report done up to training
This commit is contained in:
parent
185bee2933
commit
2797dc7a9d
3 changed files with 16 additions and 1 deletions
|
@ -150,7 +150,15 @@ The script `./train_classifiers.py`, according to the random seed $3735924759$,
|
||||||
The metrics for each classifier and each hyperparameter configuration in decreasing order of
|
The metrics for each classifier and each hyperparameter configuration in decreasing order of
|
||||||
accuracy are reported in the following sections.
|
accuracy are reported in the following sections.
|
||||||
|
|
||||||
For each classifier, I then choose the hyperparameter configuration with highest accuracy.
|
For each classifier, I then choose the hyperparameter configuration with highest accuracy. Namely, these configurations are:
|
||||||
|
|
||||||
|
| **Classifier** | **Hyper-parameter configuration** | **Precision** | **Accuracy** | **Recall** | **F1 Score** |
|
||||||
|
|:----|:--------|-:|-:|-:|--:|
|
||||||
|
| DecisionTreeClassifier | `criterion`: gini, `splitter`: best | 0.7885 | 0.8506 | 0.9535 | 0.8632 |
|
||||||
|
| GaussianNB | -- | 0.8 | 0.6782 | 0.4651 | 0.5882 |
|
||||||
|
| MLPClassifier | `activation`: logistic, `hidden_layer_sizes`: (60, 80, 100), `learning_rate`: constant, `max_iter`: 500000, `solver`: lbfgs | 0.8958 | 0.9425 | 1 | 0.9451 |
|
||||||
|
| RandomForestClassifier | `class_weight`: balanced, `criterion`: gini, `max_features`: sqrt | 0.8367 | 0.8851 | 0.9535 | 0.8913 |
|
||||||
|
| SVC | `gamma`: scale, `kernel`: rbf | 0.7174 | 0.7356 | 0.7674 | 0.7416 |
|
||||||
|
|
||||||
## Decision Tree (DT)
|
## Decision Tree (DT)
|
||||||
|
|
||||||
|
@ -300,6 +308,8 @@ For sake of brevity, only the top 100 results by accuracy are shown.
|
||||||
| gini | balanced_subsample | log2 | 0.803922 | 0.862069 | 0.953488 | 0.87234 |
|
| gini | balanced_subsample | log2 | 0.803922 | 0.862069 | 0.953488 | 0.87234 |
|
||||||
| entropy | balanced_subsample | log2 | 0.803922 | 0.862069 | 0.953488 | 0.87234 |
|
| entropy | balanced_subsample | log2 | 0.803922 | 0.862069 | 0.953488 | 0.87234 |
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# Evaluation
|
# Evaluation
|
||||||
|
|
||||||
## Output Distributions
|
## Output Distributions
|
||||||
|
|
BIN
report/main.pdf
BIN
report/main.pdf
Binary file not shown.
|
@ -150,6 +150,11 @@ def find_best_and_save(df: pd.DataFrame):
|
||||||
|
|
||||||
metrics = ['precision', 'accuracy', 'recall', 'f1']
|
metrics = ['precision', 'accuracy', 'recall', 'f1']
|
||||||
df_best.loc[:, metrics] = df_best.loc[:, metrics].round(decimals=4)
|
df_best.loc[:, metrics] = df_best.loc[:, metrics].round(decimals=4)
|
||||||
|
df_best = df_best.reindex(
|
||||||
|
['classifier', 'params'] + \
|
||||||
|
[x for x in df_best.columns if x in metrics], \
|
||||||
|
axis=1)
|
||||||
|
|
||||||
print(df_best.to_markdown(index=False))
|
print(df_best.to_markdown(index=False))
|
||||||
|
|
||||||
|
|
||||||
|
|
Reference in a new issue