bachelorThesis/figure_8/figure8-abcd-only.py
Claudio Maggioni (maggicl) b9808f6b5d corrections to abef only
2021-04-14 18:10:56 +02:00

151 lines
4.4 KiB
Python
Executable file

#!/usr/bin/env python3
# coding: utf-8
import os
import json
import pandas as pd
import findspark
findspark.init()
import pyspark
import pyspark.sql
import sys
import gzip
from pyspark import AccumulatorParam
from pyspark.sql.functions import lit
from pyspark.sql import Window
from pyspark.sql.types import *
from decimal import *
if len(sys.argv) is not 5:
print(sys.argv[0] + " {cluster} {tmpdir} {maxram} {joindir}")
sys.exit()
joindir=sys.argv[4]
cluster=sys.argv[1]
spark = pyspark.sql.SparkSession.builder \
.appName("task_slowdown") \
.config("spark.driver.maxResultSize", sys.argv[3]) \
.config("spark.local.dir", sys.argv[2]) \
.config("spark.driver.memory", sys.argv[3]) \
.getOrCreate()
sc = spark.sparkContext
df = spark.read.parquet(joindir + "/figure-8-join-" + cluster + ".parquet")
# READING MACHINE EVENTS DATA, sort them and save them as broadcast variable
print("Starting to read machine events...")
dfm = pd.read_csv("~/google_2019/machine_events/" + cluster + "_machine_events.csv", converters={
'time': lambda x: -1 if x == '' else int(x),
'machine_id': lambda x: str(x),
'capacity.cpus': lambda x: -1 if x == '' else Decimal(x),
'capacity.memory': lambda x: -1 if x == '' else Decimal(x)})
print("Dropping remove events...")
dfm = dfm[(dfm.type!=2)&(dfm.time!=-1)&(dfm["capacity.cpus"]!=-1)&(dfm["capacity.memory"]!=-1)]
print("Dropping missing data events...")
dfm = dfm[dfm.missing_data_reason.isnull()]
print("Projecting on useful columns...")
dfm = dfm[["time", "machine_id", "capacity.cpus", "capacity.memory"]]
print("Sorting by time...")
dfm = dfm.sort_values(by=["machine_id", "time"])
print("Converting to broadcast variable...")
dfm = sc.broadcast([tuple(r) for r in dfm.to_numpy()])
print("Done with machine events.")
def get_machine_time_resources(machine_id, time):
def aux(i, j):
if i == j:
return dfm.value[i] if dfm.value[i][1] == machine_id else None
elif i + 1 == j:
if dfm.value[i][1] == machine_id:
return dfm.value[i]
elif dfm.value[j][1] == machine_id:
return dfm.value[j]
else:
return None
mid = (i + j) // 2
if dfm.value[mid][1] > machine_id:
return aux(i, mid - 1)
elif dfm.value[mid][1] < machine_id:
return aux(mid + 1, j)
elif dfm.value[mid][0] > time:
return aux(i, mid)
elif dfv.value[mid][0] < time:
return aux(mid, j)
else:
return dfm.value[mid]
return aux(0, len(dfm.value)-1)
def increment_reserv_bucket(bucket, value):
if value < 0:
idx = 0
else:
idx = 40 if value >= 1 else (int(value * 40) + 1)
bucket[idx] += 1
def for_each_joined(x):
task_id = x[0]
ts = x[1]
term = -1
ts = sorted(ts, key=lambda x: x.time)
cpu_util = [0] * 41
ram_util = [0] * 41
cpu_request = [0] * 41
ram_request = [0] * 41
for i, t in enumerate(ts):
machine_log = get_machine_time_resources(mid, t.time)
if machine_log is not None:
util_cpu = t.acpu / machine_log[2]
util_ram = t.aram / machine_log[3]
else:
util_cpu = -1
util_ram = -1
# 8a-b
increment_reserv_bucket(cpu_request, t.rcpu)
increment_reserv_bucket(ram_request, t.rram)
# 8e-f
increment_reserv_bucket(cpu_util, t.acpu)
increment_reserv_bucket(ram_util, t.aram)
if t.type >= 4 and t.type <= 8:
term = t.type
res = {-1: None, 4: None, 5: None, 6: None, 7: None, 8: None}
res[term] = {'rcpu': cpu_request, 'rram': ram_request, 'ucpu': cpu_util, 'uram': ram_util}
return res
def fold_resobjs(ro1, ro2):
if ro1 is None:
return ro2
elif ro2 is None:
return ro1
else:
for k in ro1.keys():
for kk in ro1[k].keys():
if ro1[k][kk] is None:
ro1[k][kk] = ro2[k][kk]
elif ro2[k][kk] is None:
continue
else:
ro1[k][kk] = [sum(x) for x in zip(ro1[k][kk], ro2[k][kk])]
return ro1
result = df.rdd \
.groupBy(lambda x: x.id) \
.map(for_each_joined) \
.fold(None, fold_resobjs)
d = os.path.dirname(os.path.realpath(__file__))
with open(d + "/" + cluster + "_figure8abcd.json", "w") as f:
json.dump(result, f)
# vim: set ts=4 sw=4 et tw=120: