#!/usr/bin/env python3 import numpy as np import glob import os import pandas as pd DIR: str = os.path.dirname(os.path.realpath(__file__)) IN_DIR: str = DIR + '/clustering' OUT_DIR: str = DIR + '' def intrapairs(path: str) -> set[set[str, str]]: df = pd.read_csv(path) clusters: list[list[str]] = df.groupby( 'cluster').agg(list).iloc[:, 0].values intrapairs: set[set[str]] = set() # inner sets always contain 2 elements for cluster in clusters: for i, e1 in enumerate(cluster): for j in range(i + 1, len(cluster)): e2 = cluster[j] intrapairs.add(frozenset((e1, e2,))) return intrapairs def main(): filelist = glob.glob(IN_DIR + '/*_groundtruth.csv') for f in filelist: clazz_name = os.path.basename(f) clazz_name = clazz_name[:clazz_name.rfind('_groundtruth.csv')] print(clazz_name) ground_pairs = intrapairs(f) for method in ['kmeans', 'hierarchical']: cluster_pairs = intrapairs( IN_DIR + '/' + clazz_name + '_' + method + '.csv') n_common = len(ground_pairs.intersection(cluster_pairs)) precision = n_common / len(cluster_pairs) recall = n_common / len(ground_pairs) print(method + " precision: " + str(precision)) print(method + " recall: " + str(recall)) print() if __name__ == '__main__': main()