79 lines
2.1 KiB
Python
Executable file
79 lines
2.1 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
import javalang
|
|
import os
|
|
import pandas as pd
|
|
import glob
|
|
import tabulate
|
|
|
|
# God class if:
|
|
# |M(C)| > E(M) + 6*V(M)
|
|
# (number of methods greater than average across all classes plus 6 times the
|
|
# standard deviation)
|
|
|
|
|
|
DIR: str = os.path.dirname(os.path.realpath(__file__))
|
|
SOURCES: str = DIR + '/resources/xerces2-j-src'
|
|
OUT_DIR: str = DIR + '/god_classes'
|
|
|
|
|
|
def clean_output():
|
|
filelist = glob.glob(OUT_DIR + '/*.csv')
|
|
for f in filelist:
|
|
os.remove(f)
|
|
|
|
|
|
def parse(path: str) -> list[tuple[str, str]]:
|
|
# Get the AST of the file
|
|
with open(path) as file:
|
|
data = file.read()
|
|
tree = javalang.parse.parse(data)
|
|
|
|
# Fetch package name from package declaration
|
|
# if node is missing, assuming default package ('')
|
|
package_name = ''
|
|
for _, node in tree.filter(javalang.tree.PackageDeclaration):
|
|
package_name = node.name
|
|
break
|
|
|
|
# Get all classes and number of methods for each one
|
|
rows: list[tuple[str, str]] = []
|
|
for _, node in tree.filter(javalang.tree.ClassDeclaration):
|
|
fqdn = package_name + '.' + node.name
|
|
rows.append((fqdn, len(node.methods),))
|
|
|
|
return rows
|
|
|
|
|
|
def create_df(root) -> pd.DataFrame:
|
|
frame = pd.DataFrame(columns=['class_name', 'method_num'])
|
|
|
|
i: int = 0
|
|
for path, dirs, files in os.walk(root):
|
|
for f in files:
|
|
if f.endswith('.java'):
|
|
# for each java file, add all entries found to dataframe
|
|
for row in parse(path + '/' + f):
|
|
frame.loc[i] = row
|
|
i += 1
|
|
|
|
return frame
|
|
|
|
|
|
def main():
|
|
clean_output()
|
|
df = create_df(SOURCES)
|
|
|
|
mean = df.loc[:, 'method_num'].mean()
|
|
std = df.loc[:, 'method_num'].std()
|
|
threshold = mean + 6 * std
|
|
|
|
god_classes_df = df[df['method_num'] > threshold]
|
|
god_classes_df.to_csv(OUT_DIR + '/god_classes.csv')
|
|
|
|
god_classes_df.columns = ['Class Name', '# Methods']
|
|
god_classes_df = god_classes_df.set_index('Class Name', drop=True)
|
|
print(god_classes_df.to_markdown())
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|