--- author: Claudio Maggioni title: Information Modelling & Analysis -- Project 2 geometry: margin=2cm --- # Code Repository The code and result files, part of this submission, can be found at: - Repository: [https://github.com/infoMA2023/project-02-bug-prediction-maggicl](https://github.com/infoMA2023/project-02-bug-prediction-maggicl) - Commit ID: **786d6a06847b217bdad53804f8a6c79e30134ef3** # Data Pre-Processing I use the sources of the [Closure]{.smallcaps} repository that were already downloaded using the command: ```shell defects4j checkout -p Closure -v 1f -w ./resources ``` and used the code in the following subfolder for the project: ``` ./resources/defects4j-checkout-closure-1f/src/com/google/javascript/jscomp/ ``` relative to the root folder of the repository. The resulting CSV of extracted, labelled feature vectors can be found in the repository at the path: ``` ./metrics/feature_vectors_labeled.csv ``` relative to the root folder of the repository. Unlabeled feature vectors can be computed by running the script `./extract_feature_vectors.py`. The resulting CSV of unlabeled feature vectors is located in `./metrics/feature_vectors.csv`. Labels for feature vectors can be computed by running the script `./label_feature_vectors.py`. ## Feature Vector Extraction I extracted **291** feature vectors in total. Aggregate metrics about the extracted feature vectors, i.e. the distribution of the values of each code metric, can be found in Table [1](#tab:metrics){reference-type="ref" reference="tab:metrics"}. ::: {#tab:metrics} | **Metric** | **Minimum** | **Average** | **Maximum** | |:------|-:|---------:|-----:| | `BCM` |0| 13.4124 | 221 | | `CPX` |0| 5.8247 | 96 | | `DCM` |0| 4.8652 |176.2 | | `EX` |0| 0.1134 | 2 | | `FLD` |0| 6.5773 | 167 | | `INT` |0| 0.6667 | 3 | | `MTH` |0| 11.6529 | 209 | | `NML` |0| 13.5622 | 28 | | `RET` |0| 3.6735 | 86 | | `RFC` |0| 107.2710 | 882 | | `SZ` |0| 18.9966 | 347 | | `WRD` |0| 314.4740 | 3133 | : Distribution of values for each extracted code metric. ::: ## Feature Vector Labelling After feature vectors are labeled, I determine that the dataset contains **75** buggy classes and **216** non-buggy classes. # Classifiers In this section I explain how I define and perform training for each classifier. Since the dataset has an unbalanced number of feature vectors of each class, in order to increase classification performance I upsample the dataset by performing sampling with replacement over the least frequent class until the number of feature vectors matches the most frequest class[^1]. [^1]: Upsampling due to unbalanced classes was suggested by *Michele Cattaneo*, who is attending this class. Other than for the `GaussianNB` (Naive Bayes) classifier, the classifiers chosen for the project offer to select hyperparameter values. In order to choose them, I perform a grid search over each classifier. The hyperparameter values I have considered in the grid search for each classifier are the following: - For *DecisionTreeClassifier*: | **Parameter** | **Values** | |:------------|:--------------| | criterion | gini, entropy | | splitter | best, random | - For *SVC*: | **Parameter** | **Values** | |:------------|:---------------------------| | kernel | linear, poly, rbf, sigmoid | | gamma | scale, auto | - For *MLPClassifier*: | **Parameter** | **Values** | |:------------|:---------------------------| | max_iter | 500000 | | hidden_layer_sizes | $[5, 10, 15, ..., 100]$, $[15, 30, 45, 60, 75, 90]^2$, $[20, 40, 60, 80, 100]^3$ | | activation | identity, logistic, tanh, relu | | solver | lbfgs, sgd, adam | | learning_rate | constant, invscaling, adaptive | Note that the $[...]^2$ denotes a cartesian product of the array with itself, and $[...]^3$ denotes the cartesian product of $[...]^2$ with the array (i.e. $[...]^3 = [...]^2 \times [...] = ([...] \times [...]) \times [...]$). Note also the high upper bound on iterations (500000). This is to allow convergence of the less optimal hyperparameter configurations and avoid `ConvergenceWarning` errors. - For *RandomForestClassifier*: | **Parameter** | **Values** | |:-------------|:-----------------------------| | criterion | gini, entropy | | max_features | sqrt, log2 | | class_weight | balanced, balanced_subsample | The script `./train_classifiers.py`, according to the random seed $3735924759$, performs upscaling of the dataset and the grid search training, by recording precision, accuracy, recall and the F1 score of each configuration of hyperparameters. These metrics are then collected and stored in `./models/models.csv`. The metrics for each classifier and each hyperparameter configuration in decreasing order of accuracy are reported in the following sections. For each classifier, I then choose the hyperparameter configuration with highest accuracy. Namely, these configurations are: | **Classifier** | **Hyper-parameter configuration** | **Precision** | **Accuracy** | **Recall** | **F1 Score** | |:----|:--------|-:|-:|-:|--:| | DecisionTreeClassifier | `criterion`: gini, `splitter`: best | 0.7885 | 0.8506 | 0.9535 | 0.8632 | | GaussianNB | -- | 0.8 | 0.6782 | 0.4651 | 0.5882 | | MLPClassifier | `activation`: logistic, `hidden_layer_sizes`: (60, 80, 100), `learning_rate`: constant, `max_iter`: 500000, `solver`: lbfgs | 0.8958 | 0.9425 | 1 | 0.9451 | | RandomForestClassifier | `class_weight`: balanced, `criterion`: gini, `max_features`: sqrt | 0.8367 | 0.8851 | 0.9535 | 0.8913 | | SVC | `gamma`: scale, `kernel`: rbf | 0.7174 | 0.7356 | 0.7674 | 0.7416 | ## Decision Tree (DT) | criterion | splitter | precision | accuracy | recall | f1 | |:------------|:-----------|------------:|-----------:|---------:|---------:| | gini | best | 0.788462 | 0.850575 | 0.953488 | 0.863158 | | gini | random | 0.784314 | 0.83908 | 0.930233 | 0.851064 | | entropy | random | 0.736842 | 0.816092 | 0.976744 | 0.84 | | entropy | best | 0.745455 | 0.816092 | 0.953488 | 0.836735 | ## Naive Bayes (NB) | precision | accuracy | recall | f1 | |------------:|-----------:|---------:|---------:| | 0.8 | 0.678161 | 0.465116 | 0.588235 | ## Support Vector Machine (SVP) | gamma | kernel | precision | accuracy | recall | f1 | |:--------|:---------|------------:|-----------:|---------:|---------:| | scale | rbf | 0.717391 | 0.735632 | 0.767442 | 0.741573 | | scale | linear | 0.75 | 0.735632 | 0.697674 | 0.722892 | | auto | linear | 0.75 | 0.735632 | 0.697674 | 0.722892 | | auto | rbf | 0.702128 | 0.724138 | 0.767442 | 0.733333 | | scale | sigmoid | 0.647059 | 0.678161 | 0.767442 | 0.702128 | | auto | sigmoid | 0.647059 | 0.678161 | 0.767442 | 0.702128 | | auto | poly | 0.772727 | 0.643678 | 0.395349 | 0.523077 | | scale | poly | 0.833333 | 0.597701 | 0.232558 | 0.363636 | ## Multi-Layer Perceptron (MLP) For sake of brevity, only the top 100 results by accuracy are shown. | activation | hidden_layer_sizes | learning_rate | max_iter | solver | precision | accuracy | recall | f1 | |:-------------|:---------------------|:----------------|-----------:|:---------|------------:|-----------:|---------:|---------:| | logistic | (60, 80, 100) | constant | 500000 | lbfgs | 0.895833 | 0.942529 | 1 | 0.945055 | | logistic | (40, 80, 100) | adaptive | 500000 | lbfgs | 0.86 | 0.91954 | 1 | 0.924731 | | tanh | (40, 80, 100) | invscaling | 500000 | adam | 0.86 | 0.91954 | 1 | 0.924731 | | tanh | (60, 100, 80) | adaptive | 500000 | lbfgs | 0.86 | 0.91954 | 1 | 0.924731 | | tanh | (100, 60, 20) | constant | 500000 | adam | 0.86 | 0.91954 | 1 | 0.924731 | | tanh | (100, 80, 80) | constant | 500000 | adam | 0.86 | 0.91954 | 1 | 0.924731 | | relu | (75, 30) | adaptive | 500000 | lbfgs | 0.86 | 0.91954 | 1 | 0.924731 | | logistic | (20, 40, 60) | adaptive | 500000 | lbfgs | 0.875 | 0.91954 | 0.976744 | 0.923077 | | logistic | (40, 60, 80) | adaptive | 500000 | lbfgs | 0.843137 | 0.908046 | 1 | 0.914894 | | logistic | (80, 40, 20) | constant | 500000 | lbfgs | 0.843137 | 0.908046 | 1 | 0.914894 | | tanh | 30 | invscaling | 500000 | lbfgs | 0.843137 | 0.908046 | 1 | 0.914894 | | tanh | 60 | constant | 500000 | lbfgs | 0.843137 | 0.908046 | 1 | 0.914894 | | tanh | 85 | adaptive | 500000 | lbfgs | 0.843137 | 0.908046 | 1 | 0.914894 | | tanh | (30, 30) | constant | 500000 | adam | 0.843137 | 0.908046 | 1 | 0.914894 | | tanh | (45, 45) | adaptive | 500000 | lbfgs | 0.843137 | 0.908046 | 1 | 0.914894 | | tanh | (60, 60) | invscaling | 500000 | lbfgs | 0.843137 | 0.908046 | 1 | 0.914894 | | tanh | (75, 45) | invscaling | 500000 | lbfgs | 0.843137 | 0.908046 | 1 | 0.914894 | | tanh | (75, 75) | adaptive | 500000 | lbfgs | 0.843137 | 0.908046 | 1 | 0.914894 | | tanh | (90, 90) | invscaling | 500000 | adam | 0.843137 | 0.908046 | 1 | 0.914894 | | tanh | (20, 40, 60) | invscaling | 500000 | adam | 0.843137 | 0.908046 | 1 | 0.914894 | | tanh | (20, 100, 20) | invscaling | 500000 | lbfgs | 0.843137 | 0.908046 | 1 | 0.914894 | | tanh | (40, 20, 100) | constant | 500000 | adam | 0.843137 | 0.908046 | 1 | 0.914894 | | tanh | (40, 80, 60) | invscaling | 500000 | adam | 0.843137 | 0.908046 | 1 | 0.914894 | | tanh | (40, 80, 100) | adaptive | 500000 | adam | 0.843137 | 0.908046 | 1 | 0.914894 | | tanh | (60, 20, 40) | adaptive | 500000 | lbfgs | 0.843137 | 0.908046 | 1 | 0.914894 | | tanh | (60, 60, 80) | constant | 500000 | adam | 0.843137 | 0.908046 | 1 | 0.914894 | | tanh | (60, 80, 80) | adaptive | 500000 | lbfgs | 0.843137 | 0.908046 | 1 | 0.914894 | | tanh | (80, 20, 40) | adaptive | 500000 | lbfgs | 0.843137 | 0.908046 | 1 | 0.914894 | | tanh | (80, 40, 80) | constant | 500000 | adam | 0.843137 | 0.908046 | 1 | 0.914894 | | tanh | (80, 60, 60) | constant | 500000 | lbfgs | 0.843137 | 0.908046 | 1 | 0.914894 | | relu | (20, 20, 80) | constant | 500000 | adam | 0.843137 | 0.908046 | 1 | 0.914894 | | relu | (20, 40, 100) | constant | 500000 | lbfgs | 0.843137 | 0.908046 | 1 | 0.914894 | | relu | (20, 60, 20) | adaptive | 500000 | adam | 0.843137 | 0.908046 | 1 | 0.914894 | | relu | (20, 60, 100) | adaptive | 500000 | adam | 0.843137 | 0.908046 | 1 | 0.914894 | | relu | (20, 100, 20) | constant | 500000 | adam | 0.843137 | 0.908046 | 1 | 0.914894 | | relu | (20, 100, 40) | adaptive | 500000 | adam | 0.843137 | 0.908046 | 1 | 0.914894 | | relu | (40, 20, 80) | constant | 500000 | lbfgs | 0.843137 | 0.908046 | 1 | 0.914894 | | relu | (40, 80, 60) | constant | 500000 | lbfgs | 0.843137 | 0.908046 | 1 | 0.914894 | | relu | (60, 20, 100) | constant | 500000 | adam | 0.843137 | 0.908046 | 1 | 0.914894 | | relu | (80, 20, 60) | constant | 500000 | lbfgs | 0.843137 | 0.908046 | 1 | 0.914894 | | relu | (80, 60, 20) | adaptive | 500000 | adam | 0.843137 | 0.908046 | 1 | 0.914894 | | relu | (100, 20, 60) | invscaling | 500000 | adam | 0.843137 | 0.908046 | 1 | 0.914894 | | logistic | (20, 60, 80) | invscaling | 500000 | lbfgs | 0.857143 | 0.908046 | 0.976744 | 0.913043 | | logistic | (60, 20, 20) | adaptive | 500000 | lbfgs | 0.857143 | 0.908046 | 0.976744 | 0.913043 | | tanh | (15, 45) | constant | 500000 | lbfgs | 0.857143 | 0.908046 | 0.976744 | 0.913043 | | tanh | (45, 90) | invscaling | 500000 | lbfgs | 0.857143 | 0.908046 | 0.976744 | 0.913043 | | tanh | (90, 30) | constant | 500000 | lbfgs | 0.857143 | 0.908046 | 0.976744 | 0.913043 | | tanh | (20, 80, 100) | invscaling | 500000 | adam | 0.857143 | 0.908046 | 0.976744 | 0.913043 | | tanh | (20, 80, 100) | adaptive | 500000 | lbfgs | 0.857143 | 0.908046 | 0.976744 | 0.913043 | | tanh | (40, 40, 40) | adaptive | 500000 | lbfgs | 0.857143 | 0.908046 | 0.976744 | 0.913043 | | tanh | (40, 60, 100) | adaptive | 500000 | adam | 0.857143 | 0.908046 | 0.976744 | 0.913043 | | tanh | (60, 80, 60) | constant | 500000 | lbfgs | 0.857143 | 0.908046 | 0.976744 | 0.913043 | | tanh | (100, 40, 60) | invscaling | 500000 | lbfgs | 0.857143 | 0.908046 | 0.976744 | 0.913043 | | tanh | (100, 80, 100) | adaptive | 500000 | adam | 0.857143 | 0.908046 | 0.976744 | 0.913043 | | relu | (30, 30) | adaptive | 500000 | lbfgs | 0.857143 | 0.908046 | 0.976744 | 0.913043 | | relu | (20, 20, 40) | adaptive | 500000 | lbfgs | 0.857143 | 0.908046 | 0.976744 | 0.913043 | | relu | (20, 40, 40) | adaptive | 500000 | adam | 0.857143 | 0.908046 | 0.976744 | 0.913043 | | relu | (40, 20, 100) | adaptive | 500000 | adam | 0.857143 | 0.908046 | 0.976744 | 0.913043 | | relu | (60, 80, 20) | invscaling | 500000 | lbfgs | 0.857143 | 0.908046 | 0.976744 | 0.913043 | | logistic | (40, 80, 60) | adaptive | 500000 | lbfgs | 0.87234 | 0.908046 | 0.953488 | 0.911111 | | logistic | 35 | adaptive | 500000 | lbfgs | 0.826923 | 0.896552 | 1 | 0.905263 | | logistic | (15, 60) | invscaling | 500000 | lbfgs | 0.826923 | 0.896552 | 1 | 0.905263 | | logistic | (45, 45) | constant | 500000 | lbfgs | 0.826923 | 0.896552 | 1 | 0.905263 | | logistic | (20, 20, 60) | adaptive | 500000 | lbfgs | 0.826923 | 0.896552 | 1 | 0.905263 | | logistic | (60, 60, 80) | adaptive | 500000 | lbfgs | 0.826923 | 0.896552 | 1 | 0.905263 | | logistic | (80, 40, 100) | invscaling | 500000 | lbfgs | 0.826923 | 0.896552 | 1 | 0.905263 | | logistic | (100, 100, 100) | constant | 500000 | lbfgs | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | 60 | constant | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (15, 15) | invscaling | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (15, 45) | adaptive | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (30, 30) | invscaling | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (30, 60) | constant | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (60, 90) | invscaling | 500000 | lbfgs | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (75, 15) | constant | 500000 | lbfgs | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (75, 45) | constant | 500000 | lbfgs | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (90, 15) | adaptive | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (90, 45) | invscaling | 500000 | lbfgs | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (20, 40, 20) | invscaling | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (20, 40, 40) | invscaling | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (20, 60, 20) | adaptive | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (20, 80, 60) | constant | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (20, 80, 80) | constant | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (20, 80, 100) | constant | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (40, 20, 60) | invscaling | 500000 | lbfgs | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (40, 60, 60) | constant | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (40, 60, 60) | invscaling | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (40, 80, 20) | adaptive | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (40, 100, 60) | constant | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (60, 40, 20) | constant | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (60, 40, 40) | invscaling | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (60, 40, 80) | constant | 500000 | lbfgs | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (60, 60, 20) | constant | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (60, 80, 60) | constant | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (60, 80, 80) | invscaling | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (60, 100, 20) | invscaling | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (60, 100, 40) | adaptive | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (60, 100, 60) | constant | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (60, 100, 60) | adaptive | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (60, 100, 80) | constant | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | | tanh | (80, 40, 40) | constant | 500000 | adam | 0.826923 | 0.896552 | 1 | 0.905263 | ## Random Forest (RF) | criterion | class_weight | max_features | precision | accuracy | recall | f1 | |:------------|:-------------------|:---------------|------------:|-----------:|---------:|---------:| | gini | balanced | sqrt | 0.836735 | 0.885057 | 0.953488 | 0.891304 | | entropy | balanced | sqrt | 0.807692 | 0.873563 | 0.976744 | 0.884211 | | gini | balanced_subsample | sqrt | 0.807692 | 0.873563 | 0.976744 | 0.884211 | | entropy | balanced_subsample | sqrt | 0.807692 | 0.873563 | 0.976744 | 0.884211 | | gini | balanced | log2 | 0.82 | 0.873563 | 0.953488 | 0.88172 | | entropy | balanced | log2 | 0.82 | 0.873563 | 0.953488 | 0.88172 | | gini | balanced_subsample | log2 | 0.803922 | 0.862069 | 0.953488 | 0.87234 | | entropy | balanced_subsample | log2 | 0.803922 | 0.862069 | 0.953488 | 0.87234 | # Evaluation To evaluate the performance of each selected classifier, each model has trained 100 times by repeating a 5-fold cross validation procedure 20 times. A graphical and statistical analysis to compare the distribution of performance metrics (precision, recall and F1 score) follows. Numeric tables, statistical analysis conclusions and the boxplot diagram shown in this section are obtained by running the script: ``` ./evaluate_classifiers.py ``` ## Output Distributions A boxplot chart to show the distribution of each of precision, recall, and F1 score for all classifiers (including the biased classifier) is shown in figure [1](#fig:boxplot){reference-type="ref" reference="fig:boxplot"}. Table [2](#tab:meanstd){reference-type="ref" reference="tab:meanstd"} is a numeric table summing up mean and standard deviation of each metric. ![Precision, Recall and F1 score distribution for each classifier for 20-times cross validation.](../models/boxplot.svg){#fig:boxplot} ::: {#tab:meanstd} | **Classifier** | **Metric** | **Mean** | **Std. dev.** | |:-----------------------|:----------|---------:|-----------:| | BiasedClassifier | f1 | 0.666238 | 0.00511791 | | BiasedClassifier | precision | 0.49954 | 0.00575757 | | BiasedClassifier | recall | 1 | 0 | | DecisionTreeClassifier | f1 | 0.888104 | 0.0302085 | | DecisionTreeClassifier | precision | 0.832669 | 0.0425814 | | DecisionTreeClassifier | recall | 0.953261 | 0.0358021 | | GaussianNB | f1 | 0.54952 | 0.0912106 | | GaussianNB | precision | 0.820866 | 0.066323 | | GaussianNB | recall | 0.418885 | 0.0950382 | | MLPClassifier | f1 | 0.884807 | 0.0348063 | | MLPClassifier | precision | 0.836507 | 0.0489391 | | MLPClassifier | recall | 0.941823 | 0.0454851 | | RandomForestClassifier | f1 | 0.91079 | 0.0301481 | | RandomForestClassifier | precision | 0.870685 | 0.0427383 | | RandomForestClassifier | recall | 0.956665 | 0.0381288 | | SVC | f1 | 0.752656 | 0.0537908 | | SVC | precision | 0.7557 | 0.0515768 | | SVC | recall | 0.754709 | 0.0819603 | : Mean and standard deviation for each classifier for 20-times cross validation. ::: ## Comparison and Significance Given the distribution of metrics presented in the previous section, I perform a statistical analysis using the Wilixcon paired test to determine for each pair of classifiers which one performs better according to each performance metric. When the *p-value* is too high, *ANOVA* power analysis (corrected by *alpha* = $= 0.05$) is performed to determine if the metrics are equally distributed or if the statistical test is inconclusive. # F1 Values - Mean *F1* for *DT*: 0.8881, mean *F1* for *NB*: 0.5495 $\Rightarrow$ *DT* is better than *NB* (*p-value* $= 0.0$) - Mean *F1* for *DT*: 0.8881, mean *F1* for *MLP*: 0.8848 $\Rightarrow$ statistical test inconclusive (*p-value* $= 0.4711$, *5% corrected ANOVA power* $= 0.2987$) - Mean *F1* for *DT*: 0.8881, mean *F1* for *RF*: 0.9108 $\Rightarrow$ *RF* is better than *DT* (*p-value* $= 0.0$) - Mean *F1* for *DT*: 0.8881, mean *F1* for *SVP*: 0.7527 $\Rightarrow$ *DT* is better than *SVP* (*p-value* $= 0.0$) - Mean *F1* for *NB*: 0.5495, mean *F1* for *MLP*: 0.8848 $\Rightarrow$ *MLP* is better than *NB* (*p-value* $= 0.0$) - Mean *F1* for *NB*: 0.5495, mean *F1* for *RF*: 0.9108 $\Rightarrow$ *RF* is better than *NB* (*p-value* $= 0.0$) - Mean *F1* for *NB*: 0.5495, mean *F1* for *SVP*: 0.7527 $\Rightarrow$ *SVP* is better than *NB* (*p-value* $= 0.0$) - Mean *F1* for *MLP*: 0.8848, mean *F1* for *RF*: 0.9108 $\Rightarrow$ *RF* is better than *MLP* (*p-value* $= 0.0$) - Mean *F1* for *MLP*: 0.8848, mean *F1* for *SVP*: 0.7527 $\Rightarrow$ *MLP* is better than *SVP* (*p-value* $= 0.0$) - Mean *F1* for *RF*: 0.9108, mean *F1* for *SVP*: 0.7527 $\Rightarrow$ *RF* is better than *SVP* (*p-value* $= 0.0$) - Mean *F1* for *Biased*: 0.6662, mean *F1* for *DT*: 0.8881 $\Rightarrow$ *DT* is better than *Biased* (*p-value* $= 0.0$) - Mean *F1* for *Biased*: 0.6662, mean *F1* for *NB*: 0.5495 $\Rightarrow$ *Biased* is better than *NB* (*p-value* $= 0.0$) - Mean *F1* for *Biased*: 0.6662, mean *F1* for *MLP*: 0.8848 $\Rightarrow$ *MLP* is better than *Biased* (*p-value* $= 0.0$) - Mean *F1* for *Biased*: 0.6662, mean *F1* for *RF*: 0.9108 $\Rightarrow$ *RF* is better than *Biased* (*p-value* $= 0.0$) - Mean *F1* for *Biased*: 0.6662, mean *F1* for *SVP*: 0.7527 $\Rightarrow$ *SVP* is better than *Biased* (*p-value* $= 0.0$) ### Precision - Mean *precision* for *DT*: 0.8327, mean *precision* for *NB*: 0.8209 $\Rightarrow$ *DT* is as effective as *NB* (*p-value* $= 0.0893$, *5% corrected ANOVA power* $= 0.8498$) - Mean *precision* for *DT*: 0.8327, mean *precision* for *MLP*: 0.8365 $\Rightarrow$ statistical test inconclusive (*p-value* $= 0.4012$, *5% corrected ANOVA power* $= 0.2196$) - Mean *precision* for *DT*: 0.8327, mean *precision* for *RF*: 0.8707 $\Rightarrow$ *RF* is better than *DT* (*p-value* $= 0.0$) - Mean *precision* for *DT*: 0.8327, mean *precision* for *SVP*: 0.7557 $\Rightarrow$ *DT* is better than *SVP* (*p-value* $= 0.0$) - Mean *precision* for *NB*: 0.8209, mean *precision* for *MLP*: 0.8365 $\Rightarrow$ *MLP* is better than *NB* (*p-value* $= 0.0348$) - Mean *precision* for *NB*: 0.8209, mean *precision* for *RF*: 0.8707 $\Rightarrow$ *RF* is better than *NB* (*p-value* $= 0.0$) - Mean *precision* for *NB*: 0.8209, mean *precision* for *SVP*: 0.7557 $\Rightarrow$ *NB* is better than *SVP* (*p-value* $= 0.0$) - Mean *precision* for *MLP*: 0.8365, mean *precision* for *RF*: 0.8707 $\Rightarrow$ *RF* is better than *MLP* (*p-value* $= 0.0$) - Mean *precision* for *MLP*: 0.8365, mean *precision* for *SVP*: 0.7557 $\Rightarrow$ *MLP* is better than *SVP* (*p-value* $= 0.0$) - Mean *precision* for *RF*: 0.8707, mean *precision* for *SVP*: 0.7557 $\Rightarrow$ *RF* is better than *SVP* (*p-value* $= 0.0$) - Mean *precision* for *Biased*: 0.4995, mean *precision* for *DT*: 0.8327 $\Rightarrow$ *DT* is better than *Biased* (*p-value* $= 0.0$) - Mean *precision* for *Biased*: 0.4995, mean *precision* for *NB*: 0.8209 $\Rightarrow$ *NB* is better than *Biased* (*p-value* $= 0.0$) - Mean *precision* for *Biased*: 0.4995, mean *precision* for *MLP*: 0.8365 $\Rightarrow$ *MLP* is better than *Biased* (*p-value* $= 0.0$) - Mean *precision* for *Biased*: 0.4995, mean *precision* for *RF*: 0.8707 $\Rightarrow$ *RF* is better than *Biased* (*p-value* $= 0.0$) - Mean *precision* for *Biased*: 0.4995, mean *precision* for *SVP*: 0.7557 $\Rightarrow$ *SVP* is better than *Biased* (*p-value* $= 0.0$) ### Recall - Mean *recall* for *DT*: 0.9533, mean *recall* for *NB*: 0.4189 $\Rightarrow$ *DT* is better than *NB* (*p-value* $= 0.0$) - Mean *recall* for *DT*: 0.9533, mean *recall* for *MLP*: 0.9418 $\Rightarrow$ *DT* is better than *MLP* (*p-value* $= 0.0118$) - Mean *recall* for *DT*: 0.9533, mean *recall* for *RF*: 0.9567 $\Rightarrow$ statistical test inconclusive (*p-value* $= 0.3276$, *5% corrected ANOVA power* $= 0.2558$) - Mean *recall* for *DT*: 0.9533, mean *recall* for *SVP*: 0.7547 $\Rightarrow$ *DT* is better than *SVP* (*p-value* $= 0.0$) - Mean *recall* for *NB*: 0.4189, mean *recall* for *MLP*: 0.9418 $\Rightarrow$ *MLP* is better than *NB* (*p-value* $= 0.0$) - Mean *recall* for *NB*: 0.4189, mean *recall* for *RF*: 0.9567 $\Rightarrow$ *RF* is better than *NB* (*p-value* $= 0.0$) - Mean *recall* for *NB*: 0.4189, mean *recall* for *SVP*: 0.7547 $\Rightarrow$ *SVP* is better than *NB* (*p-value* $= 0.0$) - Mean *recall* for *MLP*: 0.9418, mean *recall* for *RF*: 0.9567 $\Rightarrow$ *RF* is better than *MLP* (*p-value* $= 0.0001$) - Mean *recall* for *MLP*: 0.9418, mean *recall* for *SVP*: 0.7547 $\Rightarrow$ *MLP* is better than *SVP* (*p-value* $= 0.0$) - Mean *recall* for *RF*: 0.9567, mean *recall* for *SVP*: 0.7547 $\Rightarrow$ *RF* is better than *SVP* (*p-value* $= 0.0$) - Mean *recall* for *Biased*: 1.0, mean *recall* for *DT*: 0.9533 $\Rightarrow$ *Biased* is better than *DT* (*p-value* $= 0.0$) - Mean *recall* for *Biased*: 1.0, mean *recall* for *NB*: 0.4189 $\Rightarrow$ *Biased* is better than *NB* (*p-value* $= 0.0$) - Mean *recall* for *Biased*: 1.0, mean *recall* for *MLP*: 0.9418 $\Rightarrow$ *Biased* is better than *MLP* (*p-value* $= 0.0$) - Mean *recall* for *Biased*: 1.0, mean *recall* for *RF*: 0.9567 $\Rightarrow$ *Biased* is better than *RF* (*p-value* $= 0.0$) - Mean *recall* for *Biased*: 1.0, mean *recall* for *SVP*: 0.7547 $\Rightarrow$ *Biased* is better than *SVP* (*p-value* $= 0.0$) ## Practical Usefulness The evaluation shows that all classifiers but the Naive Bayes classifier outperform the biased classifier in overall performance (represented by the F1 score). Given the evaluation was not performed on a dedicated test set, all classifiers may be subjected to training bias, which might yield better metrics than a similar evaluation performed on completely new data. However, given the evaluation sample size (i.e. the number of training runs) this effect is minimal. Given this premise, I can say with reasonable confidence the *DT*, *MLP*, *RP* and *SVP* classifiers would be useful in predicting potential bugs in the Google JSComp project, i.e. the source of the used dataset. Given the literature presented during lecture, it is not certain if the same trained classifier would yield acceptable results for source code from another project. This is because differences in coding conventions, the bug tracking process, or simply the definition of what constitutes a bug may vary from project to project. A solution to this problem might be to simply train the classifiers on a dataset coming from the project where bug prediction is needed.