
Information Modelling & Analysis – Project 1

Claudio Maggioni

Code Repository
The code and result files part of this submission can be found at:

::: center Repository: https://github.com/infoMA2023/project-01-god-classes-maggicl

Commit ID: TBD :::

Data Pre-Processing
God Classes
The first part of the project requires to label some classes of the Xerces project as “God classes” based on the
number of methods each class has. From here onwards the Java package prefix org.apache.xerces is omitted when
discussing fully qualified domain names of classes for sake of brevity.

Specifically, I label “God classes” the classes that have a number of methods six times the standard deviation above
the the mean number of methods, i.e. where the condition

|M(C)| > µ(M) + 6σ(M)

holds.

To scan and compute the number of methods of each class I use the Python library javalang, which implements
the Java AST and parser. The Python script ./find_god_classes.py uses this library to parse each file in the
project and compute the number of methods of each class. Note that only non-constructor methods are counted
(specifically the code counts the number of method nodes in each ClassDeclaration node).

Then, the script computes mean and standard deviation of the number of methods and filters the list of classes
according to the condition described above. The file god_classes/god_classes.csv then is outputted listing all
the god classes found.

The god classes I identified, and their corresponding number of methods can be found in Table 1.

Table 1: Identified God Classes

Class Name # Methods
impl.xs.traversers.XSDHandler 118
impl.dtd.DTDGrammar 101
xinclude.XIncludeHandler 116
dom.CoreDocumentImpl 125

Feature Vectors
In this part of the project we produce the feature vectors used to later cluster the methods of each God class into
separate clusters. We produce one feature method per non-constructor Java method in each god class.

1

https://github.com/infoMA2023/project-01-god-classes-maggicl

The columns of each vector represent fields and methods referenced by each method, i.e. fields and methods actively
used by the method in their method’s body.

When analyzing references to fields, additional constraints need to be specified to handle edge cases. Namely, a field’s
property may be referenced (e.g. an access to array a may fetch its length property, i.e. a.length). In this cases I
consider the qualifier (i.e. the field itself, a) itself and not its property. When the qualifier is a class (i.e. the code
references a property of another class, e.g. Integer.MAX_VALUE) we consider the class name itself (i.e. Integer)
and not the name of the property. Should the qualifier be a subproperty itself (e.g. in a.b.c, where a.b would be
the qualifier according to javalang)

For methods, I only consider calls to methods of the class itself where the qualifier is unspecified or this. Calls to
parent methods (i.e. calls like super.something()) are not considered.

The feature vector extraction phase is performed by the Python script extract_feature_vectors.py. The script
takes god_classes/god_classes.csv as input and loads the AST of each class listed in it. Then, a list of all the
fields and methods in the class is built, and each method is scanned to see which fields and methods it references
in its body according to the previously described rules. Then, a CSV per class is built storing all feature vectors.
Each file has a name matching to the FQDN (Fully-qualified domain name) of the class. Each CSV row refers to a
method in the class, and each CSV column refers to a field, method or referenced class. A cell has the value of 1
when the method of that row references the field, method or class marked by that column, and it has the value 0
otherwise. Columns with only zeros are omitted.

Table 2 shows aggregate numbers regarding the extracted feature vectors for the god classes. Note that the number
of attributes refers to the number of fields, methods or classes actually references (i.e. the number of columns after
omission of 0s).

Table 2: Feature vector summary (*= used at least once)

Class Name # Feature Vectors # Attributes*
impl.xs.traversers.XSDHandler 106 183
impl.dtd.DTDGrammar 91 106
xinclude.XIncludeHandler 108 143
dom.CoreDocumentImpl 117 63

Clustering
In this section I covering the techniques to cluster the methods of each god class. The project aims to use KMeans
clustering and agglomerative hierarchical clustering to group these methods toghether in cohesive units which could
be potentially refactored out of the god class they belong to.

Algorithm Configurations
To perform KMeans clustering, I use the cluster.KMeans Scikit-Learn implementation of the algorithm. I use the
default parameters: feature vectors are compared with euclidian distance, centroids are used instead of medioids,
and the initial centroids are computed with the greedy algorithm kmeans++. The random seed is fixed to 0 to allow
for reproducibility between executions of the clustering script.

To perform Hierarchical clustering, I use the cluster.AgglomerativeClustering Scikit-Learn implementation of
the algorithm. Again feature vectors are compared with euclidian distance, but as a linkage metric I choose to use
complete linkage. As agglomerative clustering is deternministic, no random seed is needed for this algorithm.

I run the two algorithms for all k ∈ [2, 65], or if less than 65 feature vectors with distinct values are assigned to the
god class, the upper bound of k is such value.

2

Testing Various K & Silhouette Scores
To find the optimal value of k for both algorithms, the distribution of cluster sizes and silhouette across values of k,
and to apply the optimal clustering for each god class I run the command:

./silhouette.py --validate --autorun

Feature vectors are read from the feature_vectors directory and all the results are stored in the clustering
directory.

Figures 1, 2, 3, and 4 show the distributions of cluster sizes for each god class obtained by running the KMeans and
agglomerative clustering algorithm as described in the previous sections.

For all god classes, the mean of number of elements in each cluster exponentially decreases as k increases. Aside the
first values of k for class DTDGrammar (where it was 2), the minimum cluster size was 1 for all analyzed clusterings.
Conversely, the maximum cluster size varies a lot, almost always being monotonically non increasing as k increases,
occasionally forming wide plateaus. The silhouette metric distribution instead generally follows a dogleg-like path,
sharply decreasing for the first values of k and slowly increasing afterwards k. This leads the choice of the optimal k
number of clusters for each algorithm to be between really low and really high values.

The figures also show the distribution of the silhouette metric per algorithm and per value of k. The optimal values
of k and the respective silhouette values for each implementation are reported in Table 3.

From the values we can gather that agglomerative clustering performs overall better than KMeans for the god classes
in the project. Almost god classes are optimally clustered with few clusters, with the exception of CoreDocumentImpl
being optimally clustered with unit clusters. This could indicate higher cohesion between implementation details of
the other classes, and lower cohesion in CoreDocumentImpl (given the name it would not be surprising if this class
plays the role of an utility class of sort, combining lots of implementation details affecting different areas of the
code).

Agglomerative clustering with complete linkage could perform better than KMeans due to a more urgent need for
separation rather than cohesion in the classes that were analyzed. Given the high dimensionality of the feature
vectures used, and the fact that eucledian distance is used to compare feature vectors, the hyper-space of method
features for each god class is likely sparse, with occasional clusters of tightly-knit features. Given the prevailing
sparsity, complete linkage could be suitable here since it avoids to agglomerate distant clusters above all.

Class Name | KMeans K | KMeans silhouette | Hierarchical K | Hierarchical silhouette |

|:————- ————–|———–:|——————–:|—————–:|————————–:| | dom.CoreDocumentImpl | 45
|0.7290 | 45 | 0.7290 | | impl.xs.traversers.XSDHandler | 2 |0.5986 | 3 | 0.5989 | | impl.dtd.DTDGrammar | 58 |0.3980
| 2 | 0.4355 | | xinclude.XIncludeHandler | 2 |0.6980 | 2 | 0.6856 |

: Optimal hyperparameters and corresponding silhouette metrics for KMeans and Hierarchical clustering algorithm.

Evaluation
Ground Truth
I computed the ground truth using the Python script ./ground_truth.py The generated files are checked into the
repository with the names clustering/{className}_groundtruth.csv where {className} is the FQDN of each
god class.

The ground truth in this project is not given but generated according to simple heuristics. Since no inherent structure
or labelling from experts exists to group the methods in each god class, the project requires to label methods based
on keyword matching whitin each method name. The list of keywords used can be found in keyword_list.txt.
This approach allows to have a ground truth at all with little computational cost and labelling effort, but it assumes
the method name and the chosen keywords are indeed of enough significance to form a meaningful clustering of
methods that form refactorable cohesive units of functionality.

3

Figure 1: Clustering metrics for class impl.xs.traversers.XSDHandler

4

Figure 2: Clustering metrics for class impl.dtd.DTDGrammar

5

Figure 3: Clustering metrics for class xinclude.XIncludeHandler

6

Figure 4: Clustering metrics for class dom.CoreDocumentImpl

7

Precision and Recall

Table 3: Evaluation Summary

Class Name
KMeans

Precision
KMeans

Recall
Agglomerative

Precision
Agglomerative

Recall
xinclude.XIncludeHandler 69.83% 97.80% 69.58% 95.65%
dom.CoreDocumentImpl 64.80% 28.26% 68.11% 29.70%
impl.xs.traversers.XSDHandler 36.17% 97.24% 36.45% 96.11%
impl.dtd.DTDGrammar 87.65% 6.87% 52.21% 94.28%

Precision and Recall, for the optimal configurations found in Section 3, are reported in Table 4.

comment precision and recall values

Practical Usefulness
Discuss the practical usefulness of the obtained code refactoring assistant in a realistic setting (1 paragraph).

8

	Code Repository
	Data Pre-Processing
	God Classes
	Feature Vectors

	Clustering
	Algorithm Configurations
	Testing Various K & Silhouette Scores

	Evaluation
	Ground Truth
	Precision and Recall
	Practical Usefulness

