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Abstract

The project aims at comparing two different traces coming from large datacenters, focusing in particular on un-
successful executions of jobs and tasks submitted by users. The objective of this project is to compare the resource
waste caused by unsuccessful executions, their impact on application performance, and their root causes. We will
show the strong negative impact on CPU and RAM usage and on task slowdown. We will analyze patterns of unsuc-
cessful jobs and tasks, particularly focusing on their interdependency. Moreover, we will uncover their root causes
by inspecting key workload and system attributes such asmachine locality and concurrency level.
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1 Introduction

In today’s world there is an ever growing demand for efficient, large scale computations. The rising trend of “big
data” put the need for efficient management of large scaled parallelized computing at an all time high. This fact also
increases the demand for research in the field of distributed systems, in particular in how to schedule computations
effectively, avoid wasting resources and avoid failures.

In 2011 Google released a month long data trace of its own Borg cluster management system, containing a lot of data
regarding scheduling, priority management, and failures of a real production workload. This data was the foundation
of the 2015 Rosá et al. paper Understanding the Dark Side of Big Data Clusters: An Analysis beyond Failures, which
in its many conclusions highlighted the need for better cluster management highlighting the high amount of failures
found in the traces.

In 2019 Google released an updated version of the Borg cluster traces, not only containing data from a far bigger
workload due to the sheer power of Moore’s law, but also providing data from 8 different Borg cells from datacenters
all over the world. These new traces are therefore about 100 times larger than the old traces, weighing in terms
of storage spaces approximately 8TiB (when compressed and stored in JSONL format), requiring considerable com-
putational power to analyze them and the implementation of special data engineering tecniques for analysis of the
data.

This project aims to repeat the analysis performed in 2015 to highlight similarities and differences in workload this
decade brought, and expanding the old analysis to understand even better the causes of failures and how to prevent
them. Additionally, this report will provide an overview on the data engineering tecniques used to perform the queries
and analyses on the 2019 traces.

2 State of the Art

2.1 Introduction

TBD

2.2 Rosà et al. 2015 DSN paper

In 2015, Dr. Andrea Rosà, Lydia Y. Chen, Prof. Walter Binder published a research paper titled “Understanding the
Dark Side of Big Data Clusters: An Analysis beyond Failures” performing several analysis on Google’s 2011 Borg clus-
ter traces. The salient conclusion of that research is that lots of computation performed by Google would eventually
fail, leading to large amounts of computational power being wasted.

Our aim with this thesis is to repeat the analysis performed in 2015 on the new 2019 dataset to find similarities
and differences with the previous analysis, and ulimately find if computational power is indeed wasted in this new
workload as well.

2.3 Google Borg

Borg is Google’s own cluster management software. Among the various cluster management services it provides, the
main ones are: job queuing, scheduling, allocation, and deallocation due to higher priority computations.

The data this thesis is based on is from 8 Borg “cells” (i.e. clusters) spanning 8 different datacenters, all focused on
“compute” (i.e. computational oriented) workloads. The data collection timespan matches the entire month of May
2019.

In Google’s lingo a “job” is a large unit of computational workload made up of several “tasks”, i.e. a number of
executions of single executables running on a single machine. A job may run tasks sequentially or in parallel, and
the condition for a job’s succesful termination is nontrivial.

Both tasks and jobs lifecyles are represented by several events, which are encoded and stored in the trace as rows of
various tables. Among the information events provide, the field “type” provides information on the execution status
of the job or task. This field can have the following values:
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Type code Description

QUEUE The job or task was marked not eligible for scheduling by Borg’s scheduler, and
thus Borg will move the job/task in a long wait queue

SUBMIT The job or task was submitted to Borg for execution
ENABLE The job or task became eligible for scheduling
SCHEDULE The job or task’s execution started
EVICT The job or task was terminated in order to free computational resources for an

higher priority job
FAIL The job or task terminated its execution unsuccesfully due to a failure
FINISH The job or task terminated succesfully
KILL The job or task terminated its execution because of a manual request to stop it
LOST It is assumed a job or task is has been terminated, but due to missing data there is

insufficent information to identify when or how
UPDATE_PENDING The metadata (scheduling class, resource requirements, . . . ) of the job/task was

updated while the job was waiting to be scheduled
UPDATE_RUNNING The metadata (scheduling class, resource requirements, . . . ) of the job/task was

updated while the job was in execution

Figure 1 shows the expected transitions between event types.

Figure 1. Typical transitions between task/job event types according to Google

2.4 Traces contents

The traces provided by Google contain mainly a collection of job and task events spanning a month of execution of
the 8 different clusters. In addition to this data, some additional data on the machines’ configuration in terms of
resources (i.e. amount of CPU and RAM) and additional machine-related metadata.

Due to Google’s policy, most identification related data (like job/task IDs, raw resource amounts and other text
values) were obfuscated prior to the release of the traces. One obfuscation that is noteworthy in the scope of this
thesis is related to CPU and RAM amounts, which are expressed respetively in NCUs (Normalized Compute Units) and
NMUs (Normalized Memory Units).

NCUs and NMUs are defined based on the raw machine resource distributions of the machines within the 8 clusters.
A machine having 1 NCU CPU power and 1 NMU memory size has the maximum amount of raw CPU power and raw
RAM size found in the clusters. While RAM size is measured in bytes for normalization purposes, CPU power was
measured in GCU (Google Compute Units), a proprietary CPU power measurement unit used by Google that combines
several parameters like number of processors and cores, clock frequency, and architecture (i.e. ISA).
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2.5 Overview of traces’ format

The traces have a collective size of approximately 8TiB and are stored in a Gzip-compressed JSONL (JSON lines)
format, which means that each table is represented by a single logical “file” (stored in several file segments) where
each carriage return separated line represents a single record for that table.

There are namely 5 different table “files”:

machine_configs, which is a table containing each physical machine’s configuration and its evolution over time;

instance_events, which is a table of task events;

collection_events, which is a table of job events;

machine_attributes, which is a table containing (obfuscated) metadata about each physical machine and its evo-
lution over time;

instance_usage, which contains resource (CPU/RAM) measures of jobs and tasks running on the single machines.

The scope of this thesis focuses on the tables machine_configs, instance_events and collection_events.

2.6 Remark on traces size

While the 2011 Google Borg traces were relatively small, with a total size in the order of the tens of gigabytes, the
2019 traces are quite challenging to analyze due to their sheer size. As stated before, the traces have a total size of 8
TiB when stored in the format provided by Google. Even when broken down to table “files”, unitary sizes still reach
the single tebibyte mark (namely for machine_configs, the largest table in the trace).

Due to this constraints, a careful data engineering based approach was used when reproducing the 2015 DSN paper
analysis. Bleeding edge data science technologies like Apache Spark were used to achieve efficient and parallelized
computations. This approach is discussed with further detail in the following section.

3 Project requirements and analysis

TBD (describe our objective with this analysis in detail)

4 Analysis methodology

Due to the inherent complexity in analyzing traces of this size, novel bleeding-edge data engineering tecniques were
adopted to performed the required computations. We used the framework Apache Spark to perform efficient and
parallel Map-Reduce computations. In this section, we discuss the technical details behind our approach.

4.1 Introduction on Apache Spark

Apache Spark is a unified analytics engine for large-scale data processing. In layman’s terms, Spark is really useful
to parallelize computations in a fast and streamlined way.

In the scope of this thesis, Spark was used essentially as a Map-Reduce framework for computing aggregated results
on the various tables. Due to the sharded nature of table “files”, Spark is able to spawn a thread per file and run
computations using all processors on the server machines used to run the analysis.

Spark is also quite powerful since it provides automated thread pooling services, and it is able to efficiently store and
cache intermediate computation on secondary storage without any additional effort required from the data engineer.
This feature was especially useful due to the sheer size of the analyzed data, since the computations required to store
up to 1TiB of intermediate data on disk.

The chosen programming language for writing analysis scripts was Python. Spark has very powerful native Python
bindings in the form of the PySpark API, which were used to implement the various queries.

4.2 Query architecture

4.2.1 Overview

In general, each query written to execute the analysis follows a general Map-Reduce template.
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Traces are first read, then parsed, and then filtered by performing selections, projections and computing new derived
fields. After this preparation phase, the trace records are often passed through a groupby() operation, which by
choosing one or many record fields sorts all the records into several “bins” containing records with matching values
for the selected fields. Then, a map operation is applied to each bin in order to derive some aggregated property
value for each grouping. Finally, a reduce operation is applied to either further aggregate those computed properties
or to generate an aggregated data structure for storage purposes.

4.2.2 Parsing table files

As stated before, table “files” are composed of several Gzip-compressed shards of JSONL record data. The specification
for the types and constraints of each record is outlined by Google in the form of a protobuffer specification file found
in the trace release package.1. This file was used as the oracle specification and was a critical reference for writing
the query code that checks, parses and carefully sanitizes the various JSONL records prior to actual computations.

The JSONL encoding of traces records is often performed with non-trivial rules that required careful attention. One
of these involved fields that have a logically-wise “zero” value (i.e. values like “0” or the empty string). For these
values the key-value pair in the JSON object is outright omitted. When reading the traces in Apache Spark is therefore
necessary to check for this possibility and insert back the omitted record attributes.

4.2.3 The queries

Most queries use only two or three fields in each trace records, while the original table records often are made of
a couple of dozen fields. In order to save memory during the query, a projection is often applied to the data by the
means of a .map() operation over the entire trace set, performed using Spark’s RDD API.

Another operation that is often necessary to perform prior to the Map-Reduce core of each query is a record filtering
process, which is often motivated by the presence of incomplete data (i.e. records which contain fields whose values
is unknown). This filtering is performed using the .filter() operation of Spark’s RDD API.

The core of each query is often a groupby() followed by a map() operation on the aggregated data. The groupby()

groups the set of all records into several subsets of records each having something in common. Then, each of this
small clusters is reduced with a map() operation to a single record. The motivation behind this way of computing
data is that for the analysis in this thesis it is often necessary to analyze the behaviour w.r.t. time of either task or
jobs by looking at their events. These queries are therefore implemented by groupby()-ing records by task or job,
and then map()-ing each set of event records sorting them by time and performing the desired computation on the
obtained chronological event log.

Sometimes intermediate results are saved in Spark’s parquet format in order to compute and save intermediate results
beforehand.

4.3 Query script design

In this section we aim to show the general complexity behind the implementations of query scripts by explaining in
detail some sampled scripts to better appreciate their behaviour.

4.3.1 The “task slowdown” query script

One example of analysis script with average complexity and a pretty straightforward structure is the pair of scripts
task_slowdown.py and task_slowdown_table.py used to compute the “task slowdown” tables (namely the tables
in figure 6).

“Slowdown” is a task-wise measure of wasted execution time for tasks with a FINISH termination type. It is computed
as the total execution time of the task divided by the execution time actually needed to complete the task (i.e. the
total time of the last execution attempt, successful by definition).

The analysis requires to compute the mean task slowdown for each task priority value, and additionally compute the
percentage of tasks with successful terminations per priority. The query therefore needs to compute the execution
time of each execution attempt for each task, determine if each task has successful termination or not, and finally
combine this data to compute slowdown, mean slowdown and ultimately the final table found in figure 6.

Figure 2 shows a schematic representation of the query structure.

1Google 2019 Borg traces Protobuffer specification on Github
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Figure 2. Diagram of the script used for the “task slowdown” query.

The query first starts reading the instance_events table, which contains (among other data) all task event logs
containing properties, event types and timestamps. As already explained in the previous section, the logical table file
is actually stored as several Gzip-compressed JSONL shards. This is very useful for processing purposes, since Spark
is able to parse and load in memory each shard in parallel, i.e. using all processing cores on the server used to run
the queries.

After loading the data, a selection and a projection operation are performed in the preparation phase so as to “clean
up” the records and fields that are not needed, leaving only useful information to feed in the “group by” phase. In
this query, the selection phase removes all records that do not represent task events or that contain an unknown task
ID or a null event timestamp. In the 2019 traces it is quite common to find incomplete records, since the log process
is unable to capture the sheer amount of events generated by all jobs in a exact and deterministic fashion.

Then, after the preparation stage is complete, the task event records are grouped in several bins, one per task ID.
Performing this operation the collection of unsorted task event types is rearranged to form groups of task events all
relating to a single task.

These obtained collections of task events are then sorted by timestamp and processed to compute intermediate data
relating to execution attempt times and task termination counts. After the task events are sorted, the script iterates
over the events in chronological order, storing each execution attempt time and registering all execution termination
types by checking the event type field. The task termination is then equal to the last execution termination type,
following the definition originally given in the 2015 Rosá et al. DSN paper.

If the task termination is determined to be unsuccessful, the tally counter of task terminations for the matching task
property is increased. Otherwise, all the task termination attempt time deltas are returned. Tallies and time deltas
are saved in an intermediate time file for fine-grained processing.

Finally, the task_slowdown_table.py processes this intermediate results to compute the percentage of successful
tasks per execution and computing slowdown values given the previously computed execution attempt time deltas.
Finally, the mean of the computed slowdown values is computed resulting in the clear and coincise tables found in
figure 6.

4.4 Ad-Hoc presentation of some analysis scripts

TBD (with diagrams)
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5 Analysis and observations

5.1 Overview of machine configurations in each cluster

Refer to figure 3.

Observations:

• machine configurations are definitely more varied than the ones in the 2011 traces

• some clusters have more machine variability

5.2 Analysis of execution time per each execution phase

Refer to figures 4 and 5.

Observations:

• Across all cluster almost 50% of time is spent in “unknown” transitions, i.e. there are some time slices that are
related to a state transition that Google says are not “typical” transitions. This is mostly due to the trace log
being intermittent when recording all state transitions.

• 80% of the time spent in KILL and LOST is unknown. This is predictable, since both states indicate that the job
execution is not stable (in particular LOST is used when the state logging itself is unstable)

• From the absolute graph we see that the time “wasted” on non-finish terminated jobs is very significant

• Execution is the most significant task phase, followed by queuing time and scheduling time (“ready” state)

• In the absolute graph we see that a significant amount of time is spent to re-schedule evicted jobs (“evicted”
state)

• Cluster A has unusually high queuing times

5.3 Task slowdown

Refer to figure 6

Observations:

• Priority values are different from 0-11 values in the 2011 traces. A conversion table is provided by Google;

• For some priorities (e.g. 101 for cluster D) the relative number of finishing task is very low and the mean
slowdown is very high (315). This behaviour differs from the relatively homogeneous values from the 2011
traces.

• Some slowdown values cannot be computed since either some tasks have a 0ns execution time or for some
priorities no tasks in the traces terminate successfully. More raw data on those exception is in Jupyter.

• The % of finishing jobs is relatively low comparing with the 2011 traces.

5.4 Reserved and actual resource usage of tasks

Refer to figures 7 and 8.

Observations:

• Most (mesasured and requested) resources are used by killed job, even more than in the 2011 traces.

• Behaviour is rather homogeneous across datacenters, with the exception of cluster G where a lot of LOST-
terminated tasks acquired 70% of both CPU and RAM

5.5 Correlation between task events’ metadata and task termination

Refer to figures 9, 10, and 11.

Observations:

• No smooth curves in this figure either, unlike 2011 traces
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CPU (NCU) RAM (NMU) Machine count % Machines

Unknown Unknown 8729 1.639218%
1.000000 0.500000 124234 23.329891%
0.591797 0.333496 103013 19.344801%
0.259277 0.166748 78078 14.662260%
0.708984 0.333496 55801 10.478864%
0.386719 0.333496 36237 6.804943%
0.958984 0.500000 31151 5.849843%
0.708984 0.666992 29594 5.557454%
0.386719 0.166748 27011 5.072393%
1.000000 1.000000 12286 2.307187%
0.591797 0.166748 9902 1.859496%
1.000000 0.250000 7550 1.417814%
0.958984 1.000000 3552 0.667030%
0.259277 0.333496 3024 0.567877%
0.591797 0.666992 1000 0.187790%
0.259277 0.083374 634 0.119059%
0.958984 0.250000 600 0.112674%
0.500000 0.062500 54 0.010141%
0.500000 0.250000 34 0.006385%
0.479492 0.250000 12 0.002253%
0.708984 0.250000 6 0.001127%
0.591797 0.250000 4 0.000751%
0.708984 0.500000 2 0.000376%
0.479492 0.500000 2 0.000376%

(a) All clusters

CPU (NCU) RAM (NMU) Machine count % Machines

Unknown Unknown 1377 1.623170%
0.591797 0.333496 29487 34.758469%
1.000000 0.500000 13440 15.842705%
0.708984 0.333496 12495 14.728764%
0.386719 0.333496 9057 10.676144%
0.386719 0.166748 5265 6.206238%
0.708984 0.666992 4608 5.431784%
1.000000 1.000000 4446 5.240823%
0.591797 0.166748 2484 2.928071%
0.958984 0.500000 1143 1.347337%
0.958984 1.000000 654 0.770917%
1.000000 0.250000 366 0.431431%
0.479492 0.250000 6 0.007073%
0.708984 0.250000 6 0.007073%

(b) A cluster

CPU (NCU) RAM (NMU) Machine count % Machines

Unknown Unknown 134 0.264812%
0.591797 0.333496 16184 31.982926%
1.000000 0.500000 9790 19.347061%
0.708984 0.333496 8448 16.694992%
0.958984 0.500000 5502 10.873088%
0.708984 0.666992 3832 7.572823%
1.000000 1.000000 2214 4.375321%
0.591797 0.166748 2152 4.252796%
0.386719 0.333496 816 1.612584%
0.958984 1.000000 618 1.221296%
0.591797 0.666992 500 0.988103%
0.386719 0.166748 412 0.814197%

(c) Cluster B

CPU (NCU) RAM (NMU) Machine count % Machines

Unknown Unknown 1466 2.274208%
0.259277 0.166748 15754 24.439204%
0.386719 0.333496 11104 17.225652%
0.591797 0.333496 10404 16.139741%
0.958984 0.500000 6634 10.291334%
1.000000 0.500000 5654 8.771059%
0.386719 0.166748 3580 5.553660%
0.708984 0.666992 2900 4.498774%
1.000000 1.000000 2736 4.244361%
1.000000 0.250000 2132 3.307375%
0.958984 1.000000 766 1.188297%
0.708984 0.333496 620 0.961807%
0.958984 0.250000 600 0.930781%
0.591797 0.166748 112 0.173746%

(d) Cluster C

CPU (NCU) RAM (NMU) Machine count % Machines

Unknown Unknown 498 0.794309%
0.591797 0.333496 28394 45.288376%
0.386719 0.333496 8402 13.401174%
0.259277 0.166748 8020 12.791885%
0.386719 0.166748 5806 9.260559%
0.708984 0.666992 4380 6.986092%
0.708984 0.333496 3924 6.258772%
0.591797 0.166748 2548 4.064055%
0.259277 0.333496 426 0.679469%
1.000000 0.500000 292 0.465739%
0.591797 0.250000 4 0.006380%
0.708984 0.500000 2 0.003190%

(e) Cluster D

CPU (NCU) RAM (NMU) Machine count % Machines

Unknown Unknown 536 0.671915%
0.259277 0.166748 38452 48.202377%
0.708984 0.333496 11786 14.774608%
0.958984 0.500000 8646 10.838389%
0.708984 0.666992 7606 9.534674%
1.000000 0.500000 5586 7.002457%
0.386719 0.166748 4470 5.603470%
0.259277 0.333496 1268 1.589530%
0.259277 0.083374 634 0.794765%
0.591797 0.333496 324 0.406158%
1.000000 0.250000 268 0.335957%
1.000000 1.000000 138 0.172993%
0.500000 0.062500 54 0.067693%
0.500000 0.250000 4 0.005014%

(f) Cluster E

CPU (NCU) RAM (NMU) Machine count % Machines

Unknown Unknown 1432 2.299958%
1.000000 0.500000 41340 66.396839%
0.708984 0.333496 6878 11.046866%
0.591797 0.333496 5564 8.936430%
0.958984 0.500000 2172 3.488484%
0.386719 0.166748 1544 2.479843%
0.708984 0.666992 1244 1.998008%
1.000000 0.250000 792 1.272044%
0.958984 1.000000 536 0.860878%
0.386719 0.333496 398 0.639234%
1.000000 1.000000 344 0.552504%
0.500000 0.250000 18 0.028910%

(g) Cluster F

CPU (NCU) RAM (NMU) Machine count % Machines

Unknown Unknown 1566 2.261568%
0.259277 0.166748 15852 22.892958%
1.000000 0.500000 11808 17.052741%
0.708984 0.333496 7968 11.507134%
0.591797 0.333496 7830 11.307839%
0.386719 0.166748 4690 6.773150%
0.708984 0.666992 4258 6.149269%
0.958984 0.500000 4196 6.059731%
0.386719 0.333496 3864 5.580267%
0.591797 0.166748 2606 3.763503%
1.000000 0.250000 2100 3.032754%
0.259277 0.333496 1330 1.920744%
0.958984 1.000000 778 1.123563%
1.000000 1.000000 378 0.545896%
0.500000 0.250000 12 0.017330%
0.479492 0.250000 6 0.008665%
0.479492 0.500000 2 0.002888%

(h) Cluster G

CPU (NCU) RAM (NMU) Machine count % Machines

Unknown Unknown 1720 2.933251%
1.000000 0.500000 36324 61.946178%
0.591797 0.333496 4826 8.230158%
0.708984 0.333496 3682 6.279205%
0.958984 0.500000 2858 4.873973%
0.386719 0.333496 2596 4.427163%
1.000000 1.000000 2030 3.461919%
1.000000 0.250000 1892 3.226577%
0.386719 0.166748 1244 2.121491%
0.708984 0.666992 766 1.306320%
0.591797 0.666992 500 0.852689%
0.958984 1.000000 200 0.341076%

(i) Cluster H

Figure 3. Overview of machine configurations in terms of CPU and RAM resources for each cluster
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Color Execution phase

Blue Queued
Orange Ended
Green Ready
Red Running

Violet Evicted
Brown Unknown

(a) Execution state legend for the graphs

(b) All clusters

(c) Cluster A (d) Cluster B (e) Cluster C (f) Cluster D

(g) Cluster E (h) Cluster F (i) Cluster G (j) Cluster H

Figure 4. Total task time (in milliseconds) spent in each execution phase w.r.t. task termination.
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Color Execution phase

Blue Queued
Orange Ended
Green Ready
Red Running

Violet Evicted
Brown Unknown

(a) Execution state legend for the graphs

(b) All clusters

(c) Cluster A (d) Cluster B (e) Cluster C (f) Cluster D

(g) Cluster E (h) Cluster F (i) Cluster G (j) Cluster H

Figure 5. Relative task time (in milliseconds) spent in each execution phase w.r.t. task termination.
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Priority % finished tasks Mean slowdown

Unknown 10.620113% 1.097556
24 0.000000% –
25 0.333054% 82.973285

100 0.000000% –
101 81.917703% 30.798089
102 0.000000% –
103 14.990678% 1.130579
105 57.678214% 1.078733
107 53.926543% 1.016187
114 0.000000% –
115 4.108501% 1.004324
116 13.045304% 1.032749
117 0.000000% –
118 11.907081% 1.003494
119 21.264583% 1.504923
170 0.000000% –
200 27.211754% 4.116760
205 0.000000% –
210 0.000000% –
214 0.000000% –
215 0.000000% –
360 0.616372% 2.924018
400 0.000000% –
450 2.203423% 1.142450
500 0.000000% –

(a) Cluster A

Priority % finished tasks Mean slowdown

0 45.193049% 1.176397
25 0.018094% 133.481864
80 0.000000% –

100 0.000000% –
101 66.479321% 433.414195
103 0.106377% 1.645114
105 0.463292% 2.408090
107 0.000000% –
114 0.676897% 1.003422
115 4.117647% 5.916852
116 8.316438% 1.109652
117 0.000000% –
118 0.311290% 1.000000
119 0.195997% 2.555160
170 0.000000% –
199 0.000000% –
200 30.916717% 9.707524
205 0.000000% –
210 0.000000% –
214 0.000000% –
215 0.000000% –
360 3.502999% 1.612147
450 0.612913% 1.057515

(b) Cluster B

Priority % finished tasks Mean slowdown

0 50.887820% 1.105787
3 0.000000% –

10 0.000000% –
25 22.468276% 8.191258

100 0.000000% –
101 52.628263% 421.490544
103 0.005336% 2.794339
105 0.023521% 1.372291
107 0.000245% 14.708268
114 0.022221% 1.011266
115 0.281832% 1.980743
116 0.013836% 1.022119
117 93.165468% 1.000000
118 0.004137% 1.100009
119 2.215917% 2.044049
170 0.000000% –
200 3.606796% 4.139724
205 0.000000% –
210 0.000000% –
214 0.000000% –
215 0.000000% –
360 4.367418% 2.061085
450 1.512578% 1.066014

(c) Cluster C

Priority % finished tasks Mean slowdown

0 26.522899% 1.116002
5 0.000000% –

25 16.293068% 65.676400
100 0.000000% –
101 45.314870% 315.954065
103 0.004540% 1.065721
105 0.051712% 2.897040
107 0.000350% 1.551354
114 0.000000% –
115 5.189033% 2.186562
116 0.126154% 1.278510
117 85.714286% 1.000000
118 0.054055% 2.048749
119 0.441844% 3.020486
197 0.000000% –
199 0.000000% –
200 6.528759% 5.514350
205 0.000000% –
210 0.000000% –
214 0.000000% –
215 0.000000% –
360 1.594977% 2.476706
450 0.611145% 1.330248

(d) Cluster D

Priority % finished tasks Mean slowdown

0 42.805214% 1.439544
25 5.344531% 2.676136

100 0.000000% –
101 0.015918% 1.122507
103 0.021660% 3.163046
105 0.404803% 14.750313
107 0.000000% –
114 0.000000% –
115 0.027326% 1.000000
116 0.000000% –
117 0.000000% –
118 0.000000% –
119 0.458256% 10.310893
170 0.000000% –
200 1.959258% 8.535722
201 0.000000% –
205 0.000000% –
210 0.000000% –
215 0.000000% –
220 0.000000% –
360 37.157031% 2.873243
450 0.548458% 1.113283

(e) Cluster E

Priority % finished tasks Mean slowdown

0 45.208221% 1.088162
25 0.647505% 2.230960

100 0.000000% –
101 40.296631% 323.858714
103 0.058418% 1.167347
105 0.222372% 1.550453
107 0.060860% 1.012727
114 0.006958% 1.000000
115 3.647104% 5.094215
116 0.000000% –
117 0.000086% 1.000000
118 0.002082% 1.000000
119 31.354662% 7.608799
200 3.653528% 5.943247
201 0.000000% –
360 7.424790% 2.171524
450 0.992623% 1.021053

(f) Cluster F

Priority % finished tasks Mean slowdown

0 33.612201% 1.138988
25 0.233338% 8.692558
50 0.000000% –

100 0.000000% –
101 96.470338% 19.378523
103 0.032539% 1.271282
105 0.196286% 1.000738
107 0.000000% –
114 0.000000% –
115 7.633588% 1.802068
117 0.000000% –
118 48.969072% 3.877102
119 0.085944% 3.166077
170 0.000000% –
200 26.747126% 14.573912
360 1.618878% 2.119524
450 2.737219% 1.036927

(g) Cluster G

Priority % finished tasks Mean slowdown

0 27.744380% 1.122458
19 0.000000% –
25 1.042767% 3.064188

101 100.000000% 76.438090
103 0.481256% 1.262067
105 1.427256% 4.205547
107 0.000000% –
115 5.122494% 1.000000
116 1.035309% 73.447995
117 0.000050% 1.000000
118 1.003331% 1.947121
119 0.145214% 7.301093
200 2.702770% 5.798142
201 0.000000% –
220 0.000000% –
360 4.425746% 2.018441
450 0.535389% 1.054678

(h) Cluster H

Figure 6. Mean task slowdown for each cluster and each task priority

(a) Cluster A (b) Cluster B (c) Cluster C (d) Cluster D

Task termination % CPU % RAM

No termination 0.6972% 1.0447%
Evict 13.4392% 11.8184%
Fail 2.2792% 2.8387%
Finish 1.3963% 1.1066%
Kill 82.1791% 83.1826%
Lost 0.0091% 0.0091%

(e) Cluster A (exact values)

Task termination % CPU % RAM

No termination 0.2582% 0.4637%
Evict 4.8340% 7.3120%
Fail 6.2950% 8.3841%
Finish 2.5877% 1.2231%
Kill 86.0215% 82.6144%
Lost 0.0036% 0.0027%

(f) Cluster B (exact values)

Task termination % CPU % RAM

No termination 0.3376% 0.3812%
Evict 8.2099% 8.0454%
Fail 1.2294% 2.0809%
Finish 2.9399% 3.3249%
Kill 87.2740% 86.1588%
Lost 0.0093% 0.0088%

(g) Cluster C (exact values)

Task termination % CPU % RAM

No termination 0.4995% 0.4822%
Evict 7.6002% 9.0656%
Fail 3.0288% 3.9214%
Finish 0.8666% 0.8914%
Kill 88.0011% 85.6364%
Lost 0.0039% 0.0030%

(h) Cluster D (exact values)

Figure 7. Relative usage of CPU and RAM resources w.r.t. final task termination.
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(a) Cluster A (b) Cluster B (c) Cluster C (d) Cluster D

Task termination % CPU % RAM

No termination 0.033962% 0.193674%
Evict 2.838362% 3.399075%
Fail 0.058335% 0.069755%
Finish 0.000102% 0.000151%
Kill 96.661332% 95.799104%
Lost 0.407908% 0.538242%

(e) Cluster A (exact values)

Task termination % CPU % RAM

No termination 0.000094% 0.000191%
Evict 0.003365% 0.004696%
Fail 0.003061% 0.004965%
Finish 0.012696% 0.017647%
Kill 91.094839% 85.573746%
Lost 8.885947% 14.398756%

(f) Cluster B (exact values)

Task termination % CPU % RAM

No termination 0.000105% 0.000221%
Evict 0.008618% 0.006991%
Fail 0.001261% 0.001459%
Finish 0.015047% 0.017003%
Kill 82.483146% 79.698011%
Lost 17.491823% 20.276314%

(g) Cluster C (exact values)

Task termination % CPU % RAM

No termination 0.000948% 0.000128%
Evict 0.046057% 0.006352%
Fail 0.023703% 0.002770%
Finish 0.095353% 0.012975%
Kill 95.468127% 97.927565%
Lost 4.365813% 2.050210%

(h) Cluster D (exact values)

(i) Cluster E (j) Cluster F (k) Cluster G (l) Cluster H

Task termination % CPU % RAM

No termination 0.015102% 0.016472%
Evict 0.362088% 0.321274%
Fail 0.051373% 0.047377%
Finish 1.672195% 1.310360%
Kill 97.899179% 98.304482%
Lost 0.000063% 0.000034%

(m) Cluster E (exact values)

Task termination % CPU % RAM

No termination 0.000114% 0.000306%
Evict 0.007986% 0.013466%
Fail 0.000913% 0.002064%
Finish 0.013296% 0.021751%
Kill 94.396548% 90.227868%
Lost 5.581144% 9.734546%

(n) Cluster F (exact values)

Task termination % CPU % RAM

No termination 0.001283% 0.000748%
Evict 0.034040% 0.025278%
Fail 0.004384% 0.003918%
Finish 0.176091% 0.166656%
Kill 27.376816% 30.954255%
Lost 72.407386% 68.849146%

(o) Cluster G (exact values)

Task termination % CPU % RAM

No termination 0.000148% 0.000022%
Evict 0.006021% 0.000751%
Fail 0.000858% 0.000144%
Finish 0.015642% 0.001873%
Kill 78.910066% 97.713322%
Lost 21.067264% 2.283888%

(p) Cluster H (exact values)

Figure 8. Relative request of CPU and RAM resources prior to tasks’ execution w.r.t. final task termination.

(a) Cluster A (b) Cluster B (c) Cluster C (d) Cluster D

(e) Cluster E (f) Cluster F (g) Cluster G (h) Cluster H

Figure 9. Task event rates vs. task priority and final task termination
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(a) Cluster A (b) Cluster B (c) Cluster C (d) Cluster D

(e) Cluster E (f) Cluster F (g) Cluster G (h) Cluster H

Figure 10. Task event rates vs. event execution time and final task termination

(a) Cluster A (b) Cluster B (c) Cluster C (d) Cluster D

(e) Cluster E (f) Cluster F (g) Cluster G (h) Cluster H

Figure 11. Task event rates vs. machine concurrency and final task termination
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(a) Cluster A (b) Cluster B (c) Cluster C (d) Cluster D

(e) Cluster E (f) Cluster F (g) Cluster G (h) Cluster H

Figure 12. Job event rates vs. job size and final job termination

(a) Cluster A (b) Cluster B (c) Cluster C (d) Cluster D

(e) Cluster E (f) Cluster F
(g) Cluster G (h) Cluster H

Figure 13. Job event rates vs. event execution time and final job termination

• The behaviour of curves for 7a (priority) is almost the opposite of 2011, i.e. in-between priorities have higher
kill rates while priorities at the extremum have lower kill rates. This could also be due bt the inherent distri-
bution of job terminations;

• Event execution time curves are quite different than 2011, here it seems there is a good correlation between
short task execution times and finish event rates, instead of the U shape curve in 2015 DSN

• In figure 10 cluster behaviour seems quite uniform

• Machine concurrency seems to play little role in the event termination distribution, as for all concurrency
factors the kill rate is at 90%.

5.6 Correlation between task events’ resource metadata and task termination

5.7 Correlation between job events’ metadata and job termination

Refer to figures 12, 13, and 14.

Observations:

• Behaviour between cluster varies a lot
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(a) Cluster A
(b) Cluster B (c) Cluster C (d) Cluster D

(e) Cluster E (f) Cluster F
(g) Cluster G (h) Cluster H

Figure 14. Job event rates vs. machine locality and final job termination

• There are no “smooth” gradients in the various curves unlike in the 2011 traces

• Killed jobs have higher event rates in general, and overall dominate all event rates measures

• There still seems to be a correlation between short execution job times and successfull final termination, and
likewise for kills and higher job terminations

• Across all clusters, a machine locality factor of 1 seems to lead to the highest success event rate

5.8 Mean number of tasks and event distribution per task type

Refer to figure 15.

Observations:

• The mean number of events per task is an order of magnitude higher than in the 2011 traces

• Generally speaking, the event type with higher mean is the termination event for the task

• The # evts mean is higher than the sum of all other event type means, since it appears there are a lot more
non-termination events in the 2019 traces.

5.9 Mean number of tasks and event distribution per job type

Refer to figure 16.

Observations:

• Again the mean number of tasks is significantly higher than the 2011 traces, indicating a higher complexity of
workloads

• Cluster A has no evicted jobs

• The number of events is however lower than the event means in the 2011 traces

5.10 Probability of task successful termination given its unsuccesful events

Refer to figure 17.

Observations:

• Behaviour is very different from cluster to cluster

• There is no easy conclusion, unlike in 2011, on the correlation between succesful probability and # of events
of a specific type.
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Task termination # Evts. 95% p.tile # Evts. mean # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

KILL 58.0 27.395925 2.349579 0.213859 0.003412 3.395996 0.089576
FINISH 9.0 12.405370 0.019321 0.003779 2.153432 0.008150 0.008989
FAIL 108.0 50.039556 0.287778 11.061864 0.002098 0.467656 0.053144
LOST 7.0 8.847145 0.083348 0.001821 0.384190 1.329910 1.007933
EVICT 2924.0 428.550689 73.693595 0.768553 0.000179 28.766164 0.845501
No termination 84.0 14.818523 0.000000 0.000000 0.000000 0.000000 0.000000

(a) Cluster A

Task termination # Evts. 95% p.tile # Evts. mean # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

KILL 60.0 40.901041 3.351496 0.276305 0.003656 5.541079 0.033457
FINISH 20.0 17.277596 0.020444 0.020628 2.942579 0.011640 0.016278
FAIL 260.0 86.772419 0.518061 19.656798 0.000560 0.675392 0.088523
LOST 14.0 25.690455 0.257231 0.007420 1.928351 3.515436 2.015153
EVICT 1578.0 345.705559 64.816518 0.240214 0.000000 17.961539 1.028401
No termination 32.0 13.018130 0.000000 0.000000 0.000000 0.000000 0.000000

(b) Cluster B

Task termination # Evts. 95% p.tile # Evts. mean # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

KILL 32.0 24.230887 1.533237 0.116082 0.003994 3.799111 0.013670
FINISH 18.0 15.242628 0.017929 0.012701 2.470654 0.006020 0.006414
FAIL 156.0 187.030894 0.772823 48.445773 2.035378 0.756015 0.133687
LOST 28.0 22.385446 0.411365 0.007569 1.412201 2.751353 1.998665
EVICT 1748.0 404.108669 73.715527 1.812816 0.000166 22.908022 0.546198
No termination 96.0 21.315166 0.000000 0.000000 0.000000 0.000000 0.000000

(c) Cluster C

Task termination # Evts. 95% p.tile # Evts. mean # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

KILL 32.0 29.953873 1.960134 0.150521 0.002385 4.682411 0.016156
FINISH 18.0 23.105615 0.058651 0.019051 3.789050 0.009785 0.018699
FAIL 269.0 228.004975 0.496316 58.968210 0.809520 2.040396 0.324754
LOST 20.0 17.065721 0.014760 0.003577 0.079289 4.636283 1.999794
EVICT 1478.0 323.366130 62.000510 0.700268 0.000373 14.057514 0.627592
No termination 103.0 27.867403 0.000000 0.000000 0.000000 0.000000 0.000000

(d) Cluster D

Task termination # Evts. 95% p.tile # Evts. mean # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

KILL 258.0 55.877475 1.287917 0.056909 0.000185 12.159880 0.054997
FINISH 14.0 11.976806 0.013879 0.008435 1.998677 0.008241 0.026641
FAIL 138.0 450.526937 0.457703 111.471047 0.000000 0.455705 0.187991
LOST 14.0 11.899908 0.000000 0.000000 0.033976 3.131007 1.792164
EVICT 310.0 84.645189 11.780754 0.106119 0.000090 5.790960 0.654955
No termination 34.0 7.349165 0.000000 0.000000 0.000000 0.000000 0.000000

(e) Cluster E

Task termination # Evts. 95% p.tile # Evts. mean # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

KILL 162.0 45.039557 0.384065 0.098430 0.001178 9.804287 0.037783
FINISH 20.0 19.899709 0.019381 0.003510 3.007839 0.097934 0.023707
FAIL 220.0 164.043073 0.279352 39.257407 0.000023 1.549795 0.203997
LOST 36.0 25.002219 0.011815 0.000909 0.149586 7.283534 2.000428
EVICT 510.0 302.262347 23.973621 0.192394 0.000094 45.979997 0.374789
No termination 24.0 7.784905 0.000000 0.000000 0.000000 0.000000 0.000000

(f) Cluster F

Task termination # Evts. 95% p.tile # Evts. mean # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

KILL 641.00 130.054143 6.909204 0.135073 0.000033 25.275769 0.131106
FINISH 18.00 105.240418 0.015228 0.001655 14.153775 0.004879 0.158300
FAIL 40.00 40.121553 0.016111 8.592728 0.000000 0.338883 0.011310
LOST 4602.25 576.384120 1.931330 0.360515 48.094421 35.596567 3.534335
EVICT 2015.00 555.574743 77.429054 0.303127 0.000000 58.299330 0.653819
No termination 30.00 9.503553 0.000000 0.000000 0.000000 0.000000 0.000000

(g) Cluster G

Task termination # Evts. 95% p.tile # Evts. mean # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

KILL 388.0 74.425542 0.633338 0.169666 0.000231 17.172624 0.062799
FINISH 22.0 23.978294 0.023700 0.014129 3.632529 0.011111 0.028482
FAIL 487.0 170.153701 0.600483 37.599942 0.000000 2.866647 0.343806
LOST 386.4 94.666667 1.493333 2.400000 0.573333 14.040000 3.480000
EVICT 206.0 75.658064 6.732544 0.837154 0.000000 7.164722 0.421745
No termination 18.0 8.123506 0.000000 0.000000 0.000000 0.000000 0.000000

(h) Cluster H

Figure 15. Mean number of tasks and event distribution per task type
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Job termination # Tasks mean # Tasks 95% p.tile # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

No termination 92.359436 174.3 23.263951 3.454474 23.047597 34.565608 0.707709
EVICT -1.000000 -1.0 NaN NaN NaN NaN NaN
FAIL 90.792728 499.0 0.694942 0.683556 0.085957 1.849587 0.009730
FINISH 1.187092 1.0 0.004696 0.001341 1.072623 0.024396 0.000952
KILL 16.533171 10.0 1.045419 0.073867 0.461387 1.188720 0.044610
LOST 223.206593 1689.6 0.000000 0.000000 0.000000 1.034082 0.974598

(a) Cluster A

Job termination # Tasks mean # Tasks 95% p.tile # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

No termination 112.422759 169.8 34.681161 0.711242 13.379533 38.794188 0.780483
EVICT 1.000000 1.0 1.000000 0.000000 0.000000 0.000000 0.000000
FAIL 74.367804 374.0 2.003355 1.993765 0.266584 4.944145 0.034526
FINISH 6.304299 10.0 0.022380 0.008476 2.349304 0.012729 0.006484
KILL 69.853370 234.0 1.696449 0.157833 0.613748 3.008678 0.012092
LOST 320.020202 459.8 0.000000 0.000000 0.000000 2.959946 1.996875

(b) Cluster B

Job termination # Tasks mean # Tasks 95% p.tile # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

No termination 96.399561 100.0 55.276973 7.552906 23.848867 41.578669 0.664107
EVICT 1.000000 1.0 1.000829 0.000000 0.000000 0.000415 0.000000
FAIL 41.982301 200.0 3.483606 0.997592 0.376438 3.998369 0.046439
FINISH 1.991485 1.0 0.021806 0.016914 1.565034 0.017401 0.001803
KILL 110.680808 652.0 0.627334 0.059076 0.656426 2.266794 0.006258
LOST 38.870091 48.6 0.000031 0.000311 0.000000 2.620721 1.833872

(c) Cluster C

Job termination # Tasks mean # Tasks 95% p.tile # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

No termination 103.889987 120.00 41.421532 7.604808 18.179476 47.603502 0.661826
EVICT 1.000000 1.00 1.000000 0.000000 0.000000 0.000000 0.000000
FAIL 43.355682 250.00 6.111993 0.948602 0.531390 6.497784 0.041077
FINISH 2.109260 2.00 0.268375 0.012614 1.723392 0.018567 0.005052
KILL 89.647948 283.00 1.013114 0.054374 0.283313 3.255675 0.006664
LOST 271.441748 2620.75 0.000000 0.000000 0.000000 5.938069 1.647084

(d) Cluster D

Job termination # Tasks mean # Tasks 95% p.tile # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

No termination 350.929407 596.0 7.204391 2.074423 0.126290 46.646065 0.378274
EVICT 1.000000 1.0 1.000000 0.000000 0.000000 0.000000 0.000000
FAIL 23.081125 25.0 0.246529 0.665546 0.716720 1.588119 0.066467
FINISH 7.776085 2.0 0.018677 0.029073 1.934488 0.020929 0.064920
KILL 88.790215 309.0 0.706293 0.028618 0.461084 7.572301 0.029122
LOST 5.374150 5.0 0.000000 0.000000 0.000000 3.234494 1.813924

(e) Cluster E

Job termination # Tasks mean # Tasks 95% p.tile # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

No termination 217.718640 379.4 4.304676 1.315021 4.971122 48.118465 0.464429
EVICT 1.000000 1.0 1.000000 0.000000 0.000000 0.000000 0.000000
FAIL 17.161251 8.0 0.621327 0.546356 0.426265 7.559244 0.034773
FINISH 2.940843 2.0 0.014704 0.051014 1.669860 0.162042 0.002623
KILL 103.888843 361.0 0.182630 0.063914 0.416684 5.824311 0.014161
LOST 3736.500000 18823.4 0.001491 0.000038 0.000000 6.298140 1.429604

(f) Cluster F

Job termination # Tasks mean # Tasks 95% p.tile # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

No termination 342.090034 599.10 14.184405 0.626186 23.836017 46.002917 0.735801
EVICT 1.000000 1.00 1.000000 0.000000 0.000000 0.000000 0.000000
FAIL 51.834803 250.00 0.555532 3.334848 0.607560 20.351992 0.176242
FINISH 8.519166 36.00 0.001733 0.629809 1.759677 0.005452 0.004575
KILL 37.054914 100.00 5.687172 0.064640 0.080370 19.166260 0.059132
LOST 190.500000 358.35 0.000000 0.000000 0.000000 1.994751 1.994751

(g) Cluster G

Job termination # Tasks mean # Tasks 95% p.tile # EVICT Evts. mean # FAIL Evts. mean # FINISH Evts. mean # KILL Evts. mean # LOST Evts. mean

No termination 321.133053 546.9 3.470078 0.907801 3.316902 44.535824 0.315120
EVICT 1.000000 1.0 1.000000 0.000000 0.000000 0.000000 0.000000
FAIL 20.504293 1.0 0.114090 2.300036 0.980635 12.833466 0.046833
FINISH 4.278193 14.0 0.005406 0.152814 1.778038 0.013567 0.012663
KILL 11.022705 3.0 0.235500 0.102899 0.287701 11.336956 0.031148
LOST 3.400000 10.6 0.000000 0.000000 0.000000 0.235294 1.705882

(h) Cluster H

Figure 16. Mean number of tasks and event distribution per job type
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(a) Cluster A (b) Cluster B

(c) Cluster C (d) Cluster D

(e) Cluster E (f) Cluster F

(g) Cluster G (h) Cluster H

Figure 17. Conditional probability of task success given a number of specific unsuccesful events observed, i.e. eviction, fail, kill
or lost.
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• Clusters B, C and D in particular have very unsmooth lines that vary a lot for small # evts differences. This
may be due to an uneven distribution of # evts in the traces.

5.11 Potential causes of unsuccesful executions

TBD

6 Implementation issues – Analysis limitations

6.1 Discussion on unknown fields

TBD

6.2 Limitation on computation resources required for the analysis

TBD

6.3 Other limitations . . .

TBD

7 Conclusions and future work or possible developments

TBD
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