
Project Work Part 1 – Data Design and
Modelling

David Alarcórn Sepehr Beheshti Claudio Maggioni
Lorenzo Martingnetti

November 9, 2022

Contents

1 Introduction 1

2 The DBLP Domain 1

3 ER Model 2

4 Neo4J Database Creation 3
4.1 The DBLP XML Data Format . 3
4.2 Graph Model . 4
4.3 Import Queries . 4

5 Queries 9
5.1 Publications that May Be Hosted on Secure Websites 9
5.2 Author Count in Publications . 9
5.3 Morgan & Claypool’s Journal Relationships . 10
5.4 Author Chains . 10
5.5 Shortest Author-to-Author Chain . 11
5.6 Number of Authors Who Recently Published With a Publisher 12
5.7 Authors of a Journal Whose Publication Metadata Are Not Up to Date 12
5.8 Find a book about Image processing published by Springer 13
5.9 Find a list and details of publication/thesis related to algorithms 13
5.10 Find publications about network with higher number of authors 14
5.11 Find number of authors who have published a book and also an article on journals . 14
5.12 Update the MetadataVersion of a Publication . 15
5.13 Publishing an Article on a Journal and removing it 15

1 Introduction

This project is about storing the data from the DBLP publication repository1 in a graph database
implemented using Neo4J and the Cypher query language. To achieve this result, we have to
understand the business domain of a publication repository, translate that knowledge in an Entity-
Relationship model, and finally implement a Neo4J database. This consists of downloading the
data in DBLP, design a way to import this data, define a Graph Model based on the ER Model
we define, and finally to define some useful Cypher commands to both query and update the data.

1https://dblp.org

https://dblp.org

2 The DBLP Domain

As mentioned, DBLP is a publication repository, i.e. an index of metadata regarding various sci-
entific publication mediums, such as journals and conference articles. DBLP stores titles, authors,
references and where to find each publication, but not the publication document itself. Given the
broad diversity in the kinds of documents indexed by DBLP, we decided to focus our attention on
articles, books, thesis at both the Masters’ and PhD level, and on author websites. Each publication
record has several attributes representing the metadata of each publication, such as a “metadata
version”, an record version number internal to DBLP, a list of authors or the journal in which
it was published. Different publications have different information attached to it, though all the
publications we considered had a year of publication and a title attribute.

3 ER Model

Publication

Book Master
thesis WWWPhD thesisArticle

Journal

Author

Editor

Publisher SchoolSUBMITTED_ATPUBLISHED_BY

PUBLISHED_IN

AUTHORED_BY

EDITED_BY
1

1

1N

N

N
N

NNN

ye
ar

metadataVersion

re
fe

re
nc

es

id tit
le

pa
ge

sI
nJ

ou
rn

al

vo
lu

m
e

IS
BN

pa
ge

s

re
fe

re
nc

es

re
fe

re
nc

es

pa
ge

sI
nJ

ou
rn

al

vo
lu

m
e

re
fe

re
nc

es

pa
ge

sI
nJ

ou
rn

al ur
l

name
id

name
id

name
id

name
id

name
id

Figure 1: The ER diagram for the DBLP database. Cardinality annotation to be interpreted as
look-across, e.g. a Publication is related to at most one Editor.

The ER model highlights the central concept of the DBLP knowledge: the publication. Each
publication registered into the DBLP database is described by its title, year of publication, and
metadata version (the version of the metadata stored into the DBLP database). Additionally, each
publication can be one of the following:

• Article: it may contain references to other publications, it is published on a specific range
of pages in a journal, which in turn may be part of a volume.

2

• Book: it is also identified by the ISBN code and it has a specific number of pages.
• Master thesis: it may contain references to other publications.
• PhD thesis: it may contain references to other publications, it may be published on a

specific range of pages in a journal, which in turn may be part of a volume.
• Website: it may contain references to other publications, it may be published on a specific

range of pages in a journal (an online journal), and it has a unique url.
The other entities, namely Publisher, Editor, Author, Journal, School are secondary to the
DBLP problem specification, which is storing metadata related to publications. They are simply
identified by a unique id and have a name associated. They interact with the publication entity
through the relationships defined in the ER above, with the cardinalities specified. Note that no
secondary entity has a one to one relationship with Publication: this justifies them to be separate
entities and not simply attributes of Publication.

4 Neo4J Database Creation

4.1 The DBLP XML Data Format

DBLP periodically publishes copies of its entire database as gzip-compressed XML files. We decide
to download one of such dumps as a data source for our database.
We then decide to use an existing parser for DBLP data, namely the ThomHurks/dblp-to-csv
project on GitHub2. This parser is designed to convert the DBLP xml file into several pairs of
CSV files, each of them containing column headers and data for one DBLP article type. A unique
integer ID is assigned to each record, which is a feature we exploit when building our Neo4J model.
Finally, through the --relations command line option, the parser is able to extract some of the
publication attributes as separate “entities”. Each chosen attribute has its data stored in a separate
CSV file, and an additional CSV file is generated containing an ID to ID mapping between the
source publication and the extrapolated record.
Listing 1 shows how we downloaded the XML database dump and how we parsed it using the
dblp-to-csv.

2https://github.com/ThomHurks/dblp-to-csv

3

https://github.com/ThomHurks/dblp-to-csv

1 # download and decompress the DBLP XML dump
2 curl -o dblp.xml.gz https://dblp.org/xml/dblp.xml.gz
3 gzip -d dblp.xml.gz
4
5 # download the DTD specification of the DBLP XML format
6 curl -o dblp.dtd https://dblp.org/xml/dblp.dtd
7
8 # invoke the dblp-to-csv utility with the relations specified in the ER diagram
9 python3 ./XMLToCSV.py --annotate --neo4j dblp.xml dblp.dtd \

10 output.csv --relations author:authored_by journal:published_in \
11 publisher:published_by school:submitted_at editor:edited_by
12
13 # for each entity specified in the ER diagram
14 for t in article book mastersthesis phdthesis www; do
15 # merge the column headers and data CSV files, and perform some substitutions
16 # required by the Neo4J CSV parser
17 tr ’;’ ’\n’ <output_${t}_header.csv | sed ’s/:.*//g’ | \
18 tr ’\n’ ’;’ | awk 1 | cat - output_${t}.csv | \
19 sed -E ’s/\{?\\""\}?/""/g’ > ${t}.csv;
20 done

Listing 1: Commands used to generated the CSV files necessary for import in Neo4J.

4.2 Graph Model

Given the generated CSV files and the ER model we define in Section 3, we are able to define a
suitable graph diagram. Given the graph database techology we use is Neo4J, the notation we use
in our graph diagram reflects the Neo4J notation rules for node and edge labels.
We decide to implement the total disjoint ISA relationship regarding publications by assigning to
each publication node both a :Publication label and a label representing the specific publication
type. This strategy is analogous to the use of a discriminant field in relational databases to define
the schema of leaf entities in an ISA relationship, however using labels instead of attributes.
We then define a series of nodes that may be connected to a :Publication. These node types map one-
to-one with the additional CSV files we extract with the dblp-to-csv tool with the --relations flag.
We then define the edges that connect publications with these auxiliary nodes. Additionally, we
define some de-facto cardinalities for each edge kind, that are however informal and not enforceable
with a Neo4J constraint definition.
Figure 2 shows the resulting diagram.

4

:Publication

id: int

year: int

title: string

metadataVersion: string

:Article
references: string
pagesInJournal: "[int]-[int]"
volume: string

:Book
isbn: string
pages: "[int]-[int]"

:MastersThesis
references: string

:PhDThesis
references: string
pagesInJournal: "[int]-[int]"
volume: string

:WWW
references: string
pagesInJournal: "[int]-[int]"
url: string

:Author
id: int
name: string

 :AUTHORED_BY
(1 or many)

:Editor
id: int
name: string

 :EDITED_BY
(0 or 1)

:Publsher
id: int
name: string

 :PUBLISHED_BY
(0 or 1)

:Journal
id: int
name: string

 :PUBLISHED_IN
(0 or 1)

:School
id: int
name: string

 :SUBMITTED_AT
(0 or many)

Figure 2: The graph diagram for the DBLP database. Neo4J node labels are highlighted in blue.
Below each node label, attributes and their data types are listed. A :Publication label is
always paired with one and only one of the :Article, :Book, :MastersThesis, :PhDThesis,
:WWW labels. Below each edge label, the number of allowed edges with that label is
specified (e.g. a :Publication is the source of at least one :AUTHORED BY edge).

4.3 Import Queries

Given the defined Graph model and the generated CSV files, we can write the necessary Cypher
queries to import the data in Neo4J.
Cypher is the language that the Neo4J DBMS supports for creating, manipulating and querying
data. Cypher is to Neo4J what ANSI SQL is to a relational DBMS like PostgreSQL or MariaDB.
An important constraint we consider when implementing this project is collaboration. Since we
have to work in a team while populating the Neo4J database and designing queries we require a
way to share a single database instance. To achieve this, we use Neo4J AuraDB SaaS database
service3 to create a cloud hosted Neo4J instance and then share its credentials. However, since
users cannot access the filesystem of an AuraDB instance, we upload the generated CSV files to the
maggioni.xyz website (owned by Claudio Maggioni) and them instruct Neo4J to query the website
and fetch the data.

https://
youtu.be/
sNks5yZ6dfI

Listing 2 shows the resulting Cypher import script. When executing the script through the Neo4J
web interface, all statements starting with LOAD CSV must be prefixed with :auto to enable trans-
action support.
Lines 1-75 of the script contain the commands necessary to create all the publication nodes. As
specified in Section 4.2, all publications are labeled with the :Publication label and another specific
label matching the publication type. All CREATE statements are executed in transactions with 1000
record chunks to improve performance.
Lines 77-130 are instead dedicated to importing the “auxiliary” nodes, such as :Author and :Jour-
nal nodes. This lines use the line[’column’] notation for accessing CSV cells instead of the
line.column notation used in the previous lines due to special characters added by dblp-to-csv in
the header names.

3https://neo4j.com/cloud/platform/aura-graph-database/

5

https://maggioni.xyz
https://youtu.be/sNks5yZ6dfI
https://youtu.be/sNks5yZ6dfI
https://youtu.be/sNks5yZ6dfI
https://neo4j.com/cloud/platform/aura-graph-database/

Lines 139-187 create the edges between the publication and “auxiliary” entities by using the CSV
association tables generated by dblp-to-csv. All statements are composed by two MATCH clauses,
which match respectively the publication node and the “auxiliary” node, and a CREATE clause,
which creates the actual edge and labels it accordingly.
Lines 132-137 define indexes for each publication type based on the id attribute, which is guaranteed
to have unique values for each record by dblp-to-csv. These indexes improve significantly the
performance of the edge creation statements, as the MATCH clauses are defined just over the id
attribute and thus Neo4J would set forth an execution plan using the index. This improves the
lookup algorithmic complexity from linear to logarithmic, as indexes are by default implemented
using BTrees.
This section shows 2 kinds of data creation commands (namely the node creations at lines 1-130
and edge creations at lines 139-187), leaving us to implement 3 data manipulation statements.

1 LOAD CSV WITH HEADERS FROM
2 ’https://maggioni.xyz/article.csv’
3 AS line FIELDTERMINATOR ’;’
4 CALL {
5 WITH line
6 CREATE (:Publication:Article {
7 id: line.article,
8 references: line.ee,
9 metadataVersion: line.mdate,

10 pagesInJournal: line.pages,
11 title: line.title,
12 volume: line.volume,
13 year: line.year
14 })
15 } IN TRANSACTIONS OF 1000 ROWS;
16
17 LOAD CSV WITH HEADERS FROM
18 ’https://maggioni.xyz/book.csv’
19 AS line FIELDTERMINATOR ’;’
20 CALL {
21 WITH line
22 CREATE (:Publication:Book {
23 id: line.book,
24 title: line.title,
25 isbn: line.isbn,
26 metadataVersion: line.date,
27 pages: line.pages,
28 year: line.year
29 })
30 } IN TRANSACTIONS OF 1000 ROWS;
31
32 LOAD CSV WITH HEADERS FROM
33 ’https://maggioni.xyz/mastersthesis.csv’
34 AS line FIELDTERMINATOR ’;’
35 CALL {
36 WITH line
37 CREATE (:Publication:MastersThesis {
38 id: line.mastersthesis,
39 title: line.title,
40 references: line.ee,
41 metadataVersion: line.mdate,
42 year: line.year
43 })
44 } IN TRANSACTIONS OF 1000 ROWS;

6

45
46 LOAD CSV WITH HEADERS FROM
47 ’https://maggioni.xyz/phdthesis.csv’
48 AS line FIELDTERMINATOR ’;’
49 CALL {
50 WITH line
51 CREATE (:Publication:PhDThesis {
52 id: line.phdthesis,
53 references: line.ee,
54 metadataVersion: line.mdate,
55 pagesInJournal: line.pages,
56 title: line.title,
57 volume: line.volume,
58 year: line.year
59 })
60 } IN TRANSACTIONS OF 1000 ROWS;
61
62 LOAD CSV WITH HEADERS FROM
63 ’https://maggioni.xyz/www.csv’
64 AS line FIELDTERMINATOR ’;’
65 CALL {
66 WITH line
67 CREATE (:Publication:WWW {
68 id: line.www,
69 references: line.ee,
70 metadataVersion: line.mdate,
71 title: line.title,
72 year: line.year,
73 url: line.url
74 })
75 } IN TRANSACTIONS OF 1000 ROWS;
76
77 LOAD CSV WITH HEADERS FROM
78 ’https://maggioni.xyz/output_author.csv’
79 AS line FIELDTERMINATOR ’;’
80 CALL {
81 WITH line
82 CREATE (:Author {
83 id: line[’:ID’],
84 name: line[’author:string’]
85 })
86 } IN TRANSACTIONS OF 1000 ROWS;
87
88 LOAD CSV WITH HEADERS FROM
89 ’https://maggioni.xyz/output_editor.csv’
90 AS line FIELDTERMINATOR ’;’
91 CALL {
92 WITH line
93 CREATE (:Editor {
94 id: line[’:ID’],
95 name: line[’editor:string’]
96 })
97 } IN TRANSACTIONS OF 1000 ROWS;
98
99 LOAD CSV WITH HEADERS FROM

100 ’https://maggioni.xyz/output_journal.csv’
101 AS line FIELDTERMINATOR ’;’
102 CALL {
103 WITH line

7

104 CREATE (:Journal {
105 id: line[’:ID’],
106 name: line[’journal:string’]
107 })
108 } IN TRANSACTIONS OF 1000 ROWS;
109
110 LOAD CSV WITH HEADERS FROM
111 ’https://maggioni.xyz/output_publisher.csv’
112 AS line FIELDTERMINATOR ’;’
113 CALL {
114 WITH line
115 CREATE (:Publisher {
116 id: line[’:ID’],
117 name: line[’publisher:string’]
118 })
119 } IN TRANSACTIONS OF 1000 ROWS;
120
121 LOAD CSV WITH HEADERS FROM
122 ’https://maggioni.xyz/output_school.csv’
123 AS line FIELDTERMINATOR ’;’
124 CALL {
125 WITH line
126 CREATE (:School {
127 id: line[’:ID’],
128 name: line[’school:string’]
129 })
130 } IN TRANSACTIONS OF 1000 ROWS;
131
132 CREATE INDEX FOR (p:Publication) ON (p.id);
133 CREATE INDEX FOR (p:Author) ON (p.id);
134 CREATE INDEX FOR (p:Editor) ON (p.id);
135 CREATE INDEX FOR (p:Journal) ON (p.id);
136 CREATE INDEX FOR (p:Publisher) ON (p.id);
137 CREATE INDEX FOR (p:School) ON (p.id);
138
139 LOAD CSV WITH HEADERS FROM
140 ’https://maggioni.xyz/output_author_authored_by.csv’
141 AS line FIELDTERMINATOR ’;’
142 CALL {
143 WITH line
144 MATCH (p:Publication { id: line[’:START_ID’] })
145 MATCH (a:Author { id: line[’:END_ID’] })
146 CREATE (p)-[:AUTHORED_BY]->(a)
147 } IN TRANSACTIONS OF 1000 ROWS;
148
149 LOAD CSV WITH HEADERS FROM
150 ’https://maggioni.xyz/output_editor_edited_by.csv’
151 AS line FIELDTERMINATOR ’;’
152 CALL {
153 WITH line
154 MATCH (p:Publication { id: line[’:START_ID’] })
155 MATCH (a:Editor { id: line[’:END_ID’] })
156 CREATE (p)-[:EDITED_BY]->(a)
157 } IN TRANSACTIONS OF 1000 ROWS;
158
159 LOAD CSV WITH HEADERS FROM
160 ’https://maggioni.xyz/output_journal_published_in.csv’
161 AS line FIELDTERMINATOR ’;’
162 CALL {

8

163 WITH line
164 MATCH (p:Publication { id: line[’:START_ID’] })
165 MATCH (a:Journal { id: line[’:END_ID’] })
166 CREATE (p)-[:PUBLISHED_IN]->(a)
167 } IN TRANSACTIONS OF 1000 ROWS;
168
169 LOAD CSV WITH HEADERS FROM
170 ’https://maggioni.xyz/output_publisher_published_by.csv’
171 AS line FIELDTERMINATOR ’;’
172 CALL {
173 WITH line
174 MATCH (p:Publication { id: line[’:START_ID’] })
175 MATCH (a:Publisher { id: line[’:END_ID’] })
176 CREATE (p)-[:PUBLISHED_BY]->(a)
177 } IN TRANSACTIONS OF 1000 ROWS;
178
179 LOAD CSV WITH HEADERS FROM
180 ’https://maggioni.xyz/output_school_submitted_at.csv’
181 AS line FIELDTERMINATOR ’;’
182 CALL {
183 WITH line
184 MATCH (p:Publication { id: line[’:START_ID’] })
185 MATCH (a:School { id: line[’:END_ID’] })
186 CREATE (p)-[:SUBMITTED_AT]->(a)
187 } IN TRANSACTIONS OF 1000 ROWS;

Listing 2: The Cypher instructions necessary to define and import the extracted DBLP database
dump.

9

5 Queries

In this section we show the queries we have implemented. For performance reference, all queries
are run on a free tier Neo4J AuraDB instance over a subset of the DBLP data composed of 12.150
nodes and 6.216 edges.

5.1 Publications that May Be Hosted on Secure Websites

Query complexity: 3 nodes, conditions, aggregations
This query returns the total number of publications of type Article whose author has a HTTPS
website.

1 MATCH (p:Publication:Article)-[:AUTHORED_BY]->(a:Author)<-[:AUTHORED_BY]-(www:WWW)
2 WHERE www.url STARTS WITH ’https://’
3 RETURN COUNT(DISTINCT p) as publisherCount

Listing 3: The Cypher code for the Morgan & Claypool’s Journal Relationships query.

By invoking the query with the PROFILE clause, Neo4J reports the following execution plan:
• All possible matches for (www:WWW) WHERE www.url STARTS WITH ’https://’ are found;
• The :AUTHORED BY edge expression finding all candidates for a;
• a candidates are filtered to match the :Author label;
• The :AUTHORED BY edge expression finding all candidates for p;
• p candidates are filtered to match the :Publication and :Article labels;
• Publishers are counted;

For the execution of this query, Neo4J reports 2840 total db hits in 89 ms.

5.2 Author Count in Publications

Query complexity: 3 nodes, conditions, aggregations
This query considers the journal “AI Mag.” it queries the authors of its publications. The query
then returns the author count of author whose name does not contain the letter ‘M’. Results are
ordered by author count.

1 MATCH (j:Journal {name: ’AI Mag.’})<-[:PUBLISHED_IN]-(p:Publication),
2 (p)-[:AUTHORED_BY]->(a:Author)
3 WHERE NOT a.name =˜ ’.*[mM].*’
4 RETURN p.title, count(a) AS authorCount
5 ORDER BY authorCount DESC

Listing 4: The Cypher code for the Author Count in Publications query.

By invoking the query with the PROFILE clause, Neo4J reports the following execution plan:
• All possible matches for (j:Journal name: ’AI Mag.’) are found;
• The :PUBLISHED IN edge expression finding all candidates for p;
• p candidates are filtered to match the :Publication label;
• The :AUTHORED BY edge expression finding all candidates for a;
• a candidates are filtered to match (a:Author) WHERE NOT a.name = ’.*[mM].*’, i.e. to

find authors whose name does not contain an uppercase or lowercase m;

10

• Authors are counted for each publication;
• Results are sorted by decreasing author count and then returned.

For the execution of this query, Neo4J reports 1866 total db hits in 84 ms.

5.3 Morgan & Claypool’s Journal Relationships

Query complexity: 5 nodes, conditions, aggregations, limits
This query considers the publisher whose name starts with “Morgan & Claypool” (only one pub-
lisher matches this criteria in our database instance). We then query all the authors of publications
published with this publisher. We then want to find all the publications not published with “Mor-
gan & Claypool”, and of these publications we want to find journals where they were published
in. The top 10 results by author count (i.e. the number of distinct authors involved with both
the publisher and the journal) are returned, and each result yields the publisher name, the journal
name, and the author count.

1 MATCH (p:Publisher)<-[:PUBLISHED_BY]-(pub1:Publication)-[:AUTHORED_BY]->(a:Author),
2 (a)<-[:AUTHORED_BY]-(pub2:Publication)-[:PUBLISHED_IN]->(j:Journal)
3 WHERE p.name STARTS WITH ’Morgan & Claypool’
4 RETURN p.name, j.name, count(DISTINCT a) as authorCount
5 ORDER BY authorCount DESC
6 LIMIT 10

Listing 5: The Cypher code for the Morgan & Claypool’s Journal Relationships query.

By invoking the query with the PROFILE clause, Neo4J reports the following execution plan:

• All possible matches for (p:Publisher) WHERE STARTS WITH ’Morgan & Claypool’ are found;
• The :PUBLISHED BY edge expression finding all candidates for pub1;
• pub1 candidates are filtered to match the :Publication label;
• The :AUTHORED BY edge expression finding all candidates for a;
• a candidates are filtered to match the :Author label;
• The :PUBLISHED BY edge expression finding all candidates for pub2;
• pub2 candidates are filtered to match the :Publication label and pub1 != pub2;
• The :PUBLISHED IN edge expression finding all candidates for j;
• j candidates are filtered to match the :Journal label;
• The authors are counted;
• Results other than the top 10 by count are discarded, and the remaining matches are sorted

by descending author count.

For the execution of this query, Neo4J reports 68 total db hits in 110 ms.

5.4 Author Chains

Query complexity: 5 nodes, conditions, aggregations, limits
This query finds the longest chains between authors whose name contain “Jones” and all other
authors. The chain edges must all be of type AUTHORED BY except one, whose type must
be PUBLISHED IN. Results are sorted in descending order by the length of the respective chains
(more specifically by the total number of AUTHORED BY hops), and the top 10 results are picked.
The query returns for each result the names of the two authors, the number of AUTHORED BY
hops starting from the “Jones” authors (startHopCount) and the number of AUTHORED BY

11

hops ending on the other author (endHopCount).

1 MATCH (a:Author)-[r:AUTHORED_BY*..20]-(p1:Publication)-[:PUBLISHED_IN]->(j:Journal),
2 (j)<-[:PUBLISHED_IN]-(p2:Publication)-[s:AUTHORED_BY*..20]-(t:Author)
3 WHERE a.id <> t.id AND t.name CONTAINS ’Jones’
4 RETURN a.name, t.name, COUNT(r) as endHopCount, COUNT(s) as startHopCount
5 ORDER BY startHopCount + endHopCount DESC, a.name ASC
6 LIMIT 10

Listing 6: The Cypher code for the Author Chains query.

By invoking the query with the PROFILE clause, Neo4J reports the following execution plan:

• All possible matches for (p:Author) WHERE t.name CONTAINS ’Jones’ are found;
• The variable length :AUTHORED BY edge expression is expanded to find all candidates for p2;
• The p2 candidates are filtered for the :Publication label;
• :PUBLISHED BY edges are traversed to find all candidates for j;
• The j candidates are filtered for the :Journal label;
• :PUBLISHED BY edges are traversed to find all candidates for p1;
• The p1 candidates are filtered for the :Publication label and for p1 <> p2;
• The variable length :AUTHORED BY edge expression is expanded to find all candidates for a;
• a is checked to match (a:Author) WHERE a.id != t.id;
• COUNT(r) and COUNT(s) are computed;
• COUNT(r) + COUNT(s) is computed, and then the results are sorted and truncated according

to the provided clauses.

For the execution of this query, Neo4J reports 34367 total db hits in 112 ms.

5.5 Shortest Author-to-Author Chain

Query complexity: functions
This query finds the shortest path between each author whose name contain “Jones” and each other
author. Unlike the Author Chains query, the query does not constrain the edges in the path to be
of any particular type. The query returns the top 10 results by path length, yielding for each result
the names of both authors, the length of the path, and a list of nodes in the path (each element
being a pair of the node’s label and the node’s name/title).

1 MATCH (t:Author) WHERE t.name CONTAINS ’Jones’
2 MATCH (a:Author) WHERE a.id <> t.id
3 MATCH path = shortestPath((a)-[*..20]-(t))
4 RETURN t.name, a.name, length(path), [
5 x IN nodes(path) |
6 [reduce(s = ’’, x IN labels(x) | s + ’:’ + x), COALESCE(x.name, x.title)]
7] AS nodes
8 ORDER BY length(path) DESC
9 LIMIT 10

Listing 7: The Cypher code for the Shortest Author-to-Author Chain query.

By invoking the query with the PROFILE clause, Neo4J reports the following execution plan:

• All ts matching (t:Author) WHERE t.name CONTAINS ’Jones’ are found;

12

• In parallel with the previous step, all as matching (a:Author) are found;
• The Cartesian product of as and ts is computed;
• as and ts are filtered by a.id != t.id;
• The shortest path between each a and t is computed;
• The length of the path is computed;
• All but the top 10 results by path length are discarded;
• The expression yielding the nodes property is computed;
• The resulted are ordered by descending path length.

For the execution of this query, Neo4J reports 100681 total db hits in 1247 ms.

5.6 Number of Authors Who Recently Published With a Publisher

Query complexity: 3 nodes, conditions, aggregations
This query finds the number of authors who recently published with a publisher, and we define
recently to mean a publication year greater than 2010.

1 MATCH (p:Publisher)<-[pb:PUBLISHED_BY]-(p2:Publication:Book),
2 (a:Author)<-[ab:AUTHORED_BY]-(p2)
3 WHERE p.name = ’Springer’ AND toInteger(p2.year) >= 2010
4 RETURN COUNT(a)

Listing 8: The Cypher code for the Number of Authors Who Recently Published With a Publisher
query.

By invoking the query with the PROFILE clause, Neo4J reports the following execution plan:

• All p2s matching (p2:Author) WHERE toInteger(p2.year) >= 2010 are found;
• :PUBLISHED BY edges are traversed to find all candidates for p;
• The p candidates are filtered for the :Publication label and for p.name = ’Springer’;
• The :AUTHORED BY edge expression finding all candidates for a;
• a candidates are filtered to match the :Author label;
• Authors are counted.

For the execution of this query, Neo4J reports 86 total db hits in 38 ms.

5.7 Authors of a Journal Whose Publication Metadata Are Not Up to Date

Query complexity: 3 nodes, conditions

1 MATCH (a:Author)<-[ab:AUTHORED_BY]-(p:Publication),
2 (j:Journal)<-[pi:PUBLISHED_IN]-(p:Publication)
3 WHERE toInteger(p.year) < date(p.metadataVersion).year AND j.name = ’Theor. Comput. Sci.’
4 RETURN a

By invoking the query with the PROFILE clause, Neo4J reports the following execution plan:

• All possible matches for (j:Journal) WHERE j.name = ’Theor. Comput. Sci.’ are found;
• The :PUBLISHED IN edge expression is expanded to find all candidates for p;
• The p candidates are filtered for the :Publication label, and also filtered selecting only those

with year lower than that of the metadata version;

13

• The :AUTHORED BY edge expression is expanded to find all candidates for a;
• The a candidates are filtered for the :Author label;
• The result is ordered by a.name.

For the execution of this query, Neo4J reports 1813 total db hits in 98 ms.

5.8 Find a book about Image processing published by Springer

Query complexity: 3 nodes, 3 conditions
This query finds a book about image processing published by Springer after 2000 finds also the
author.

1 MATCH (p:Publisher)-[r]-(b:Book)-[r2]-(a:Author)
2 WHERE b.year > ’2000’ and p.name = ’Springer’ and b.title contains ’image processing’
3 RETURN p,r,b,r2,a, b.title, a.name

Listing 9: The Cypher code for the finding a book about image processing and the author.

By invoking the query with the PROFILE clause, Neo4J reports the following execution plan:

• Cypher version: , planner: COST, runtime: PIPELINED. 93 total db hits in 93
ms;

• Define the initial candidates by considering all publishers;
• Filter the publishers by considering ”Springer” as only interested publisher;
• Expanding the rows by adding the details of the books linked to the publisher;
• Filter the book which are published in 2000 or later and the title are related to image pro-

cessing;
• Adding the authors data to the books;
• checking that the relationships of publisher and authors are different (relationship with

books);
• Prepare and project nodes and links to be visualized;
• Produce results which will be the list of book/books with authors name;

5.9 Find a list and details of publication/thesis related to algorithms

Query complexity: 3 nodes, conditions
This query finds list of publications/thesis related to algorithms that are submited at school before
2009 .

1 MATCH (s:School)-[r:SUBMITTED_AT]-(t)-[r2]-(a:Author)
2 WHERE t.title contains ’algorithm’ and t.year <=’2009’
3 RETURN t.title,a.name,t.year,s,r,t,r2,a

Listing 10: The Cypher code for the finding of thesis related to algorithms published before 2009.

By invoking the query with the PROFILE clause, Neo4J reports the following execution plan:

• Cypher version: , planner: COST, runtime: PIPELINED. 304 total db hits in 36
ms;

• Find the initial candidates by considering all the thesis which are submitted at Schools;
• Filter the thesis that are submitted in 2009 or after and are related to ”algorithms”;

14

• Adding the details of authors to the thesis;
• Checking that the relationships of authors be different from relationships of schools (with

thesis);
• Project all nodes and attributes which we are interested to visualize;
• Produce final results which is the list of articles, authors and the publication year;

5.10 Find publications about network with higher number of authors

Query complexity: 3 nodes, conditions, aggregation
This query Find number of publications related to network which are published after 2005 and each
one has more than 6 authors .

1 MATCH (a:Author)-[r0]-(p:Publication)-[r:PUBLISHED_IN]->(j:Journal)
2 WHERE toLower(p.title) contains ’network’ and p.year >= ’2005’
3 WITH p, count(a) as cnt
4 WHERE cnt > 6
5 RETURN count(p.title) as Nr_publications

Listing 11: The Cypher code for finding publications about network with at least 6 authors.

By invoking the query with the PROFILE clause, Neo4J reports the following execution plan:

• Cypher version: , planner: COST, runtime: PIPELINED. 8234 total db hits in
38 ms;

• Considering the connection of publication to Journals through Published IN define all possible
matches;

• Apply the filter on year of publication and considering that the articles title must include
”network”;

• Expanding the candidates by adding the nodes of Journals and authors;
• Control that the relationships publications with authors and journal be different;
• Count the number of authors for each publication;
• Filter the publications based on their authors which must bu higher than 6;
• Aggregation: counting total number of articles which have at least 6 authors;

5.11 Find number of authors who have published a book and also an article on
journals

Query complexity: 5 nodes, conditions, aggregation
This query Find number of authors who has written a book about user modeling published on
.”Morgan & Claypool Publishers” and published also an article on a Journal in the field of artificial
intelligence.

1 MATCH (a:Author)-[r0]-(b:Book),(b)-[r]-(pb:Publisher)
2 ,(a)-[r2]-(ar:Article)-[r3]-(j:Journal)
3 WHERE toLower(ar.title) contains ’user modeling’
4 and pb.name = ’Morgan & Claypool Publishers’ and toLower(j.name) contains ’artif’
5 RETURN count(distinct a.name) as Nr_Author

Listing 12: The Cypher code for finding nr of authors who has published a book and also an article.

15

By invoking the query with the PROFILE clause, Neo4J reports the following execution plan:

• Cypher version: , planner: COST, runtime: PIPELINED. 77 total db hits in 122
ms;

• All possible matches for pb:Publisher where pb.name = ”Morgan & Claypool Publishers” are
found;

• Expand the path by linking books to publications;
• Filter books linked to the specific publisher;
• The candidates are filtered that the relationships r and r0 be different;
• The title of article is checked which must contain ”user modeling”;
• Expand the path by adding Journal node to Article;
• Apply filter of relationship and Article to the Journals;
• Filter the journals by considering toLower(j.name) contains ’artif’;
• Count the unique authors who matches all the criteria;

5.12 Update the MetadataVersion of a Publication

Query complexity: data update
This query updates the version of the metadata of a specific publication, for which the title is given.

1 MATCH (p:Publication)
2 WHERE p.title = ’On the Combinatorics of Finite Words.’
3 SET p.metadataVersion = ’2022-11-07’

Listing 13: The Cypher code to update the version of a publication metadata.

By invoking the query with the PROFILE clause, Neo4J reports the following execution plan:

• All possible matches for (p:Publication) WHERE p.title = ’On the Combinatorics of
Finite Words.’ are found;

• The metadataVersion property is set to ’2022-11-07’;
• an empty result is displayed, since values are only set;

For the execution of this query, Neo4J reports 7199 total db hits in 19 ms.

5.13 Publishing an Article on a Journal and removing it

Query complexity: data creation/removal
The first query publishes an article on a journal. The second one removes an article from a journal.
The inputs of both queries are the name of the journal and the title of the article. Note that only
the relationship between the nodes is modified in both cases: this means that the article must be
already present in the database upon publication, while it is not removed from the database upon
removal of it from the journal.

16

1 MATCH (j:Journal)
2 WHERE j.name = ’Theor. Comput. Sci.’
3 MATCH (p:Publication:Article)
4 WHERE p.title = ’On the least number of palindromes in two-dimensional words.’
5 MERGE (j)<-[pi:PUBLISHED_IN]-(p)

Listing 14: The Cypher code to publish an article on a journal.

By invoking the query with the PROFILE clause, Neo4J reports the following execution plan:

• All possible matches for (p:Publication) WHERE p.title = ’On the least number of
palindromes in two-dimensional words.’ are found;

• All possible matches for (j:Journal) WHERE j.name = ’Theor. Comput. Sci.’ are found;
• It is performed a cartesian product (p,j) with the results of the two queries;
• In parallel, the pattern (j)¡-[pi:PUBLISHED IN]-(p) is created and then applied to the carte-

sian product to create the new relationship, if this one exists (this is ensured by the LOCK(j,p)
statement, where j and p are the previouslyy selected nodes);

• An empty result is created and displayed.

For the execution of this query, Neo4J reports 7487 total db hits in 47 ms.

1 MATCH (j:Journal)<-[pi:PUBLISHED_IN]-(p:Publication:Article)
2 WHERE j.name = ’Theor. Comput. Sci.’
3 AND p.title = ’On the least number of palindromes in two-dimensional words.’
4 DELETE pi

Listing 15: The Cypher code to remove an article from a journal.

By invoking the query with the PROFILE clause, Neo4J reports the following execution plan:

• All possible matches for (j:Journal) WHERE j.name = ’Theor. Comput. Sci.’ are found;
• The :AUTHORED BY edge expression is expanded to find all candidates for p;
• The p candidates are filtered for the :Publication and :Article labels, and also filtered for

p.title = ’On the least number of palindromes in two-dimensional words.’;
• The found set of relationship pi is deleted (only one in our case);
• An empty result is created and displayed.

For the execution of this query, Neo4J reports 1675 total db hits in 3 ms.

17

	Introduction
	The DBLP Domain
	ER Model
	Neo4J Database Creation
	The DBLP XML Data Format
	Graph Model
	Import Queries

	Queries
	Publications that May Be Hosted on Secure Websites
	Author Count in Publications
	Morgan & Claypool's Journal Relationships
	Author Chains
	Shortest Author-to-Author Chain
	Number of Authors Who Recently Published With a Publisher
	Authors of a Journal Whose Publication Metadata Are Not Up to Date
	Find a book about Image processing published by Springer
	Find a list and details of publication/thesis related to algorithms
	Find publications about network with higher number of authors
	Find number of authors who have published a book and also an article on journals
	Update the MetadataVersion of a Publication
	Publishing an Article on a Journal and removing it

