compiled report for part 1
This commit is contained in:
parent
541a13b352
commit
3b04697ffe
2 changed files with 111 additions and 0 deletions
111
report/main.md
Normal file
111
report/main.md
Normal file
|
@ -0,0 +1,111 @@
|
||||||
|
---
|
||||||
|
author: Claudio Maggioni
|
||||||
|
title: Information Modelling & Analysis -- Project 1
|
||||||
|
---
|
||||||
|
|
||||||
|
<!--
|
||||||
|
The following shows a minimal submission report for project 1. If you
|
||||||
|
choose to use this template, replace all template instructions (the
|
||||||
|
yellow bits) with your own values. In addition, for any section, if
|
||||||
|
**and only if** anything was unclear or warnings were raised by the
|
||||||
|
code, and you had to take assumptions about the correct implementation
|
||||||
|
(e.g., about details of a metric), describe your assumptions in one or
|
||||||
|
two sentences.
|
||||||
|
|
||||||
|
You may - at your own risk - also choose not to use this template. As
|
||||||
|
long as your submission is a latex-generated, English PDF containing all
|
||||||
|
expected info, you'll be fine.
|
||||||
|
-->
|
||||||
|
|
||||||
|
# Code Repository
|
||||||
|
|
||||||
|
The code and result files part of this submission can be found at:
|
||||||
|
|
||||||
|
::: center
|
||||||
|
Repository: \url{https://github.com/infoMA2023/project-01-god-classes-maggicl}
|
||||||
|
|
||||||
|
Commit ID: **TBD**
|
||||||
|
:::
|
||||||
|
|
||||||
|
# Data Pre-Processing
|
||||||
|
|
||||||
|
## God Classes
|
||||||
|
|
||||||
|
::: {#tab:god_classes}
|
||||||
|
---------------------------------------------- ---------------
|
||||||
|
**Class Name** **\# Methods**
|
||||||
|
org.apache.xerces.dom.CoreDocumentImpl 125
|
||||||
|
org.apache.xerces.impl.xs.traversers.XSDHandler 118
|
||||||
|
org.apache.xerces.xinclude.XIncludeHandler 116
|
||||||
|
org.apache.xerces.impl.dtd.DTDGrammar 101
|
||||||
|
---------------------------------------------- ---------------
|
||||||
|
|
||||||
|
: Identified God Classes
|
||||||
|
:::
|
||||||
|
|
||||||
|
The god classes I identified, and their corresponding number of methods
|
||||||
|
can be found in Table [1](#tab:god_classes){reference-type="ref"
|
||||||
|
reference="tab:god_classes"}.
|
||||||
|
|
||||||
|
## Feature Vectors
|
||||||
|
|
||||||
|
Table [2](#tab:feat_vec){reference-type="ref" reference="tab:feat_vec"}
|
||||||
|
shows aggregate numbers regarding the extracted feature vectors for the
|
||||||
|
god classes.
|
||||||
|
|
||||||
|
::: {#tab:feat_vec}
|
||||||
|
---------------- ------------------------ ---------------------
|
||||||
|
**Class Name** **\# Feature Vectors** **\# Attributes\***
|
||||||
|
\... \... \...
|
||||||
|
---------------- ------------------------ ---------------------
|
||||||
|
|
||||||
|
: Feature vector summary (\*= used at least once)
|
||||||
|
:::
|
||||||
|
|
||||||
|
# Clustering {#sec:clustering}
|
||||||
|
|
||||||
|
## Algorithm Configurations
|
||||||
|
|
||||||
|
Report/comment the algorithm configurations (distance function, linkage
|
||||||
|
rule, etc.). You may do so in any form you feel suited, but a short
|
||||||
|
paragraph of text is probably sufficient.
|
||||||
|
|
||||||
|
## Testing Various K & Silhouette Scores
|
||||||
|
|
||||||
|
\(1\) Report data about the clusters produced by the two algorithms at
|
||||||
|
various k (#clusters, size of clusters, silhouette scores). You may use
|
||||||
|
any suitable format (table, graph, \...).
|
||||||
|
|
||||||
|
\(2\) Briefly comment your results. What is the best configuration, and
|
||||||
|
why? Anything else you observed?
|
||||||
|
|
||||||
|
# Evaluation
|
||||||
|
|
||||||
|
## Ground Truth
|
||||||
|
|
||||||
|
I computed the ground truth using the command \.... The generated files
|
||||||
|
are checked into the repository with the names \....
|
||||||
|
|
||||||
|
Comment briefly on the strengths & weaknesses of our ground truth.
|
||||||
|
|
||||||
|
## Precision and Recall
|
||||||
|
|
||||||
|
::: {#tab:eval}
|
||||||
|
---------------- ------------------- -------- ------------- --------
|
||||||
|
**Class Name** **Agglomerative** **K-Means**
|
||||||
|
Prec. Recall Prec. Recall
|
||||||
|
\... \... \... \... \...
|
||||||
|
---------------- ------------------- -------- ------------- --------
|
||||||
|
|
||||||
|
: Evaluation Summary
|
||||||
|
:::
|
||||||
|
|
||||||
|
Precision and Recall, for the optimal configurations found in Section
|
||||||
|
[3](#sec:clustering){reference-type="ref" reference="sec:clustering"},
|
||||||
|
are reported in Table [3](#tab:eval){reference-type="ref"
|
||||||
|
reference="tab:eval"}.
|
||||||
|
|
||||||
|
## Practical Usefulness
|
||||||
|
|
||||||
|
Discuss the practical usefulness of the obtained code refactoring
|
||||||
|
assistant in a realistic setting (1 paragraph).
|
BIN
report/main.pdf
Normal file
BIN
report/main.pdf
Normal file
Binary file not shown.
Reference in a new issue