30 lines
954 B
Python
30 lines
954 B
Python
|
#!/usr/bin/env python3
|
||
|
|
||
|
import os
|
||
|
import pandas as pd
|
||
|
|
||
|
from train_classifiers import get_classifiers
|
||
|
|
||
|
def main():
|
||
|
i = 0
|
||
|
df = pd.DataFrame(columns=['Classifier', 'Parameter', 'Values'])
|
||
|
for clazz, grid in get_classifiers():
|
||
|
for name, values in grid.items():
|
||
|
df.loc[i, 'Classifier'] = type(clazz).__name__
|
||
|
df.loc[i, 'Parameter'] = name
|
||
|
df.loc[i, 'Values'] = ', '.join([str(x) for x in values])
|
||
|
i += 1
|
||
|
|
||
|
n1 = '5, 10, 15, ..., 100'
|
||
|
n2 = ', '.join([str(x) for x in range(15, 101, 15)])
|
||
|
n3 = ', '.join([str(x) for x in range(20, 101, 20)])
|
||
|
|
||
|
df.loc[(df.Classifier == 'MLPClassifier') & (df.Parameter == 'hidden_layer_sizes'), 'Values'] = f'$[{n1}]$, $[{n2}]^2$, $[{n3}]^3$'
|
||
|
|
||
|
for i in set(df['Classifier']):
|
||
|
print(i)
|
||
|
print(df.loc[df.Classifier == i, ['Parameter', 'Values']].to_markdown(index=False))
|
||
|
print()
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|