.33

(d) Cluster D

Priority % finished Mean resp. (last exec.) Mean resp. (all execs.) Mean slowdown

0 42.81% 802.0 1127.0 1.44
25 5.34% 32247.0 38946.0 2.68

101 0.02% 30603.0 27726.0 1.12
103 0.02% 76294.0 48552.0 3.16
105 0.4% 106677.0 64190.0 14.75
115 0.03% 67237.0 65369.0 1.00
119 0.46% 62123.0 83322.0 10.31
200 1.96% 231639.0 414149.0 8.54
360 37.16% 611504.0 439280.0 2.87
450 0.55% 803792.0 824467.0 1.11

(e) Cluster E

Priority % finished Mean resp. (last exec.) Mean resp. (all execs.) Mean slowdown

0 45.21% 2929.0 2973.0 1.09
25 0.65% 184518.0 34096.0 2.23

101 40.3% 8160.0 10083.0 323.86
103 0.06% 46444.0 47234.0 1.17
105 0.22% 1111530.0 1173594.0 1.55
107 0.06% 80151.0 78835.0 1.01
114 0.01% 677.0 677.0 1.00
115 3.65% 121345.0 252663.0 5.09
117 0.0% 15875.0 15875.0 1.00
118 0.0% 30045.0 25492.0 1.00
119 31.35% 154196.0 68833.0 7.61
200 3.65% 297168.0 492372.0 5.94
360 7.42% 963351.0 569428.0 2.17
450 0.99% 1115783.0 1113282.0 1.02

(f) Cluster F

Priority % finished Mean resp. (last exec.) Mean resp. (all execs.) Mean slowdown

0 33.61% 3010.0 3317.0 1.14
25 0.23% 61708.0 12156.0 8.69

101 96.47% 133953.0 7448.0 19.38
103 0.03% 118310.0 112746.0 1.27
105 0.2% 8271.0 8214.0 1.00
115 7.63% 34424.0 56315.0 1.80
118 48.97% 608526.0 474729.0 3.88
119 0.09% 124006.0 231395.0 3.17
200 26.75% 115953.0 399050.0 14.57
360 1.62% 786594.0 488025.0 2.12
450 2.74% 1204747.0 1188251.0 1.04

(g) Cluster G

Priority % finished Mean resp. (last exec.) Mean resp. (all execs.) Mean slowdown

0 27.74% 5663.0 6211.0 1.12
25 1.04% 304870.0 283847.0 3.06

101 100.0% 34063.0 12250.0 76.44
103 0.48% 272635.0 92894.0 1.26
105 1.43% 611763.0 393762.0 4.21
115 5.12% 28907.0 28907.0 1.00
116 1.04% 633.0 42105.0 73.45
117 0.0% 656.0 656.0 1.00
118 1.0% 197687.0 139121.0 1.95
119 0.15% 139907.0 15558.0 7.30
200 2.7% 298799.0 470783.0 5.80
360 4.43% 838719.0 397301.0 2.02
450 0.54% 1470577.0 1411397.0 1.05

(h) Cluster H

Figure 8. Mean task slowdown for each cluster and each task priority for single clusters in the 2019 traces. Refer to 7 for a
legend of the columns

10

% CPU % Memory
EVICT 19.20% 21.00%
FAIL 13.70% 14.20%
FINISH 23.20% 32.10%
KILL 43.90% 32.70%

0

20

40

60

80

100

2011 data (used resources)

% CPU % Memory
EVICT 8.53% 9.03%
FAIL 3.17% 4.45%
FINISH 2.02% 1.66%
KILL 86.29% 84.86%

0

20

40

60

80

100

2019 data (used resources)

Figure 9. Percentages of CPU and RAM resources used by tasks w.r.t. task termination type in 2011 and 2019 traces (average of
clusters A to D). The x axis is the type of resource, y-axis is the percentage of resource used and color represents task termination.
Numeric values are displayed below the graph as a table.

% CPU % Memory
EVICT 13.53% 11.94%
FAIL 2.30% 2.87%
FINISH 1.41% 1.12%
KILL 82.76% 84.07%

0

20

40

60

80

100

Cluster A (used resources)

% CPU % Memory
EVICT 4.85% 7.35%
FAIL 6.31% 8.42%
FINISH 2.59% 1.23%
KILL 86.25% 83.00%

0

20

40

60

80

100

Cluster B (used resources)

% CPU % Memory
EVICT 8.24% 8.08%
FAIL 1.23% 2.09%
FINISH 2.95% 3.34%
KILL 87.58% 86.50%

0

20

40

60

80

100

Cluster C (used resources)

% CPU % Memory
EVICT 7.64% 9.11%
FAIL 3.04% 3.94%
FINISH 0.87% 0.90%
KILL 88.45% 86.05%

0

20

40

60

80

100

Cluster D (used resources)

Figure 10. Percentages of CPU and RAM resources used by tasks w.r.t. task termination type for clusters A to D in 2019 traces.
Refer to figure 11 for plot explaination.

11

% CPU % Memory
EVICT 28.20% 30.40%
FAIL 31.70% 23.50%
FINISH 13.90% 17.30%
KILL 26.20% 28.80%

0

20

40

60

80

100

2011 data (requested resources)

% CPU % Memory
EVICT 2.73% 3.04%
FAIL 0.06% 0.06%
FINISH 0.00% 0.00%
KILL 97.21% 96.89%

0

20

40

60

80

100

2019 data (requested resources)

Figure 11. Percentages of CPU and RAM resources requested by tasks w.r.t. task termination type in 2011 and 2019 traces. The
x axis is the type of resource, y-axis is the percentage of resource used and color represents task termination. Numeric values
are displayed below the graph as a table.

• Behaviour is rather homogeneous across datacenters, with the exception of cluster G where a lot of LOST-
terminated tasks acquired 70% of both CPU and RAM

5.5 Correlation between task events’ metadata and task termination

Refer to figures 13, 14, and 15.

Observations:

• No smooth curves in this figure either, unlike 2011 traces

• The behaviour of curves for 7a (priority) is almost the opposite of 2011, i.e. in-between priorities have higher
kill rates while priorities at the extremum have lower kill rates. This could also be due bt the inherent distri-
bution of job terminations;

• Event execution time curves are quite different than 2011, here it seems there is a good correlation between
short task execution times and finish event rates, instead of the U shape curve in 2015 DSN

• In figure 14 cluster behaviour seems quite uniform

• Machine concurrency seems to play little role in the event termination distribution, as for all concurrency
factors the kill rate is at 90%.

5.6 Correlation between task events’ resource metadata and task termination

5.7 Correlation between job events’ metadata and job termination

Refer to figures 16, 17, and 18.

Observations:

• Behaviour between cluster varies a lot

• There are no “smooth” gradients in the various curves unlike in the 2011 traces

• Killed jobs have higher event rates in general, and overall dominate all event rates measures

• There still seems to be a correlation between short execution job times and successfull final termination, and
likewise for kills and higher job terminations

• Across all clusters, a machine locality factor of 1 seems to lead to the highest success event rate

12

% CPU % Memory
EVICT 2.85% 3.42%
FAIL 0.06% 0.07%
FINISH 0.00% 0.00%
KILL 97.09% 96.51%

0

20

40

60

80

100

Cluster A (requested resources)

% CPU % Memory
EVICT 0.00% 0.01%
FAIL 0.00% 0.01%
FINISH 0.01% 0.02%
KILL 99.98% 99.97%

0

20

40

60

80

100

Cluster B (requested resources)

% CPU % Memory
EVICT 0.01% 0.01%
FAIL 0.00% 0.00%
FINISH 0.02% 0.02%
KILL 99.97% 99.97%

0

20

40

60

80

100

Cluster C (requested resources)

% CPU % Memory
EVICT 0.05% 0.01%
FAIL 0.02% 0.00%
FINISH 0.10% 0.01%
KILL 99.83% 99.98%

0

20

40

60

80

100

Cluster D (requested resources)

% CPU % Memory
EVICT 0.36% 0.32%
FAIL 0.05% 0.05%
FINISH 1.67% 1.31%
KILL 97.91% 98.32%

0

20

40

60

80

100

Cluster E (requested resources)

% CPU % Memory
EVICT 0.01% 0.01%
FAIL 0.00% 0.00%
FINISH 0.01% 0.02%
KILL 99.98% 99.96%

0

20

40

60

80

100

Cluster F (requested resources)

% CPU % Memory
EVICT 0.12% 0.08%
FAIL 0.02% 0.01%
FINISH 0.64% 0.54%
KILL 99.22% 99.37%

0

20

40

60

80

100

Cluster G (requested resources)

% CPU % Memory
EVICT 0.01% 0.00%
FAIL 0.00% 0.00%
FINISH 0.02% 0.00%
KILL 99.97% 100.00%

0

20

40

60

80

100

Cluster H (requested resources)

Figure 12. Percentages of CPU and RAM resources requested by tasks w.r.t. task termination type for in 2019 traces. Refer to
figure 11 for plot explaination.

13

(a) Cluster A (b) Cluster B (c) Cluster C (d) Cluster D

(e) Cluster E (f) Cluster F (g) Cluster G (h) Cluster H

Figure 13. Task event rates vs. task priority and final task termination

(a) Cluster A (b) Cluster B (c) Cluster C (d) Cluster D

(e) Cluster E (f) Cluster F (g) Cluster G (h) Cluster H

Figure 14. Task event rates vs. event execution time and final task termination

14

(a) Cluster A (b) Cluster B (c) Cluster C (d) Cluster D

(e) Cluster E (f) Cluster F (g) Cluster G (h) Cluster H

Figure 15. Task event rates vs. machine concurrency and final task termination

(a) Cluster A (b) Cluster B (c) Cluster C (d) Cluster D

(e) Cluster E (f) Cluster F (g) Cluster G (h) Cluster H

Figure 16. Job event rates vs. job size and final job termination

15

(a) Cluster A (b) Cluster B (c) Cluster C (d) Cluster D

(e) Cluster E (f) Cluster F
(g) Cluster G (h) Cluster H

Figure 17. Job event rates vs. event execution time and final job termination

(a) Cluster A
(b) Cluster B (c) Cluster C (d) Cluster D

(e) Cluster E (f) Cluster F
(g) Cluster G (h) Cluster H

Figure 18. Job event rates vs. machine locality and final job termination

16

5.8 Mean number of tasks and event distribution per task type

Refer to figure 19.

Observations:

• The mean number of events per task is an order of magnitude higher than in the 2011 traces

• Generally speaking, the event type with higher mean is the termination event for the task

• The # evts mean is higher than the sum of all other event type means, since it appears there are a lot more
non-termination events in the 2019 traces.

5.9 Mean number of tasks and event distribution per job type

Refer to figure 20.

Observations:

• Again the mean number of tasks is significantly higher than the 2011 traces, indicating a higher complexity of
workloads

• Cluster A has no evicted jobs

• The number of events is however lower than the event means in the 2011 traces

5.10 Probability of task successful termination given its unsuccesful events

Refer to figure 21.

Observations:

• Behaviour is very different from cluster to cluster

• There is no easy conclusion, unlike in 2011, on the correlation between succesful probability and # of events
of a specific type.

• Clusters B, C and D in particular have very unsmooth lines that vary a lot for small # evts differences. This
may be due to an uneven distribution of # evts in the traces.

5.11 Potential causes of unsuccesful executions

TBD

6 Implementation issues – Analysis limitations

6.1 Discussion on unknown fields

TBD

6.2 Limitation on computation resources required for the analysis

TBD

6.3 Other limitations . . .

TBD

7 Conclusions and future work or possible developments

TBD

17

Task termination # Evts. 95% p.tile # Evts. mean # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

KILL 58.0 27.395925 2.349579 0.213859 0.003412 3.395996 0.089576
FINISH 9.0 12.405370 0.019321 0.003779 2.153432 0.008150 0.008989
FAIL 108.0 50.039556 0.287778 11.061864 0.002098 0.467656 0.053144
LOST 7.0 8.847145 0.083348 0.001821 0.384190 1.329910 1.007933
EVICT 2924.0 428.550689 73.693595 0.768553 0.000179 28.766164 0.845501
No termination 84.0 14.818523 0.000000 0.000000 0.000000 0.000000 0.000000

(a) Cluster A

Task termination # Evts. 95% p.tile # Evts. mean # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

KILL 60.0 40.901041 3.351496 0.276305 0.003656 5.541079 0.033457
FINISH 20.0 17.277596 0.020444 0.020628 2.942579 0.011640 0.016278
FAIL 260.0 86.772419 0.518061 19.656798 0.000560 0.675392 0.088523
LOST 14.0 25.690455 0.257231 0.007420 1.928351 3.515436 2.015153
EVICT 1578.0 345.705559 64.816518 0.240214 0.000000 17.961539 1.028401
No termination 32.0 13.018130 0.000000 0.000000 0.000000 0.000000 0.000000

(b) Cluster B

Task termination # Evts. 95% p.tile # Evts. mean # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

KILL 32.0 24.230887 1.533237 0.116082 0.003994 3.799111 0.013670
FINISH 18.0 15.242628 0.017929 0.012701 2.470654 0.006020 0.006414
FAIL 156.0 187.030894 0.772823 48.445773 2.035378 0.756015 0.133687
LOST 28.0 22.385446 0.411365 0.007569 1.412201 2.751353 1.998665
EVICT 1748.0 404.108669 73.715527 1.812816 0.000166 22.908022 0.546198
No termination 96.0 21.315166 0.000000 0.000000 0.000000 0.000000 0.000000

(c) Cluster C

Task termination # Evts. 95% p.tile # Evts. mean # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

KILL 32.0 29.953873 1.960134 0.150521 0.002385 4.682411 0.016156
FINISH 18.0 23.105615 0.058651 0.019051 3.789050 0.009785 0.018699
FAIL 269.0 228.004975 0.496316 58.968210 0.809520 2.040396 0.324754
LOST 20.0 17.065721 0.014760 0.003577 0.079289 4.636283 1.999794
EVICT 1478.0 323.366130 62.000510 0.700268 0.000373 14.057514 0.627592
No termination 103.0 27.867403 0.000000 0.000000 0.000000 0.000000 0.000000

(d) Cluster D

Task termination # Evts. 95% p.tile # Evts. mean # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

KILL 258.0 55.877475 1.287917 0.056909 0.000185 12.159880 0.054997
FINISH 14.0 11.976806 0.013879 0.008435 1.998677 0.008241 0.026641
FAIL 138.0 450.526937 0.457703 111.471047 0.000000 0.455705 0.187991
LOST 14.0 11.899908 0.000000 0.000000 0.033976 3.131007 1.792164
EVICT 310.0 84.645189 11.780754 0.106119 0.000090 5.790960 0.654955
No termination 34.0 7.349165 0.000000 0.000000 0.000000 0.000000 0.000000

(e) Cluster E

Task termination # Evts. 95% p.tile # Evts. mean # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

KILL 162.0 45.039557 0.384065 0.098430 0.001178 9.804287 0.037783
FINISH 20.0 19.899709 0.019381 0.003510 3.007839 0.097934 0.023707
FAIL 220.0 164.043073 0.279352 39.257407 0.000023 1.549795 0.203997
LOST 36.0 25.002219 0.011815 0.000909 0.149586 7.283534 2.000428
EVICT 510.0 302.262347 23.973621 0.192394 0.000094 45.979997 0.374789
No termination 24.0 7.784905 0.000000 0.000000 0.000000 0.000000 0.000000

(f) Cluster F

Task termination # Evts. 95% p.tile # Evts. mean # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

KILL 641.00 130.054143 6.909204 0.135073 0.000033 25.275769 0.131106
FINISH 18.00 105.240418 0.015228 0.001655 14.153775 0.004879 0.158300
FAIL 40.00 40.121553 0.016111 8.592728 0.000000 0.338883 0.011310
LOST 4602.25 576.384120 1.931330 0.360515 48.094421 35.596567 3.534335
EVICT 2015.00 555.574743 77.429054 0.303127 0.000000 58.299330 0.653819
No termination 30.00 9.503553 0.000000 0.000000 0.000000 0.000000 0.000000

(g) Cluster G

Task termination # Evts. 95% p.tile # Evts. mean # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

KILL 388.0 74.425542 0.633338 0.169666 0.000231 17.172624 0.062799
FINISH 22.0 23.978294 0.023700 0.014129 3.632529 0.011111 0.028482
FAIL 487.0 170.153701 0.600483 37.599942 0.000000 2.866647 0.343806
LOST 386.4 94.666667 1.493333 2.400000 0.573333 14.040000 3.480000
EVICT 206.0 75.658064 6.732544 0.837154 0.000000 7.164722 0.421745
No termination 18.0 8.123506 0.000000 0.000000 0.000000 0.000000 0.000000

(h) Cluster H

Figure 19. Mean number of tasks and event distribution per task type

18

Job termination # Tasks mean # Tasks 95% p.tile # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

No termination 92.359436 174.3 23.263951 3.454474 23.047597 34.565608 0.707709
EVICT -1.000000 -1.0 NaN NaN NaN NaN NaN
FAIL 90.792728 499.0 0.694942 0.683556 0.085957 1.849587 0.009730
FINISH 1.187092 1.0 0.004696 0.001341 1.072623 0.024396 0.000952
KILL 16.533171 10.0 1.045419 0.073867 0.461387 1.188720 0.044610
LOST 223.206593 1689.6 0.000000 0.000000 0.000000 1.034082 0.974598

(a) Cluster A

Job termination # Tasks mean # Tasks 95% p.tile # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

No termination 112.422759 169.8 34.681161 0.711242 13.379533 38.794188 0.780483
EVICT 1.000000 1.0 1.000000 0.000000 0.000000 0.000000 0.000000
FAIL 74.367804 374.0 2.003355 1.993765 0.266584 4.944145 0.034526
FINISH 6.304299 10.0 0.022380 0.008476 2.349304 0.012729 0.006484
KILL 69.853370 234.0 1.696449 0.157833 0.613748 3.008678 0.012092
LOST 320.020202 459.8 0.000000 0.000000 0.000000 2.959946 1.996875

(b) Cluster B

Job termination # Tasks mean # Tasks 95% p.tile # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

No termination 96.399561 100.0 55.276973 7.552906 23.848867 41.578669 0.664107
EVICT 1.000000 1.0 1.000829 0.000000 0.000000 0.000415 0.000000
FAIL 41.982301 200.0 3.483606 0.997592 0.376438 3.998369 0.046439
FINISH 1.991485 1.0 0.021806 0.016914 1.565034 0.017401 0.001803
KILL 110.680808 652.0 0.627334 0.059076 0.656426 2.266794 0.006258
LOST 38.870091 48.6 0.000031 0.000311 0.000000 2.620721 1.833872

(c) Cluster C

Job termination # Tasks mean # Tasks 95% p.tile # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

No termination 103.889987 120.00 41.421532 7.604808 18.179476 47.603502 0.661826
EVICT 1.000000 1.00 1.000000 0.000000 0.000000 0.000000 0.000000
FAIL 43.355682 250.00 6.111993 0.948602 0.531390 6.497784 0.041077
FINISH 2.109260 2.00 0.268375 0.012614 1.723392 0.018567 0.005052
KILL 89.647948 283.00 1.013114 0.054374 0.283313 3.255675 0.006664
LOST 271.441748 2620.75 0.000000 0.000000 0.000000 5.938069 1.647084

(d) Cluster D

Job termination # Tasks mean # Tasks 95% p.tile # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

No termination 350.929407 596.0 7.204391 2.074423 0.126290 46.646065 0.378274
EVICT 1.000000 1.0 1.000000 0.000000 0.000000 0.000000 0.000000
FAIL 23.081125 25.0 0.246529 0.665546 0.716720 1.588119 0.066467
FINISH 7.776085 2.0 0.018677 0.029073 1.934488 0.020929 0.064920
KILL 88.790215 309.0 0.706293 0.028618 0.461084 7.572301 0.029122
LOST 5.374150 5.0 0.000000 0.000000 0.000000 3.234494 1.813924

(e) Cluster E

Job termination # Tasks mean # Tasks 95% p.tile # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

No termination 217.718640 379.4 4.304676 1.315021 4.971122 48.118465 0.464429
EVICT 1.000000 1.0 1.000000 0.000000 0.000000 0.000000 0.000000
FAIL 17.161251 8.0 0.621327 0.546356 0.426265 7.559244 0.034773
FINISH 2.940843 2.0 0.014704 0.051014 1.669860 0.162042 0.002623
KILL 103.888843 361.0 0.182630 0.063914 0.416684 5.824311 0.014161
LOST 3736.500000 18823.4 0.001491 0.000038 0.000000 6.298140 1.429604

(f) Cluster F

Job termination # Tasks mean # Tasks 95% p.tile # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

No termination 342.090034 599.10 14.184405 0.626186 23.836017 46.002917 0.735801
EVICT 1.000000 1.00 1.000000 0.000000 0.000000 0.000000 0.000000
FAIL 51.834803 250.00 0.555532 3.334848 0.607560 20.351992 0.176242
FINISH 8.519166 36.00 0.001733 0.629809 1.759677 0.005452 0.004575
KILL 37.054914 100.00 5.687172 0.064640 0.080370 19.166260 0.059132
LOST 190.500000 358.35 0.000000 0.000000 0.000000 1.994751 1.994751

(g) Cluster G

Job termination # Tasks mean # Tasks 95% p.tile # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

No termination 321.133053 546.9 3.470078 0.907801 3.316902 44.535824 0.315120
EVICT 1.000000 1.0 1.000000 0.000000 0.000000 0.000000 0.000000
FAIL 20.504293 1.0 0.114090 2.300036 0.980635 12.833466 0.046833
FINISH 4.278193 14.0 0.005406 0.152814 1.778038 0.013567 0.012663
KILL 11.022705 3.0 0.235500 0.102899 0.287701 11.336956 0.031148
LOST 3.400000 10.6 0.000000 0.000000 0.000000 0.235294 1.705882

(h) Cluster H

Figure 20. Mean number of tasks and event distribution per job type

19

(a) Cluster A (b) Cluster B

(c) Cluster C (d) Cluster D

(e) Cluster E (f) Cluster F

(g) Cluster G (h) Cluster H

Figure 21. Conditional probability of task success given a number of specific unsuccesful events observed, i.e. eviction, fail, kill
or lost.

20

	Introduction
	Background information
	Traces
	Traces contents
	Overview of traces' format
	Remark on traces size

	Project requirements and analysis
	Analysis methodology
	Introduction on Apache Spark
	Query architecture
	Overview
	Parsing table files
	The queries

	Query script design
	The ``task slowdown'' query script

	Ad-Hoc presentation of some analysis scripts

	Analysis and observations
	Overview of machine configurations in each cluster
	Analysis of execution time per each execution phase
	Task slowdown
	Reserved and actual resource usage of tasks
	Correlation between task events' metadata and task termination
	Correlation between task events' resource metadata and task termination
	Correlation between job events' metadata and job termination
	Mean number of tasks and event distribution per task type
	Mean number of tasks and event distribution per job type
	Probability of task successful termination given its unsuccesful events
	Potential causes of unsuccesful executions

	Implementation issues – Analysis limitations
	Discussion on unknown fields
	Limitation on computation resources required for the analysis
	Other limitations …

	Conclusions and future work or possible developments

