
Information Modelling & Analysis – Project 1

Claudio Maggioni

Code Repository
The code and result files part of this submission can be found at:

Repository: https://github.com/infoMA2023/project-01-god-classes-maggicl

Commit ID: TBD

Data Pre-Processing
God Classes
The first part of the project requires to label some classes of the Xerces project as “God classes” based on
the number of methods each class has. Specifically, I label “God classes” the classes that have a number of
methods six times the standard deviation above the the mean number of methods, i.e. where the condition

|M(C)| > µ(M) + 6σ(M)

holds.

To scan and compute the number of methods of each class I use the Python library javalang, which implements
the Java AST and parser. The Python script ./find_god_classes.py uses this library to parse each file in
the project and compute the number of methods of each class. Note that only non-constructor methods are
counted (specifically the code counts the number of method nodes in each ClassDeclaration node).

Then, the script computes mean and standard deviation of the number of methods and filters the list of classes
according to the condition described above. The file god_classes/god_classes.csv then is outputted listing
all the god classes found.

The god classes I identified, and their corresponding number of methods can be found in Table 1.

Table 1: Identified God Classes

Class Name # Methods
org.apache.xerces.impl.xs.traversers.XSDHandler 118
org.apache.xerces.impl.dtd.DTDGrammar 101
org.apache.xerces.xinclude.XIncludeHandler 116
org.apache.xerces.dom.CoreDocumentImpl 125

Feature Vectors
In this part of the project we produce the feature vectors used to later cluster the methods of each God class
into separate clusters. We produce one feature method per non-constructor Java method in each god class.

1

https://github.com/infoMA2023/project-01-god-classes-maggicl

The columns of each vector represent fields and methods referenced by each method, i.e. fields and methods
actively used by the method in their method’s body.

When analyzing references to fields, additional constraints need to be specified to handle edge cases. Namely,
a field’s property may be referenced (e.g. an access to array a may fetch its length property, i.e. a.length).
In this cases I consider the qualifier (i.e. the field itself, a) itself and not its property. When the qualifier
is a class (i.e. the code references a property of another class, e.g. Integer.MAX_VALUE) we consider the
class name itself (i.e. Integer) and not the name of the property. Should the qualifier be a subproperty itself
(e.g. in a.b.c, where a.b would be the qualifier according to javalang)

For methods, I only consider calls to methods of the class itself where the qualifier is unspecified or this.
Calls to parent methods (i.e. calls like super.something()) are not considered.

The feature vector extraction phase is performed by the Python script extract_feature_vectors.py. The
script takes god_classes/god_classes.csv as input and loads the AST of each class listed in it. Then, a
list of all the fields and methods in the class is built, and each method is scanned to see which fields and
methods it references in its body according to the previously described rules. Then, a CSV per class is built
storing all feature vectors. Each file has a name matching to the FQDN (Fully-qualified domain name) of
the class. Each CSV row refers to a method in the class, and each CSV column refers to a field, method or
referenced class. A cell has the value of 1 when the method of that row references the field, method or class
marked by that column, and it has the value 0 otherwise. Columns with only zeros are omitted.

Table 2 shows aggregate numbers regarding the extracted feature vectors for the god classes. Note that the
number of attributes refers to the number of fields, methods or classes actually references (i.e. the number of
columns after omission of 0s).

Table 2: Feature vector summary (*= used at least once)

Class Name # Feature Vectors # Attributes*
org.apache.xerces.impl.xs.traversers.XSDHandler 106 183
org.apache.xerces.impl.dtd.DTDGrammar 91 106
org.apache.xerces.xinclude.XIncludeHandler 108 143
org.apache.xerces.dom.CoreDocumentImpl 117 63

Clustering
Algorithm Configurations
Report/comment the algorithm configurations (distance function, linkage rule, etc.). You may do so in any
form you feel suited, but a short paragraph of text is probably sufficient.

Testing Various K & Silhouette Scores
(1) Report data about the clusters produced by the two algorithms at various k (#clusters, size of clusters,
silhouette scores). You may use any suitable format (table, graph, ...).

(2) Briefly comment your results. What is the best configuration, and why? Anything else you observed?

Evaluation
Ground Truth
I computed the ground truth using the command The generated files are checked into the repository
with the names

2

Comment briefly on the strengths & weaknesses of our ground truth.

Precision and Recall

Table 3: Evaluation Summary

Class Name Agglomerative K-Means
Prec. Recall Prec. Recall

...

Precision and Recall, for the optimal configurations found in Section 3, are reported in Table 3.

Practical Usefulness
Discuss the practical usefulness of the obtained code refactoring assistant in a realistic setting (1 paragraph).

3

	Code Repository
	Data Pre-Processing
	God Classes
	Feature Vectors

	Clustering
	Algorithm Configurations
	Testing Various K & Silhouette Scores

	Evaluation
	Ground Truth
	Precision and Recall
	Practical Usefulness

